1
|
Strzępa A, Marcińska K, Kiecka A, Majewska-Szczepanik M, Szczepanik M. Proton pump inhibitor alters Th17/Treg balance and induces gut dysbiosis suppressing contact hypersensitivity reaction in mice. Front Immunol 2024; 15:1390025. [PMID: 39247190 PMCID: PMC11377960 DOI: 10.3389/fimmu.2024.1390025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Proton pump inhibitors (PPIs), such as omeprazole, are the most commonly prescribed drugs. Treatment with PPIs alters gut microbiota composition and reduces the production of reactive oxygen (ROS) and proinflammatory IL-1β, IL-6, and TNF-α cytokines. Here, using the T cell-dependent contact hypersensitivity (CHS) response, an animal model of allergic contact dermatitis (ACD) that affects up to 30% of the population, we demonstrated that a two-week omeprazole treatment suppresses the development of CHS. Omeprazole treatment before CHS induction, reduced inflammatory response in ears measured by ear swelling, ear biopsy weight, MPO activity, and proinflammatory cytokine production. These changes were associated with reduced frequency of TCRαβ+ CD4+ IL-17A+ and TCRαβ+ CD8+ IL-17A+ T cells and increased frequency of TCRαβ+ CD4+ CD25+ FoxP3+ Treg, and TCRαβ+ CD4+ IL-10+ Tr1 cells in peripheral lymphoid organs. Omeprazole treatment decreased the production of ROS, TNF-α, and IL-6, which supported Th17 cell induction, and increased the frequency of Clostridium cluster XIVab and Lactobacillus, implicated in Treg cell induction. The fecal microbiota transplantation (FMT) experiment confirmed the role of omeprazole-induced changes in gut microbiota profile in CHS suppression. Our data suggests that omeprazole ameliorates inflammatory response mediated by T-cells.
Collapse
Affiliation(s)
- Anna Strzępa
- Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Marcińska
- Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, Cracow, Poland
| | - Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, Cracow, Poland
| | - Monika Majewska-Szczepanik
- Department of Medical Physiology, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, Cracow, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
2
|
Yang Y, Sun J, You H, Sun Y, Song Y, Shen Z, Liu T, Guan D, Zhou Y, Cheng S, Wang C, Yu G, Zhu C, Tang Z. Aloe-emodin relieves allergic contact dermatitis pruritus by inhibiting mast cell degranulation. Immunol Lett 2024; 270:106902. [PMID: 39181335 DOI: 10.1016/j.imlet.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Urushiol-induced allergic contact dermatitis (ACD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to pruritus and eczematous lesions. ACD is triggered by immune imbalance. Aloe emodin is an anthraquinone derivative extracted from rhubarb, aloe and other traditional Chinese medicines. It has a wide range of pharmacological effects, including anti-inflammatory, anti-tumor, and anti-allergic effects. The purpose of our study was to demonstrate the effectiveness of aloe-emodin on urushiol-induced acute pruritus and allergic contact dermatitis. The results showed that urushiol could stimulate keratinocytes to release chemokines CXCL1, CXCL2, CCL2, TSLP, and TNF-α, which recruit or activate mast cells. Aloe-emodin treatment inhibited inflammatory-response-induced mast cell degranulation in skin lesions and suppressed the expression of inflammatory cytokines, such as interleukin-4, and interleukin-6. Therefore, the results indicate that aloe-emodin can improve urushiol-induced acute pruritus and allergic contact dermatitis in mice by inhibiting mast cell degranulation.
Collapse
Affiliation(s)
- Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Jianmei Sun
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Huan You
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Yuling Sun
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China; Department of Pharmacy, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Yizhi Song
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Zhouyang Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Tongtong Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Donglang Guan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Yuan Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Changming Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Guang Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China.
| | - Zongxiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, JS, China.
| |
Collapse
|
3
|
Aradi P, Kovács G, Kemecsei É, Molnár K, Sági SM, Horváth Z, Mehrara BJ, Kataru RP, Jakus Z. Lymphatic-Dependent Modulation of the Sensitization and Elicitation Phases of Contact Hypersensitivity. J Invest Dermatol 2024:S0022-202X(24)00261-6. [PMID: 38548256 DOI: 10.1016/j.jid.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024]
Abstract
Allergic contact dermatitis is a common inflammatory skin disease comprising 2 phases. During sensitization, immune cells are activated by exposure to various allergens, whereas repeated antigen exposure induces local inflammation during elicitation. In this study, we utilized mouse models lacking lymphatics in different skin regions to characterize the role of lymphatics separately in the 2 phases, using contact hypersensitivity as a model of human allergic inflammatory skin diseases. Lymphatic-deficient mice exhibited no major difference to single antigen exposure compared to controls. However, mice lacking lymphatics in both phases displayed reduced inflammation after repeated antigen exposure. Similarly, diminished immune response was observed in mice lacking lymphatics only in sensitization, whereas the absence of lymphatics only in the elicitation phase resulted in a more pronounced inflammatory immune response. This exaggerated inflammation is driven by neutrophils impacting regulatory T cell number. Collectively, our results demonstrate that skin lymphatics play an important but distinct role in the 2 phases of contact hypersensitivity. During sensitization, lymphatics contribute to the development of the antigen-specific immunization, whereas in elicitation, they moderate the inflammatory response and leukocyte infiltration in a neutrophil-dependent manner. These findings underscore the need for novel therapeutic strategies targeting the lymphatics in the context of allergic skin diseases.
Collapse
Affiliation(s)
- Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Gábor Kovács
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Éva Kemecsei
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Kornél Molnár
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Stella Márta Sági
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Zalán Horváth
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.
| |
Collapse
|
4
|
Battais F, Langonné I, Muller S, Mathiot J, Coiscaud A, Audry A, Remy AM, Sponne I, Mourot-Bousquenaud M. The BMDC model, a performant cell-based test to assess the sensitizing potential and potency of chemicals including pre/pro-haptens. Contact Dermatitis 2024; 90:211-234. [PMID: 37852624 DOI: 10.1111/cod.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Chemical-induced allergies at workplace represent a significant occupational health issue. These substances must be properly identified as sensitizers. In previous studies, an original model using mouse bone marrow-derived dendritic cells (BMDC) was developed for this purpose. OBJECTIVES The aim of this study was to evaluate the predictive capacity of the BMDC model with a large panel of sensitizers (including pre- and pro-haptens) and non-sensitizers. METHODS The readout from the BMDC model is based on expression levels of six phenotypic markers measured by flow cytometry. RESULTS The results indicate that 29 of the 37 non-sensitizers, and 81 of the 86 sensitizers were correctly classified compared to the Local Lymph Node Assay (LLNA). Statistical analysis revealed the BMDC model to have a sensitivity of 94%, a specificity of 78%, and an accuracy of 89%. The EC2 (Effective Concentration) values calculated with this model allow sensitizers to be categorized into four classes: extreme, strong, moderate and weak. CONCLUSIONS These excellent predictive performances show that the BMDC model discriminates between sensitizers and non-sensitizers with outstanding precision equal to or better than existing validated alternative models. Moreover, this model allows to predict sensitization potency of chemicals. The BMDC test could therefore be proposed as an additional tool to assess the sensitizing potential and potency of chemicals.
Collapse
Affiliation(s)
- Fabrice Battais
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Isabelle Langonné
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Samuel Muller
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Julianne Mathiot
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Amélie Coiscaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Adrien Audry
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Aurélie Martin Remy
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Isabelle Sponne
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Mélanie Mourot-Bousquenaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| |
Collapse
|
5
|
Sadrolvaezin A, Pezhman A, Zare I, Nasab SZ, Chamani S, Naghizadeh A, Mostafavi E. Systemic allergic contact dermatitis to palladium, platinum, and titanium: mechanisms, clinical manifestations, prevalence, and therapeutic approaches. MedComm (Beijing) 2023; 4:e386. [PMID: 37873514 PMCID: PMC10590457 DOI: 10.1002/mco2.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/25/2023] Open
Abstract
Contact dermatitis (CD) is an inflammatory skin disease of eczema that is elicited by chemicals or metal ions that have toxic effects without eliciting a T-cell response (contact elicitation) or by small reactive chemicals that modify proteins and induce innate and adaptive immune responses (contact allergens). The clinical condition is characterized by localized skin rash, pruritus, redness, swelling, and lesions, which are mainly detected by patch tests and lymphocyte stimulation. Heavy metals such as palladium (Pd), platinum (Pt), and titanium (Ti) are ubiquitous in our environment. These heavy metals have shown CD effects as allergic agents. Immunological responses result from the interaction of cytokines and T cells. Occupational metal CD accounts for most cases of work-related cutaneous disorders. In this systematic review, the allergic effects of heavy metals, including Pd, Pt, and Ti, and the mechanisms, clinical manifestations, prevalence, and therapeutic approaches are discussed in detail. Furthermore, the therapeutic approaches introduced to treat CD, including corticosteroids, topical calcineurin inhibitors, systemic immunosuppressive agents, phototherapy, and antihistamines, can be effective in the treatment of these diseases in the future. Ultimately, the insights identified could lead to improved therapeutic and diagnostic pathways.
Collapse
Affiliation(s)
- Ali Sadrolvaezin
- Medical Toxicology and Drug Abuse Research CenterBirjand University of Medical SciencesBirjandIran
| | - Arezou Pezhman
- School of MedicineZahedan Azad University of Medical SciencesZahedanIran
| | - Iman Zare
- Research and Development DepartmentSina Medical Biochemistry Technologies Co. Ltd.ShirazIran
| | - Shima Zahed Nasab
- Department of Life Science EngineeringFaculty of New Sciences and TechnologiesUniversity of TehranTehranIran
| | - Sajad Chamani
- Medical Toxicology and Drug Abuse Research CenterBirjand University of Medical SciencesBirjandIran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research CenterBirjand University of Medical SciencesBirjandIran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
6
|
Port-Lougarre Y, Gourlaouen C, Vileno B, Giménez-Arnau E. Antioxidant Activity and Skin Sensitization of Eugenol and Isoeugenol: Two Sides of the Same Coin? Chem Res Toxicol 2023; 36:1804-1813. [PMID: 37922503 DOI: 10.1021/acs.chemrestox.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Eugenol and isoeugenol are well acknowledged to possess antioxidant and thus cytoprotective activities. Yet both compounds are also important skin sensitizers, compelling the cosmetics and fragrance industries to notify their presence in manufactured products. While they are structurally very similar, they show significant differences in their sensitization properties. Consequently, eugenol and isoeugenol have been the subject of many mechanistic studies where the final oxidation forms, electrophilic ortho-quinone and quinone methide, are blamed as the reactive species forming an antigenic complex with nucleophilic residues of skin proteins, inducing skin sensitization. However, radical mechanisms could compete with such an electrophilic-nucleophilic pathway. The antioxidant activity results from neutralizing reactive oxygen radicals by the release of the phenolic hydrogen atom. The so-formed phenoxyl radicals can then fully delocalize upon the structure, becoming potentially reactive toward skin proteins at several positions. To obtain in-depth insights into such reactivity, we investigated in situ the formation of radicals from eugenol and isoeugenol using electron paramagnetic resonance combined with spin trapping in reconstructed human epidermis (RHE), mimicking human skin and closer to what may happen in vivo. Two modes of radical initiation were used, exposing RHE to (i) horseradish peroxidase (HRP), complementing RHE metabolic capacities, and mimicking peroxidases present in vivo or (ii) solar light using a AM 1.5 solar simulator. In both experimental approaches, where the antioxidant character of both compounds is revealed, oxygen- and carbon-centered radicals were formed in RHE. Our hypothesis is that such carbon radicals are relevant candidates to form antigenic entities prior to conversion into electrophilic quinones. On this basis, these studies suggest that pro- or prehapten fingerprints could be advanced depending on the radical initiation method. The introduction of HRP suggested that eugenol and isoeugenol behave as prohaptens, while when exposed to light, a prehapten nature could be highlighted.
Collapse
Affiliation(s)
- Yannick Port-Lougarre
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Elena Giménez-Arnau
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
7
|
Schwarz A, Philippsen R, Schwarz T. Mouse Models of Allergic Contact Dermatitis: Practical Aspects. J Invest Dermatol 2023; 143:888-892. [PMID: 37211376 DOI: 10.1016/j.jid.2023.03.1668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis is a frequently observed dermatosis, especially in industrialized countries. Regarded as a classical type IV immune reaction (delayed type), the process can be separated into two pathogenetic parts: the induction phase where sensitization takes place and the elicitation phase in which inflammation is induced upon re-exposure to the same antigen. A murine model was established decades ago, which reliably reproduces both phases. Epicutaneously applied low-molecular-weight sensitizers bind to proteins (haptens) and become full antigens, which results in sensitization. Subsequent administration of the same hapten onto ear skin causes a swelling response. This reaction is antigen specific because it cannot be induced in nonsensitized mice or in sensitized mice with a different hapten. This model was used to study the mechanisms involved in allergic contact dermatitis and also was intensively utilized to study immunologic mechanisms, including antigen presentation and development of T effector or regulatory T cells. The model's major merit is its antigen specificity. It is highly reproducible, reliable, and simple to perform. In this paper, the methods of this technique are described to help researchers successfully establish this widely used model in laboratories. Describing the complex pathomechanisms underlying the model is beyond the scope of this article.
Collapse
Affiliation(s)
- Agatha Schwarz
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Rebecca Philippsen
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Thomas Schwarz
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany.
| |
Collapse
|
8
|
Majewska-Szczepanik M, Strzępa A, Marcińska K, Szczepanik M. Epicutaneous immunization with TNP-Ig antigen induces CD11c +IL-10 + dendritic cells that promote suppression of Th1-mediated contact hypersensitivity in humanized HLA-DR4 transgenic mice. Int Immunopharmacol 2023; 119:110281. [PMID: 37156033 DOI: 10.1016/j.intimp.2023.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The contact hypersensitivity response (CHS) is a mouse model of allergic contact dermatitis in humans. The reaction is classified as type IV hypersensitivity and underlies many autoimmune disorders. Experiments employing the CHS model in wild-type mice showed that the protein antigen applied to the skin in the form of a gauze patch one week before the induction of Th1-dependent CHS was an effective strategy to reduce the inflammatory response in the skin. The approach of epicutaneous (EC) immunization also effectively suppressed the inflammatory response in various mouse models of autoimmune diseases. To evaluate the potential of EC immunization to suppress T cell-dependent immune response in humans, we used HLA-DR4 tg mice, which express the human DRB1*0401 allele and lack all endogenous mouse MHC class II genes. Our data show that EC immunization with TNP-conjugated protein antigen followed by induction of CHS to trinitrochlorobenzene (TNCB), effectively suppressed the CHS response as described by ear swelling, MPO activity in ear extracts, and the number of TCRβ+CD4+IFN-γ+ CHS T-effector cells in auxiliary and inguinal lymph nodes (ALN) and spleen (SPL) of HLA-DR4 tg mice. EC-induced suppression increases the frequency of CD11c+IL-10+ DCs in SPL. Their immunoregulatory role was confirmed by s.c. immunization with TNP-CD11c+DCs prior to CHS elicitation and induction. Our data in HLA-DR4 tg mice show that EC protein immunization induces IL-10-producing DCs, which suppress the development of CD4+IFN-γ+ T cell-dependent CHS, implying that EC protein immunization could be of therapeutic importance for T cell-mediated diseases in humans.
Collapse
Affiliation(s)
- Monika Majewska-Szczepanik
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, ul. Michalowskiego 12, 33-332 Krakow, Poland.
| | - Anna Strzępa
- Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, ul. Kopernika 7A, 31-034 Krakow, Poland
| | - Katarzyna Marcińska
- Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, ul. Kopernika 7A, 31-034 Krakow, Poland
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, ul. Kopernika 7A, 31-034 Krakow, Poland.
| |
Collapse
|
9
|
Nakayama K, Zifle A, Fritz S, Fuchs A, Sakaguchi H, Miyazawa M. Incorporating integrated testing strategy (ITSv1) defined approach into read-across (RAx) in predicting skin sensitization potency: ITSv1-based RAx. Regul Toxicol Pharmacol 2023; 139:105358. [PMID: 36805910 DOI: 10.1016/j.yrtph.2023.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Recently, due to regulatory and ethical demands, new approach methodologies (NAMs), defined approaches (DAs), and read-across (RAx) have been used in the risk assessment of skin sensitization. Integrated testing strategy (ITS)v1 DA, adopted in OECD Guideline No. 497, can be used for skin sensitization potency categorization. However, ITSv1 DA alone is not used for further refinement of the potency prediction based on EC3 (the estimated concentration that produces a stimulation index of 3 in murine local lymph node assay) values. Moreover, there is no explicit approach to incorporating NAM/DA data into RAx to fill the data gap of EC3 values with high confidence. This study developed a strategy incorporating ITSv1 DA into RAx to predict skin sensitization potency: ITSv1-based RAx. To examine the reliability of this novel strategy, a case study with lilial, a fragrance material, was performed. Based on ITSv1-based RAx, the skin sensitization potency of lilial was determined by extrapolating the EC3 value of 9.5% for the suitable analogue bourgeonal, which was close to the historical EC3 value of 8.6%. The result suggested that the strategy can refine the prediction of EC3 values with high confidence and be useful for the risk assessment of skin sensitization.
Collapse
Affiliation(s)
- Kanako Nakayama
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan.
| | - Anne Zifle
- Safety & Toxicology, Kao Germany GmbH, Darmstadt, Germany
| | - Sabrina Fritz
- Safety & Toxicology, Kao Germany GmbH, Darmstadt, Germany
| | - Anne Fuchs
- Safety & Toxicology, Kao Germany GmbH, Darmstadt, Germany
| | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Masaaki Miyazawa
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| |
Collapse
|
10
|
Pemberton MA, Kimber I. Propylene glycol, skin sensitisation and allergic contact dermatitis: A scientific and regulatory conundrum. Regul Toxicol Pharmacol 2023; 138:105341. [PMID: 36702195 DOI: 10.1016/j.yrtph.2023.105341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Propylene glycol (PG) has widespread use in pharmaceuticals, cosmetics, fragrances and personal care products. PG is not classified as hazardous under the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) but poses an intriguing scientific and regulatory conundrum with respect to allergic contact dermatitis (ACD), the uncertainty being whether and to what extent PG has the potential to induce skin sensitisation. In this article we review the results of predictive tests for skin sensitisation with PG, and clinical evidence for ACD. Patch testing in humans points to PG having the potential to be a weak allergen under certain conditions, and an uncommon cause of ACD in subjects without underlying/pre-disposing skin conditions. In clear contrast PG is negative in predictive toxicology tests for skin sensitisation, including guinea pig and mouse models (e.g. local lymph node assay), validated in vitro test methods that measure various key events in the pathway leading to skin sensitisation, and predictive methods in humans (Human Repeat Insult Patch and Human Maximisation Tests). We here explore the possible scientific basis for this intriguing inconsistency, recognising there are arguably no known contact allergens that are universally negative in, in vitro, animal and human predictive tests methods.
Collapse
Affiliation(s)
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Mäki-Opas I, Hämäläinen M, Moilanen LJ, Sood H, Leppänen T, Kummola L, Junttila IS, Lehtimäki L, Moilanen E. TRPA1 Mediates Contact Hypersensitivity Induced by 2,4-Dinitrochlorobenzene. J Invest Dermatol 2023; 143:1104-1108.e4. [PMID: 36634816 DOI: 10.1016/j.jid.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Lauri J Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Heini Sood
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Laura Kummola
- Biodiversity Interventions for Well-being, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka S Junttila
- Cytokine Biology Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland; Northern Finland Laboratory Centre (NordLab), Oulu, Finland; Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
12
|
Stănescu AMA, Cristea AMA, Bejan GC, Vieru M, Simionescu AA, Popescu FD. Allergic Contact Cell-Mediated Hypersensitivity in Psoriasis: A Narrative Minireview. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070914. [PMID: 35888633 PMCID: PMC9324524 DOI: 10.3390/medicina58070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
The dysfunctionality of the protective skin barrier in psoriasis allows easier cutaneous penetration of various contact haptens; thus, such patients can develop allergic contact hypersensitivity as a comorbidity. Both skin conditions involve T-cell-mediated mechanisms. Dermatologists and allergists should consider assessing allergic contact cell-mediated hypersensitivity in selected psoriasis patients, especially those with palmoplantar psoriasis and who are refractory to topical treatments, and in patients with psoriasis, with or without arthritis, treated with biologics that present skin lesions clinically suggestive of contact dermatitis.
Collapse
Affiliation(s)
| | - Ana-Maria-Antoaneta Cristea
- Department of Allergology and Clinical Immunology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania; (A.-M.-A.C.); (F.-D.P.)
| | - Gabriel Cristian Bejan
- Department of Family Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Correspondence: (G.C.B.); (M.V.)
| | - Mariana Vieru
- Department of Allergology and Clinical Immunology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania; (A.-M.-A.C.); (F.-D.P.)
- Department of Allergology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (G.C.B.); (M.V.)
| | - Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Florin-Dan Popescu
- Department of Allergology and Clinical Immunology, Nicolae Malaxa Clinical Hospital, 022441 Bucharest, Romania; (A.-M.-A.C.); (F.-D.P.)
- Department of Allergology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Sahli F, Vileno B, Gourlaouen C, Giménez-Arnau E. Autoxidized citronellol: Free radicals as potential sparkles to ignite the fragrance induced skin sensitizing pathway. Food Chem Toxicol 2022; 166:113201. [PMID: 35671905 DOI: 10.1016/j.fct.2022.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Citronellol, one of the most used fragrance compounds worldwide, is one ingredient of Fragrance Mix II used to assess skin allergy to fragrances in dermatitis patients. Pure citronellol is non-allergenic. Main issue is it autoxidizes when exposed to air becoming then allergenic. The increased skin sensitizing potency of air-exposed citronellol has been attributed to the hydroperoxides detected at high concentrations in the oxidation mixtures. It has been postulated that such hydroperoxides can give rise to specific antigens, although chemical mechanisms involved and the pathogenesis are far from being unraveled. Hydroperoxides are believed to react with skin proteins through mechanisms involving radical intermediates. Here, insights on the potential radicals involved in skin sensitization to citronellol hydroperoxides are given. The employed tool is a multispectroscopic approach based on (i) electron paramagnetic resonance and spin trapping, that confirmed the formation of oxygen- and carbon-radicals when exposing reconstructed human epidermis to concentrations of hydroperoxides close to those used for patch testing patients with air-oxidized citronellol; (ii) liquid chromatography-mass spectrometry, that proved the reaction with amino acids such as cysteine and histidine, known to be involved in radical processes and (iii) density functional theory calculations, that gave an overview on the preferential paths for radical degradation.
Collapse
Affiliation(s)
- Fatma Sahli
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Elena Giménez-Arnau
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
14
|
Nishijo T, Api AM, Gerberick GF, Miyazawa M, Na M, Sakaguchi H. Implementation of a dermal sensitization threshold (DST) concept for risk assessment: structure-based DST and in vitro data-based DST. Crit Rev Toxicol 2022; 52:51-65. [PMID: 35416118 DOI: 10.1080/10408444.2022.2033162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin sensitization resulting in allergic contact dermatitis represents an important toxicological endpoint as part of safety assessments. When available substance-specific sensitization data are inadequate, the dermal sensitization threshold (DST) concept has been proposed to set a skin exposure threshold to provide no appreciable risk of skin sensitization. Structure-based DSTs, which include non-reactive, reactive, and high potency category (HPC) DSTs, can be applied to substances with an identified chemical structures. An in vitro data-based "mixture DST" can be applied to mixtures based on data from in vitro test methods, such as KeratinoSens™ and the human Cell Line Activation Test. The purpose of this review article is to discuss the practical use of DSTs for conducting sound sensitization risk assessments to assure the safety of consumer products. To this end, several improvements are discussed in this review. For application of structure-based DSTs, an overall structural classification workflow was developed to exclude the possibility that "HPC but non-reactive" chemicals are misclassified as "non-reactive", because such chemicals should be classified as HPC chemicals considering that HPC rules have been based on the chemical structure of high potency sensitizers. Besides that, an extended application of the mixture DST principle to mixtures that either is cytotoxic or evaluated as positive was proposed. On a final note, we also developed workflows that integrate structure-based and in vitro-based mixture DST. The proposed workflows enable the application of the appropriate DST, which serves as a point of departure in the quantitative sensitization risk assessment.
Collapse
Affiliation(s)
- Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, NJ, USA
| | | | - Masaaki Miyazawa
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Mihwa Na
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, NJ, USA
| | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
15
|
Gendrisch F, Völkel L, Fluck M, Apostolova P, Zeiser R, Jakob T, Martin SF, Esser PR. IRE1 and PERK signaling regulates inflammatory responses in a murine model of contact hypersensitivity. Allergy 2022; 77:966-978. [PMID: 34314538 DOI: 10.1111/all.15024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Contact sensitizers may interfere with correct protein folding. Generation of un-/misfolded proteins can activate the IRE-1 or PERK signaling pathways initiating the unfolded protein response (UPR) and thereby determine inflammatory immune responses. We have analyzed the effect of sensitizers with different potencies on the induction of UPR activation/inhibition and the subsequent generation of a pro-inflammatory micromilieu in vitro as well as the effect of UPR modulation on the inflammatory response in the murine contact hypersensitivity (CHS) in vivo. METHODS Semi-quantitative and quantitative PCR, fluorescence microscopy, ELISA, NF-κB activation and translocation assays, DC/keratinocyte co-culture assay, FACS, and in vivo CHS experiments were performed. RESULTS Sensitizers and irritants activate IRE-1 and PERK in murine and human keratinocytes. Synergistic effects occur after combination of different weak sensitizers / addition of irritants. Moreover, tolerogenic dinitrothiocyanobenzene can be converted into a strong sensitizer by pre-activation of the UPR. Blocking UPR signaling results in decreased NF-κB activation and cytokine production in keratinocytes and in activation marker downregulation in a HaCaT/THP-1 co-culture. Interestingly, not only systemic but also topical application of UPR inhibitors abrogates CHS responses in vivo. CONCLUSION These observations highlight an important role of the UPR in determination of the inflammatory response in vitro and in vivo further underlining the importance of tissue stress and damage responses in the development of ACD and provide mechanistically based concepts as a basis for the development of new therapeutic approaches to treat allergic contact dermatitis.
Collapse
Affiliation(s)
- Fabian Gendrisch
- Allergy Research Group Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
- Department of Dermatology Research Center skinitial Medical Center ‐ University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| | - Lukas Völkel
- Allergy Research Group Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Melanie Fluck
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Petya Apostolova
- Department of Medicine I Medical Center ‐ University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| | - Robert Zeiser
- Department of Medicine I Medical Center ‐ University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| | - Thilo Jakob
- Allergy Research Group Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
- Experimental Dermatology and Allergy Research Group Department of Dermatology and Allergology University Medical Center Giessen (UKGM Justus Liebig University Giessen Germany
| | - Stefan F. Martin
- Allergy Research Group Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| | - Philipp R. Esser
- Allergy Research Group Department of Dermatology Medical Center – University of Freiburg Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
16
|
Vileno B, Port-Lougarre Y, Giménez-Arnau E. Electron paramagnetic resonance and spin trapping to detect free radicals from allergenic hydroperoxides in contact with the skin: from the molecule to the tissue. Contact Dermatitis 2022; 86:241-253. [PMID: 34982482 DOI: 10.1111/cod.14037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
A major research topic consists of revealing the contribution of radical-mediated reactions in dermatological diseases related to xenobiotic-induced stress, to succeed risk assessment procedures protecting producers and consumers. Allergic contact dermatitis is the clinically relevant consequence of skin sensitization, one of the most critical occupational and environmental health issues related to xenobiotics exposure. The first key event identified for the skin sensitization process to a chemical is its aptitude to react with epidermal proteins and form antigenic structures that will further trigger the immune response. Many chemical sensitizers are suspected to react through mechanisms involving radical intermediates. This review focuses on recent progress we have accomplished over the last few years studying radical intermediates derived from skin sensitizing chemicals by electron paramagnetic resonance in combination with the spin trapping technique. Our work is carried out "from the molecule", performing studies in solution, "to the tissue", by the development of a methodology on a reconstructed human epidermis model, very close in terms of histology and metabolic/enzymatic activity to real human epidermis, that can be used as suitable biological tissue model. The benefits are to test chemicals under conditions close to human use and real-life sensitization exposures and benefit from the 3D microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bertrand Vileno
- POMAM Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| | - Yannick Port-Lougarre
- Dermatochemistry Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Basketter DA, Kimber I. Enzymes and sensitization via skin exposure: A critical analysis. Regul Toxicol Pharmacol 2021; 129:105112. [PMID: 34973388 DOI: 10.1016/j.yrtph.2021.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Some proteins, including enzymes, can induce allergic sensitization of various types, including allergic sensitization of the respiratory tract. There is now an increased understanding of the role that the skin plays in the development of IgE-mediated allergy and this prompts the question whether topical exposure to enzymes used widely in consumer cleaning products could result in allergic sensitization. Here, the evidence that proteins can interact with the skin immune system and the way they do so is reviewed, together with a consideration of the experience gained over decades of the use of enzymes in laundry and cleaning products. The conclusion drawn is that although transcutaneous sensitization to proteins can occur (typically through compromised skin) resulting in IgE antibody-mediated allergy, in practice such skin contact with enzymes used in laundry and cleaning products does not appear to pose a significant risk of allergic disease. Further, the evidence summarized in this publication support the view that proteins do not pose a risk of allergic contact dermatitis.
Collapse
Affiliation(s)
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Stucky CL, Mikesell AR. Cutaneous pain in disorders affecting peripheral nerves. Neurosci Lett 2021; 765:136233. [PMID: 34506882 PMCID: PMC8579816 DOI: 10.1016/j.neulet.2021.136233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
Our ability to quickly detect and respond to harmful environmental stimuli is vital for our safety and survival. This inherent acute pain detection is a "gift" because it both protects our body from harm and allows healing of damaged tissues [1]. Damage to tissues from trauma or disease can result in distorted or amplified nociceptor signaling and sensitization of the spinal cord and brain (Central Nervous System; CNS) pathways to normal input from light touch mechanoreceptors. Together, these processes can result in nagging to unbearable chronic pain and extreme sensitivity to light skin touch (allodynia). Unlike acute protective pain, chronic pain and allodynia serve no useful purpose and can severely reduce the quality of life of an affected person. Chronic pain can arise from impairment to peripheral neurons, a phenomenon called "peripheral neuropathic pain." Peripheral neuropathic pain can be caused by many insults that directly affect peripheral sensory neurons, including mechanical trauma, metabolic imbalance (e.g., diabetes), autoimmune diseases, chemotherapeutic agents, viral infections (e.g., shingles). These insults cause "acquired" neuropathies such as small-fiber neuropathies, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and post herpetic neuralgia. Peripheral neuropathic pain can also be caused by genetic factors and result in hereditary neuropathies that include Charcot-Marie-Tooth disease, rare channelopathies and Fabry disease. Many acquired and hereditary neuropathies affect the skin, our largest organ and protector of nearly our entire body. Here we review how cutaneous nociception (pain perceived from the skin) is altered following diseases that affect peripheral nerves that innervate the skin. We provide an overview of how noxious stimuli are detected and encoded by molecular transducers on subtypes of cutaneous afferent endings and conveyed to the CNS. Next, we discuss several acquired and hereditary diseases and disorders that cause painful or insensate (lack of sensation) cutaneous peripheral neuropathies, the symptoms and percepts patients experience, and how cutaneous afferents and other peripheral cell types are altered in function in these disorders. We highlight exciting new research areas that implicate non-neuronal skin cells, particularly keratinocytes, in cutaneous nociception and peripheral neuropathies. Finally, we conclude with ideas for innovative new directions, areas of unmet need, and potential opportunities for novel cutaneous therapeutics that may avoid CNS side effects, as well as ideas for improved translation of mechanisms identified in preclinical models to patients.
Collapse
Affiliation(s)
- Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Alexander R Mikesell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
19
|
Rühl-Muth AC, Maler MD, Esser PR, Martin SF. Feeding of a fat-enriched diet causes the loss of resistance to contact hypersensitivity. Contact Dermatitis 2021; 85:398-406. [PMID: 34218443 DOI: 10.1111/cod.13927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Low-molecular weight chemicals or metal ions can cause allergic contact dermatitis, an inflammatory skin disease. Mice lacking Toll-like receptors 2 and 4 (TLR2/4 mice) are resistant to contact hypersensitivity (CHS). In the Western population obesity is increasing, which is known to have a proinflammatory impact. OBJECTIVES The aim of this study was to investigate the impact of a high-fat diet (HFD) on the sensitization and elicitation of CHS. We hypothesized that a proinflammatory micromilieu can be caused by an increase in adipose tissue, which might be sufficient to break the resistance of TLR2/4 mice. METHODS Four weeks prior to sensitization, wild-type (wt) or TLR2/4 mice were fed normal chow (NC), control diet (CD), or HFD. The effects on CHS and inflammation were analysed by measuring the ear swelling response, using flow cytometry and enzyme-linked immunosorbent assay. RESULTS The reaction of wt mice to 2,4,6-trinitro-1-chlorobenzene (TNCB) was increased by HFD. While NC-fed TLR2/4 mice were still resistant to CHS, HFD and, unexpectedly, CD feeding broke the resistance of TLR2/4 mice to TNCB. CONCLUSIONS These experiments suggest that the increased fat content or the different fatty acid composition of the diets increases inflammation and, therefore, the likelihood of developing CHS.
Collapse
Affiliation(s)
- Anne-Catherine Rühl-Muth
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Mareike D Maler
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg
| |
Collapse
|
20
|
Yüksel YT, Nørreslet LB, Thyssen JP. Allergic Contact Dermatitis in Patients with Atopic Dermatitis. CURRENT DERMATOLOGY REPORTS 2021. [DOI: 10.1007/s13671-021-00335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
22
|
Phototoxic and Photoallergic Contact Reactions. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Srour H, Moussallieh FM, Elbayed K, Giménez-Arnau E, Lepoittevin JP. In Situ Alkylation of Reconstructed Human Epidermis by Methyl Methanesulfonate: A Quantitative HRMAS NMR Chemical Reactivity Mapping. Chem Res Toxicol 2020; 33:3023-3030. [PMID: 33190492 DOI: 10.1021/acs.chemrestox.0c00362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allergic contact dermatitis (ACD) is a reaction of the immune system resulting from skin sensitization to an exogenous hazardous chemical and leading to the activation of antigen-specific T-lymphocytes. The adverse outcome pathway (AOP) for skin sensitization identified four key events (KEs) associated with the mechanisms of this pathology, the first one being the ability of skin chemical sensitizers to modify epidermal proteins to form antigenic structures that will further trigger the immune system. So far, these interactions have been studied in solution using model nucleophiles such as amino acids or peptides. As a part of our efforts to better understand chemistry taking place during the sensitization process, we have developed a method based on the use of high-resolution magic angle spinning (HRMAS) NMR to monitor in situ the reactions of 13C substituted chemical sensitizers with nucleophilic amino acids of epidermal proteins in reconstructed human epidermis. A quantitative approach, developed so far for liquid NMR applications, has not been developed to our knowledge in a context of a semisolid nonanisotropic environment like the epidermis. We now report a quantitative chemical reactivity mapping of methyl methanesulfonate (MMS), a sensitizing methylating agent, in reconstructed human epidermis by quantitative HRMAS (qHRMAS) NMR. First, the haptenation process appeared to be much faster in RHE than in solution with a maximum concentration of adducts reached between 4 and 8 h. Second, it was observed that the concentration of cysteine adducts did not significantly increase with the dose (2.07 nmol/mg at 0.4 M and 2.14 nmol/mg at 1 M) nor with the incubation time (maximum of 2.27 nmol/mg at 4 h) compared to other nucleophiles, indicating a fast reaction and a potential saturation of targets. Third, when increasing the exposure dose, we observed an increase of adducts up to 12.5 nmol/mg of RHE, excluding cysteine adducts, for 3112 μg/cm2 (1 M solution) of (13C)MMS. This methodology applied to other skin sensitizers could allow for better understanding of the potential links between the amount of chemical modifications formed in the epidermis in relation to exposure and the sensitization potency.
Collapse
Affiliation(s)
- Hassan Srour
- CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, F-67000 Strasbourg, France
| | | | - Karim Elbayed
- CNRS, ICube UMR 7357, University of Strasbourg, F-67000 Strasbourg, France
| | - Elena Giménez-Arnau
- CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, F-67000 Strasbourg, France
| | | |
Collapse
|
24
|
Kimber I. The activity of methacrylate esters in skin sensitisation test methods II. A review of complementary and additional analyses. Regul Toxicol Pharmacol 2020; 119:104821. [PMID: 33186628 DOI: 10.1016/j.yrtph.2020.104821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
Allergic contact dermatitis is an important occupational health issue, and there is a need to identify accurately those chemicals that have the potential to induce skin sensitisation. Hazard identification was performed initially using animal (guinea pig and mouse) models. More recently, as a result of the drive towards non-animal methods, alternative in vitro and in silico approaches have been developed. Some of these new in vitro methods have been formally validated and have been assigned OECD Test Guideline status. The performance of some of these recently developed in vitro methods, and of 2 quantitative structure-activity relationships (QSAR) approaches, with a series of methacrylate esters has been reviewed and reported previously. In this article that first review has been extended further with additional data and complementary analyses. Results obtained using in vitro methods (Direct Peptide Reactivity Assay, DPRA; ARE-Nrf2 luciferase test methods, KeratinoSens and LuSens; Epidermal Sensitisation Assay, EpiSensA; human Cell Line Activation Test, h-CLAT, and the myeloid U937 Skin Sensitisation test, U-SENS), and 2 QSAR approaches (DEREK™-nexus and TIMES-SS), with 11 methacrylate esters and methacrylic acid are reported here, and compared with existing data from the guinea pig maximisation test and the local lymph node assay. With this series of chemicals it was found that some in vitro tests (DPRA and ARE-Nrf2 luciferase) performed well in comparison with animal test results and available human skin sensitisation data. Other in vitro tests (EpiSensA and h-CLAT) proved rather more problematic. Results with DEREK™-nexus and TIMES-SS failed to reflect accurately the skin sensitisation potential of the methacrylate esters. The implications for assessment of skin sensitising activity are discussed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
25
|
Gilmour N, Kern PS, Alépée N, Boislève F, Bury D, Clouet E, Hirota M, Hoffmann S, Kühnl J, Lalko JF, Mewes K, Miyazawa M, Nishida H, Osmani A, Petersohn D, Sekine S, van Vliet E, Klaric M. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 2020; 116:104721. [DOI: 10.1016/j.yrtph.2020.104721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
|
26
|
Sebastião AI, Ferreira I, Brites G, Silva A, Neves BM, Teresa Cruz M. NLRP3 Inflammasome and Allergic Contact Dermatitis: A Connection to Demystify. Pharmaceutics 2020; 12:E867. [PMID: 32933004 PMCID: PMC7560080 DOI: 10.3390/pharmaceutics12090867] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Allergic contact dermatitis is a common occupational disease that manifests as a cell-mediated hypersensitivity reaction following skin exposure to small reactive chemicals termed haptens. Haptens penetrate the stratum corneum and covalently modify proteins in the epidermis, inducing intracellular stress, which further leads to the release of damage-associated molecular patterns (DAMPs), such as uric acid, reactive oxygen species, hyaluronic acid fragments and extracellular adenosine triphosphate (ATP). These DAMPs are recognized by pattern recognition receptors (PRRs) in innate immune cells, namely dendritic cells (DCs), leading to their maturation and migration to the draining lymph nodes where they activate naïve T lymphocytes. Among all PRRs, several studies emphasize the role of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome on the allergic contact dermatitis (ACD) sensitization phase. However, skin allergens-danger signals-NLRP3 inflammasome axis is yet to be completely elucidated. Therefore, in this review, we sought to discuss the molecular mechanisms underlying DAMPs release and NLRP3 inflammasome activation triggered by skin allergens. The elucidation of these key events might help to identify novel therapeutic strategies for ACD, as well as the development of nonanimal alternative methods for the identification and potency categorization of skin sensitizers.
Collapse
Affiliation(s)
- Ana Isabel Sebastião
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.S.); (I.F.); (G.B.)
| | - Isabel Ferreira
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.S.); (I.F.); (G.B.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Gonçalo Brites
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.S.); (I.F.); (G.B.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.I.S.); (I.F.); (G.B.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
| |
Collapse
|
27
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J, Peana M. Metals, autoimmunity, and neuroendocrinology: Is there a connection? ENVIRONMENTAL RESEARCH 2020; 187:109541. [PMID: 32445945 DOI: 10.1016/j.envres.2020.109541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
It has been demonstrated that metals can induce autoimmunity. However, few studies have attempted to assess and elucidate the underlying mechanisms of action. Recent research has tried to evaluate the possible interactions of the immune system with metal ions, particularly with heavy metals. Research indicates that metals have the potential to induce or promote the development of autoimmunity in humans. Metal-induced inflammation may dysregulate the hypothalamic-pituitary-adrenal (HPA) axis and thus contribute to fatigue and other non-specific symptoms characterizing disorders related to autoimmune diseases. The toxic effects of several metals are also mediated through free radical formation, cell membrane disturbance, or enzyme inhibition. There are worldwide increases in environmental metal pollution. It is therefore critical that studies on the role of metals in autoimmunity, and neuroendocrine disorders, including effects on the developing immune system and brain and the genetic susceptibility are performed. These studies can lead to efficient preventive strategies and improved therapeutic approaches. In this review, we have retrieved and commented on studies that evaluated the effects of metal toxicity on immune and endocrine-related pathways. This review aims to increase awareness of metals as factors in the onset and progression of autoimmune and neuroendocrine disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
28
|
Kuresepi S, Vileno B, Lepoittevin JP, Giménez-Arnau E. Mechanistic Insights on Skin Sensitization to Linalool Hydroperoxides: EPR Evidence on Radical Intermediates Formation in Reconstructed Human Epidermis and 13C NMR Reactivity Studies with Thiol Residues. Chem Res Toxicol 2020; 33:1922-1932. [PMID: 32441093 DOI: 10.1021/acs.chemrestox.0c00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linalool is one of the most commonly used fragrance terpenes in consumer products. While pure linalool is considered as non-allergenic because it has a very low skin sensitization potential, its autoxidation on air leads to allylic hydroperoxides that have been shown to be major skin sensitizers. These hydroperoxides have the potential to form antigens via radical mechanisms. In order to obtain in-depth insights of such reactivity, we first investigated the formation of free radicals derived from linalool hydroperoxides in situ in a model of human reconstructed epidermis by electron paramagnetic resonance combined with spin trapping. The formation of carbon- and oxygen-centered radical species derived from the hydroperoxides was especially evidenced in an epidermis model, mimicking human skin and thus closer to what may happen in vivo. To further investigate these results, we synthesized linalool hydroperoxides containing a 13C-substitution at positions precursor of carbon radicals to elucidate if one of these positions could react with cysteine, its thiol chemical function being one of the most labile groups prone to react through radical mechanisms. Reactions were followed by mono- and bidimensional 13C NMR. We validated that carbon radicals derived from allylic hydrogen abstraction by the initially formed alkoxyl radical and/or from its β-scission can alter directly the lateral chain of cysteine forming adducts via radical processes. Such results provide an original vision on the mechanisms likely involved in the reaction with thiol groups that might be present in the skin environment. Consequently, the present findings are a step ahead toward the understanding of protein binding processes to allergenic allylic hydroperoxides of linalool through the involvement of free radical species and thus of their sensitizing potential.
Collapse
Affiliation(s)
- Salen Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | - Bertrand Vileno
- POMAM Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France.,French EPR Federation of Research, REseau NAtional de RPE interDisciplinaire, RENARD, Fédération IR-RPE CNRS 3443, F-67000 Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| |
Collapse
|
29
|
Godbout M, Vargas A, Hélie P, Bullone M, Lavoie JP. Use of a biopolymer delivery system to investigate the influence of interleukin-4 on recruitment of neutrophils in equids. Am J Vet Res 2020; 81:344-354. [PMID: 32228258 DOI: 10.2460/ajvr.81.4.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To use a biopolymer delivery system to investigate the ability of interleukin (IL)-4 to recruit neutrophils into subcutaneous tissues of equids. ANIMALS 16 horses and 2 ponies. PROCEDURES Animals were assigned to 3 experiments (6/experiment). Effects of recombinant equine (Req) IL-4 (100, 250, or 500 ng/site) versus a positive control (ReqIL-8; 100 ng, 250 ng, or 1 μg/site) and a negative control (Dulbecco PBSS or culture medium) on neutrophil chemotaxis were assessed after SC injection into the neck with an injectable biopolymer used as the vehicle. Tissue samples including the biopolymer plug were collected by biopsy at various time points from 3 hours to 7 days after injection. Neutrophil infiltration was evaluated by histologic scoring (experiments 1, 2, and 3) or flow cytometry (experiment 3). RESULTS Histologic neutrophil infiltration scores did not differ significantly among treatments at most evaluated time points. On flow cytometric analysis, log-transformed neutrophil counts in biopsy specimens were significantly greater for the ReqIL-8 treatment (1 μg/site) than the negative control treatment at 3 but not 6 hours after injection; results did not differ between ReqIL-4 and control treatments at either time point. Negative control treatments induced an inflammatory response in most equids in all experiments. CONCLUSIONS AND CLINICAL RELEVANCE Flow cytometry was a more reliable method to estimate neutrophil migration than histologic score analysis. The ReqIL-4 treatment did not induce a detectable neutrophil response, compared with the negative control treatment in this study. Evidence of inflammation in negative control samples suggested the biopolymer is not a suitable vehicle for use in equids.
Collapse
|
30
|
Li W, Ding F, Zhai Y, Tao W, Bi J, Fan H, Yin N, Wang Z. IL-37 is protective in allergic contact dermatitis through mast cell inhibition. Int Immunopharmacol 2020; 83:106476. [PMID: 32278131 DOI: 10.1016/j.intimp.2020.106476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Allergic contact dermatitis (ACD), characterized predominantly by erythema, vesiculation, and pruritus, is a T cell-mediated skin inflammatory condition. Among immune cells involved in ACD, mast cells (MCs) play an essential role in its pathogenesis. As an inhibitor of proinflammatory IL-1 family members, interleukin 37 (IL-37) has been shown to ameliorate inflammatory responses in various allergic diseases. In this study, we assessed the immunomodulatory effect of IL-37 on allergic inflammation using a 2,4-dinitrofluorobenzene (DNFB)-induced ACD rat model and isolated rat peritoneal mast cells (RPMCs). Systematic application of IL-37 significantly relieved ear swelling, reduced inflammatory cell infiltration, decreased inflammatory cytokine production (TNF-α, IL-1β, IFN-γ, and IL-13), inhibited MC recruitment, lowered IgE levels, and reduced IL-33 production in the local ear tissues with DNFB challenge. Additionally, RPMCs isolated from ACD rats with IL-37 intervention showed downregulation of IL-6, TNF-α, IL-13, and MCP-1 production following IL-33 stimulation, and reduction of β-hexosaminidase and histamine release under DNP-IgE/HSA treatment. Moreover, IL-37 treatment also significantly restrained NF-κB activation and P38 phosphorylation in ACD RPMCs. SIS3, a specific Smad3 inhibitor, abolished the suppressive effects of IL-37 on MC-mediated allergic inflammation, suggesting the participation of Smad3 in the anti-ACD effect of IL-37. These findings indicated that IL-37 protects against IL-33-regulated MC inflammatory responses via inhibition of NF-κB and P38 MAPK activation accompanying the regulation of Smad3 in rats with ACD.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Fengmin Ding
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Zhai
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Wenting Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hong Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
31
|
|
32
|
Wang Z, Lu M, Ren J, Wu X, Long M, Chen L, Chen Z. Electroacupuncture inhibits mast cell degranulation via cannabinoid CB2 receptors in a rat model of allergic contact dermatitis. Acupunct Med 2019; 37:348-355. [DOI: 10.1136/acupmed-2017-011506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objective: Cannabinoid CB2 receptors (CB2Rs) are mainly present on immune cells including mast cells, which participate in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD). In this study, we aimed to investigate whether inhibition of mast cell degranulation was involved in the anti-ACD effect of electroacupuncture (EA) at ST36 via CB2R. Methods: Sprague-Dawley rats were sensitised and challenged with DNFB following EA stimulation for 1 week. Ear swelling, serum IgE levels, local cytokine production and mast cell infiltration were evaluated. Additionally, rat peritoneal mast cells (RPMCs) were isolated and cultured for detection of CB2R expression, mitogen-activated protein kinase (MAPK) signalling activation and mast cell degranulation (including β-hexosaminidase and histamine release) in the presence or absence of CB2R antagonists. Results: EA treatment inhibited ear swelling, suppressed IgE and cytokine production, decreased the number of mast cells and curbed mast cell degranulation, which was associated with the inhibition of p38 phosphorylation in DNFB-induced ACD. Importantly, EA enhanced the expression of CB2R mRNA and protein in the RPMCs. CB2R antagonist AM630 but not CB1R antagonist AM251 effectively reversed the suppressive effect of EA on p38 activation, mast cell infiltration and degranulation. Conclusion: These findings provide more evidence to support the hypothesis that EA promotes CB2R expression in mast cells, which is followed by inhibition of the p38 MAPK pathway, potentially resulting in the anti-ACD effect of EA. This suggests that EA at ST36 may be an effective candidate therapy for treating inflammatory skin diseases such as ACD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Pathogen Biology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuahn, China
| | - Min Lu
- Department of Human Anatomy and Embryology, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jie Ren
- Journal Press of Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoxue Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Man Long
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Longyun Chen
- Department of Biochemistry, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zebin Chen
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
33
|
Fok JS, Katelaris CH. Angioedema Masqueraders. Clin Exp Allergy 2019; 49:1274-1282. [PMID: 31310036 DOI: 10.1111/cea.13463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
Angioedema is a common reason for referral to immunology and allergy specialists. Not all cases are in fact angioedema. There are many conditions that may mimic its appearance, resulting in misdiagnosis. This may happen when a clinician is unfamiliar with conditions resembling angioedema or when there is a low index of clinical suspicion. In this article, we explore a list of differential diagnoses based on body parts, including the lips, the limbs, periorbital tissues, the face, epiglottis and uvula, as well as the genitalia, that may pose as a masquerader even to an experienced eye.
Collapse
Affiliation(s)
- Jie Shen Fok
- Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Victoria, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Constance H Katelaris
- Immunology and Allergy Unit, Campbelltown Hospital, Campbelltown, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
34
|
Reis J, Duarte S, Sardoeira A, Santos E, Sanches M, Lobo I, Selores M. Case report of recalcitrant allergic contact eczema successfully treated with teriflunomide. Dermatol Ther 2019; 32:e12947. [PMID: 31025527 DOI: 10.1111/dth.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 11/27/2022]
Abstract
Allergic contact dermatitis (ACD) is a type IV, delayed-type reaction caused by skin contact with low-molecular-weight organic chemicals and metal ions that activate antigen-specific T cells, primarily T-helper 1 (Th1), in a sensitized individual, leading to skin eczema.First-line treatments are based on avoidance of causal agents and topical corticosteroids/immunomodulators. In recalcitrant cases, chronic oral immunosuppressive agents may be used, but they may have serious adverse effects and do not address the immunological disfunction. We report a case of severe ACD, unresponsive to topical or oral immunosuppressive therapy, which resolved itself after treatment with teriflunomide (TF) 14 mg/daily used for multiple sclerosis. TF is a once-daily, oral selective and reversible dihydroorotate dehydrogenase inhibitor, revealing a new treatment option for ACD.
Collapse
Affiliation(s)
- Joel Reis
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Portugal
| | - Sara Duarte
- Department of Neurology, Centro Hospitalar Universitário do Porto, Portugal
| | - Ana Sardoeira
- Department of Neurology, Centro Hospitalar Universitário do Porto, Portugal
| | - Ernestina Santos
- Department of Neurology, Centro Hospitalar Universitário do Porto, Portugal
| | - Madalena Sanches
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Portugal
| | - Inês Lobo
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Portugal
| | - Manuela Selores
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Portugal
| |
Collapse
|
35
|
Santy-Tomlinson J, Jomeen J, Ersser SJ. Patient-reported symptoms of 'calm', 'irritated' and 'infected' skeletal external fixator pin site wound states; a cross-sectional study. Int J Orthop Trauma Nurs 2019; 33:44-51. [PMID: 30885643 DOI: 10.1016/j.ijotn.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/12/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the frequency, severity and variances in patient-reported symptoms of calm, irritated and infected skeletal pin sites. METHODS A cross-sectional within-subjects repeated-measures study was conducted, employing a self-report questionnaire. Patients (n = 165) treated with lower limb external fixators at 7 English hospitals completed a designed questionnaire. Three sets of retrospective repeated-measures data were collected relating to calm, irritated and infected pin sites. RESULTS Significant differences were revealed between each of the three pin site states (calm, irritated & infected) in the degree of: redness, swelling, itchiness, pain, wound discharge, heat/burning, shiny skin and odour. In relation to difficulty or pain using the affected arm or leg, difficulty weight bearing on the leg, nausea and/or vomiting, feeling unwell or feverish, shivering, tiredness/lethargy and disturbed sleep, significant differences were demonstrated between infected and irritated states and infected and calm states, but not between irritated and calm. CONCLUSIONS The findings provide greater depth of understanding of the symptoms of pin site infection and irritation. Patients may be able to differentiate between different pin site states by comparing the magnitude of the inflammatory symptoms and the presence of other specific symptoms that relate solely to infection and no other clinical state. The irritated state is probably caused by a different pathological processother than infection and may be an indication of contact dermatitis.
Collapse
Affiliation(s)
- Julie Santy-Tomlinson
- Orthopaedic Department, Odense University Hospitals & University of Southern Denmark, Denmark.
| | | | | |
Collapse
|
36
|
Gilmour N, Kimber I, Williams J, Maxwell G. Skin sensitization: Uncertainties, challenges, and opportunities for improved risk assessment. Contact Dermatitis 2019; 80:195-200. [PMID: 30525211 PMCID: PMC6587935 DOI: 10.1111/cod.13167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023]
Abstract
At the ESCD congress held in Manchester in 2016, a session was organized to encourage more dialogue between clinicians with expertise in skin sensitization and toxicologists seeking to provide effective risk assessment to prevent human health issues. That session focused on the remaining uncertainties regarding the induction and regulation of skin sensitization in humans, and the opportunities and challenges associated with the refinement and improvement of risk assessment methodologies. This short article, prompted by those discussions, debates what the authors regard as being among the most important and most intriguing uncertainties about skin sensitization and allergic contact dermatitis in humans, and the most significant opportunities for improving risk assessment. The aim has been to provide a basis for mapping out the areas that might benefit from a closer alignment between the relevant clinical community and toxicologists charged with the responsibility of ensuring that skin sensitization risks are understood and managed.
Collapse
Affiliation(s)
- Nicola Gilmour
- Unilever Safety and Environmental Assurance CentreBedfordUK
| | - Ian Kimber
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jason Williams
- Contact Dermatitis Investigation Unit, Salford NHS Foundation TrustSalfordUK
| | - Gavin Maxwell
- Unilever Safety and Environmental Assurance CentreBedfordUK
| |
Collapse
|
37
|
Kimber I. The activity of methacrylate esters in skin sensitisation test methods: A review. Regul Toxicol Pharmacol 2019; 104:14-20. [PMID: 30826317 DOI: 10.1016/j.yrtph.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Skin sensitisation associated with allergic contact dermatitis is an important occupational and environmental disease. The identification of skin sensitisation hazards was traditionally performed using animal tests; originally guinea pig assays and subsequently the murine local lymph node assay (LLNA). More recently there has, for a variety of reasons, been an increased interest in, and requirement for, non-animal assays. There are now available both validated in vitro assays and a variety of approaches based on consideration of quantitative structure-activity relationships (QSAR). With the increased availability and use of non-animal alternatives for skin sensitisation testing there is a continuing need to monitor the performance of these approaches using series of chemicals that do not normally form part of validation exercises. Here we report studies conducted with 11 methacrylate esters and methacrylic acid in which results obtained with 3 validated in vitro tests for which there are OECD guidelines (the Direct Peptide Reactivity Assay, DPRA; ARE-Nrf2 luciferase test methods, and - with some chemicals - a dendritic cell activation test, the myeloid U937 Skin Sensitisation test [U-SENS] assay) have been compared with QSAR approaches (DEREK and TIMES-SS), and with LLNA and guinea pig maximisation test (GPMT) data. The conclusions drawn from these data are that - with this series of chemicals at least - there is a strong correlation between the results of animal tests and the in vitro assays considered, but not with either DEREK or TIMES-SS.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
38
|
Martinez-Mera C, González MA, Hospital M, Turrión-Merino L. Isothiazolinones in paint as a cause of airborne contact dermatitis in a patient with psoriasis receiving anti-interleukin-17 therapy. Contact Dermatitis 2019; 80:328-329. [PMID: 30578553 DOI: 10.1111/cod.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Constanza Martinez-Mera
- Department of Dermatology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Maria A González
- Department of Dermatology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Mercedes Hospital
- Department of Dermatology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Lucia Turrión-Merino
- Department of Dermatology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| |
Collapse
|
39
|
Gonçalo M. Phototoxic and Photoallergic Reactions. Contact Dermatitis 2019. [DOI: 10.1007/978-3-319-72451-5_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
MicroRNA-21-Mediated Inhibition of Mast Cell Degranulation Involved in the Protective Effect of Berberine on 2,4-Dinitrofluorobenzene-Induced Allergic Contact Dermatitis in Rats via p38 Pathway. Inflammation 2018; 41:689-699. [PMID: 29282578 DOI: 10.1007/s10753-017-0723-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of berberine on allergic contact dermatitis (ACD) in rats and explore its underlying mechanisms. Firstly, ACD model was established by sensitizing and challenging with 2,4-dinitrofluorobenzene (DNFB) topically, and the rats were treated with berberine. Ear swelling was assessed, and cytokine, IgE, and histamine productions were measured. The ear biopsies were obtained for histology analysis. Additionally, rat peritoneal mast cells (RPMCs) were isolated for detection of microRNA-21 (miR-21) expression, mitogen-activated protein kinase (MAPK) signaling, and MC degranulation. Lastly, RPMCs were transfected with miR-21 mimic or miR-21 inhibitor to investigate the relationship between miR-21 and p38 pathway in MC. Our results showed that berberine significantly attenuated ear swelling in DNFB-induced ACD (ACD vs high dose of berberine 0.48 ± 0.03 vs. 0.33 ± 0.03 mm, P < 0.01), inhibited inflammatory cell infiltration (86 ± 5.16 vs. 58 ± 4.32 cells/mm2, P < 0.01), reduced MC recruitment (61 ± 4.07 vs. 39 ± 3.42 mast cells/mm2, P < 0.01), as well as decreased inflammatory cytokine, IgE, and histamine productions (all P < 0.05). Berberine treatment inhibited miR-21 expression, suppressed β-hexosaminidase and histamine release, and prevented p38 phosphorylation (all P < 0.05), which was abrogated by pretreatment with miR-21 overexpression. These findings indicate that miR-21-mediated inhibition of MC degranulation is involved in the anti-ACD effect of berberine via inhibiting p38 pathway, which provide a new insight into the immunopharmacological role of berberine and suggest its potential application for the treatment of allergic inflammation, such as ACD.
Collapse
|
41
|
Bian R, Tang J, Hu L, Huang X, Liu M, Cao W, Zhang H. (E)‑phenethyl 3‑(3,5‑dihydroxy‑4‑isopropylphenyl) acrylate gel improves DNFB-induced allergic contact hypersensitivity via regulating the balance of Th1/Th2/Th17/Treg cell subsets. Int Immunopharmacol 2018; 65:8-15. [PMID: 30268017 DOI: 10.1016/j.intimp.2018.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/07/2018] [Accepted: 09/22/2018] [Indexed: 02/07/2023]
Abstract
(E)‑phenethyl 3‑(3,5‑dihydroxy‑4‑isopropylphenyl) acrylate gels (THCA354) is a novel polyphenols acrylic acid derivative. To investigate the immunoregulatory mechanisms of THCA354, we established a mouse model of 2,4‑dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD). Responses of Th1, Th2, Th17 and regulatory T cells (Tregs) were determined by flow cytometry, reverse-transcriptase polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA). Our study found that topical application of THCA354 gel could inhibit ear swelling, reduce inflammatory cell infiltration, down-regulate Th1/Th17 responses and enhance Th2/Treg responses. These findings indicated that THCA354 gel exerted its immunotherapeutic effects by modulating the balance of Th1/Th2/Th17/Treg cell subsets, suggesting that THCA354 gel could be used as a promising drug candidate for intervention of ACD.
Collapse
Affiliation(s)
- Ruyu Bian
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jianlin Tang
- Base for Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lanlan Hu
- Base for Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xuejia Huang
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ming Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wenxuan Cao
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Huijing Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, China.
| |
Collapse
|
42
|
Jakasa I, Thyssen JP, Kezic S. The role of skin barrier in occupational contact dermatitis. Exp Dermatol 2018; 27:909-914. [DOI: 10.1111/exd.13704] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ivone Jakasa
- Laboratory for Analytical Chemistry; Department of Chemistry and Biochemistry; Faculty of Food Technology and Biotechnology; University of Zagreb; Zagreb Croatia
| | - Jacob P. Thyssen
- Department of Dermatology and Allergy; National Allergy Research Centre; Herlev and Gentofte Hospital; University of Copenhagen; Hellerup Denmark
| | - Sanja Kezic
- Coronel Institute of Occupational Health; Amsterdam Public Health Research Institute; Academic Medical Center, University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
43
|
Kimber I, Poole A, Basketter DA. Skin and respiratory chemical allergy: confluence and divergence in a hybrid adverse outcome pathway. Toxicol Res (Camb) 2018; 7:586-605. [PMID: 30090609 PMCID: PMC6060610 DOI: 10.1039/c7tx00272f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Sensitisation of the respiratory tract to chemicals resulting in respiratory allergy and allergic asthma is an important occupational health problem, and presents toxicologists with no shortage of challenges. A major issue is that there are no validated or, even widely recognised, methods available for the identification and characterisation of chemical respiratory allergens, or for distinguishing respiratory allergens from contact allergens. The first objective here has been review what is known (and what is not known) of the mechanisms through which chemicals induce sensitisation of the respiratory tract, and to use this information to construct a hybrid Adverse Outcome Pathway (AOP) that combines consideration of both skin and respiratory sensitisation. The intention then has been to use the construction of this hybrid AOP to identify areas of commonality/confluence, and areas of departure/divergence, between skin sensitisation and sensitisation of the respiratory tract. The hybrid AOP not only provides a mechanistic understanding of how the processes of skin and respiratory sensitisation differ, buy also a means of identifying areas of uncertainty about chemical respiratory allergy that benefit from a further investment in research.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology , Medicine and Health , University of Manchester , Oxford Road , Manchester M13 9PT , UK . ; Tel: +44 (0) 161 275 1587
| | - Alan Poole
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) , 2 Av E Van Nieuwenhuyse , 1160 Brussels , Belgium
| | | |
Collapse
|
44
|
Parkinson E, Aleksic M, Cubberley R, Kaur-Atwal G, Vissers JPC, Skipp P. Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci 2018; 162:429-438. [PMID: 29267982 PMCID: PMC5889026 DOI: 10.1093/toxsci/kfx265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skin sensitization associated with the development of allergic contact dermatitis occurs via a number of specific key events at the cellular level. The molecular initiating event (MIE), the first in the sequence of these events, occurs after exposure of the skin to an electrophilic chemical, causing the irreversible haptenation of proteins within skin. Characterization of this MIE is a key step in elucidating the skin sensitization adverse outcome pathway and is essential to providing parameters for mathematical models to predict the capacity of a chemical to cause sensitization. As a first step to addressing this challenge, we have exposed complex protein lysates from a keratinocyte cell line and human skin tissue with a range of well characterized sensitizers, including dinitrochlorobenzene, 5-chloro-2-methylisothiazol-3-one, cinnamaldehyde, and the non (or weak) sensitizer 6-methyl coumarin. Using a novel stable isotope labeling approach combined with ion mobility-assisted data independent mass spectrometry (HDMSE), we have characterized the haptenome for these sensitizers. Although a significant proportion of highly abundant proteins were haptenated, we also observed the haptenation of low abundant proteins by all 3 of the chemical sensitizers tested, indicating that within a complex protein background, protein abundance is not the sole determinant driving haptenation, highlighting a relationship to tertiary protein structure and the amino acid specificity of these chemical sensitizers and sensitizer potency.
Collapse
Affiliation(s)
- Erika Parkinson
- Centre for Biological Sciences
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Richard Cubberley
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | | | | | - Paul Skipp
- Centre for Biological Sciences
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
45
|
Nepal MR, Kang Y, Kang MJ, Nam DH, Jeong TC. A β-galactosidase-expressing E. coli culture as an alternative test to identify skin sensitizers and non-sensitizers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:288-301. [PMID: 29473800 DOI: 10.1080/15287394.2018.1440187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although the Organization for Economic Cooperation and Development (OECD) has adopted several in vitro methods with reasonable predictive capacity, alternative methods for identifying skin sensitizers and non-sensitizers with reliability and simplicity are still required for more efficient and economic prediction. The present study was to design an in vitro system with the use of a β-galactosidase-expressing E. coli culture for simpler but sufficiently accurate classification of skin sensitizers and non-sensitizers. A LacZ gene-containing E. coli strain that is capable of producing β-galactosidase enzyme was induced by isopropyl β-D-1-thiogalactopyranoside with concomitant treatment with test chemicals. After 6-hr incubation, cells were lysed and β-galactosidase enzyme activity was monitored colorimetrically by using O-nitrophenyl-D-galactopyranoside as a substrate. Following optimization of several experimental conditions, 22 skin sensitizers and 11 non-sensitizers were examined to assess predictive capacity of this method. The results indicated that predictivity was as follows: 90.9% sensitivity, 81.8% specificity, and 87.9% accuracy, when 17.3% of control activity was used as the cut-off value to separate sensitizers from non-sensitizers. Data suggested that the current bacterial system expressing β-galactosidase may serve as a useful alternative test for classifying skin sensitizers and non-sensitizers, without the utilization of animals or mammalian cell cultures.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Youra Kang
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Mi Jeong Kang
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Doo Hyun Nam
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Tae Cheon Jeong
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| |
Collapse
|
46
|
Karlsson I, Samuelsson K, Simonsson C, Stenfeldt AL, Nilsson U, Ilag LL, Jonsson C, Karlberg AT. The Fate of a Hapten - From the Skin to Modification of Macrophage Migration Inhibitory Factor (MIF) in Lymph Nodes. Sci Rep 2018; 8:2895. [PMID: 29440696 PMCID: PMC5811565 DOI: 10.1038/s41598-018-21327-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Skin (contact) allergy, the most prevalent form of immunotoxicity in humans, is caused by low molecular weight chemicals (haptens) that penetrate stratum corneum and modify endogenous proteins. The fate of haptens after cutaneous absorption, especially what protein(s) they react with, is largely unknown. In this study the fluorescent hapten tetramethylrhodamine isothiocyanate (TRITC) was used to identify hapten-protein conjugates in the local lymph nodes after topical application, as they play a key role in activation of the adaptive immune system. TRITC interacted with dendritic cells but also with T and B cells in the lymph nodes as shown by flow cytometry. Identification of the most abundant TRITC-modified protein in lymph nodes by tandem mass spectrometry revealed TRITC-modification of the N-terminal proline of macrophage migration inhibitory factor (MIF) – an evolutionary well-conserved protein involved in cell-mediated immunity and inflammation. This is the first time a hapten-modified protein has been identified in lymph nodes after topical administration of the hapten. Most haptens are electrophiles and can therefore modify the N-terminal proline of MIF, which has an unusually reactive amino group under physiological conditions; thus, modification of MIF by haptens may have an immunomodulating role in contact allergy as well as in other immunotoxicity reactions.
Collapse
Affiliation(s)
- Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | - Kristin Samuelsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Carl Simonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lena Stenfeldt
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Nilsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Charlotte Jonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay. Toxicology 2018; 393:62-72. [DOI: 10.1016/j.tox.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
|
48
|
Affiliation(s)
- Ksenia S. Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russia
| |
Collapse
|
49
|
Abstract
Contact sensitization is the initial process involved in the development of an allergic reaction to xenobiotic environmental substances. Here, we briefly describe the differences between irritant and allergic contact dermatitis. Then, we highlight the essential steps involved in the development of an ACD reaction, i.e., the protein binding of haptens, genetic factors influencing the penetration of sensitizers into the skin, the different mechanisms driving the initial development of an inflammatory cytokine micromilieu enabling the full maturation of dendritic cells, the role of pre- and pro-haptens, antigen presentation and T cell activation via MHC and CD1 molecules, dendritic cell (DC) migration, and potential LC contribution as well as the different T cell subsets involved in ACD. In addition, we discuss the latest publications regarding factors that might influence the sensitizing potential such as repeated sensitizer application, penetration enhancers, humidity of the skin, microbiota, Tregs, and phthalates. Last but not least, we briefly touch upon novel targets for drug development that might serve as treatment options for ACD.
Collapse
Affiliation(s)
- Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 7, 79104, Freiburg im Breisgau, Germany.
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 7, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
50
|
Dudeck J, Medyukhina A, Fröbel J, Svensson CM, Kotrba J, Gerlach M, Gradtke AC, Schröder B, Speier S, Figge MT, Dudeck A. Mast cells acquire MHCII from dendritic cells during skin inflammation. J Exp Med 2017; 214:3791-3811. [PMID: 29084819 PMCID: PMC5716026 DOI: 10.1084/jem.20160783] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Dudeck et al. demonstrate that inflammatory conditions induce dynamic interactions between mast cells (MCs) and dendritic cells (DCs) culminating in protein exchange. Resident MCs are equipped with DC MHCII and empowered to initiate T cell–driven inflammation during migration-based DC absence. Mast cells (MCs) and dendritic cells (DCs) are essential innate sentinels populating host-environment interfaces. Using longitudinal intravital multiphoton microscopy of DCGFP/MCRFP reporter mice, we herein provide in vivo evidence that migratory DCs execute targeted cell-to-cell interactions with stationary MCs before leaving the inflamed skin to draining lymph nodes. During initial stages of skin inflammation, DCs dynamically scan MCs, whereas at a later stage, long-lasting interactions predominate. These innate-to-innate synapse-like contacts ultimately culminate in DC-to-MC molecule transfers including major histocompatibility complex class II (MHCII) proteins enabling subsequent ex vivo priming of allogeneic T cells with a specific cytokine signature. The extent of MHCII transfer to MCs correlates with their T cell priming efficiency. Importantly, preventing the cross talk by preceding DC depletion decreases MC antigen presenting capacity and T cell–driven inflammation. Consequently, we identify an innate intercellular communication arming resident MCs with key DC functions that might contribute to the acute defense potential during critical periods of migration-based DC absence.
Collapse
Affiliation(s)
- Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Julia Fröbel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Gerlach
- DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of the Technische Universität Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Centre for Diabetes Research, Dresden, Germany
| | | | - Bernd Schröder
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stephan Speier
- DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of the Technische Universität Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Centre for Diabetes Research, Dresden, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany .,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|