1
|
Yu JI, Kim JH, Nam KE, Lee W, Rhee DK. Pneumococcal Δ pep27 Immunization Attenuates TLRs and NLRP3 Expression and Relieves Murine Ovalbumin-Induced Allergic Rhinitis. J Microbiol Biotechnol 2022; 32:709-717. [PMID: 35484967 PMCID: PMC9628895 DOI: 10.4014/jmb.2203.03006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
Abstract
Allergic rhinitis (AR), one of the most common inflammatory diseases, is caused by immunoglobulin E (IgE)-mediated reactions against inhaled allergens. AR involves mucosal inflammation driven by type 2 helper T (Th2) cells. Previously, it was shown that the Streptococcus pneumoniae pep27 mutant (Δpep27) could prevent and treat allergic asthma by reducing Th2 responses. However, the underlying mechanism of Δpep27 immunization in AR remains undetermined. Here, we investigated the role of Δpep27 immunization in the development and progression of AR and elucidated potential mechanisms. In an ovalbumin (OVA)-induced AR mice model, Δpep27 alleviated allergic symptoms (frequency of sneezing and rubbing) and reduced TLR2 and TLR4 expression, Th2 cytokines, and eosinophil infiltration in the nasal mucosa. Mechanistically, Δpep27 reduced the activation of the NLRP3 inflammasome in the nasal mucosa by down-regulating the Toll-like receptor signaling pathway. In conclusion, Δpep27 seems to alleviate TLR signaling and NLRP3 inflammasome activation to subsequently prevent AR.
Collapse
Affiliation(s)
- Jae Ik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-El Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea,DNBio Pharm. Inc., Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea,Corresponding author Phone: +82-31-290-7707 E-mail:
| |
Collapse
|
2
|
Dias ML, O'Connor KM, Dempsey EM, O'Halloran KD, McDonald FB. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. Am J Physiol Regul Integr Comp Physiol 2021; 321:R879-R902. [PMID: 34612068 DOI: 10.1152/ajpregu.00307.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial transmembrane receptors that form part of the innate immune response. They play a role in the recognition of various microorganisms and their elimination from the host. TLRs have been proposed as vital immunomodulators in the regulation of multiple neonatal stressors that extend beyond infection such as oxidative stress and pain. The immune system is immature at birth and takes some time to become fully established. As such, babies are especially vulnerable to sepsis at this early stage of life. Findings suggest a gestational age-dependent increase in TLR expression. TLRs engage with accessory and adaptor proteins to facilitate recognition of pathogens and their activation of the receptor. TLRs are generally upregulated during infection and promote the transcription and release of proinflammatory cytokines. Several studies report that TLRs are epigenetically modulated by chromatin changes and promoter methylation upon bacterial infection that have long-term influences on immune responses. TLR activation is reported to modulate cardiorespiratory responses during infection and may play a key role in driving homeostatic instability observed during sepsis. Although complex, TLR signaling and downstream pathways are potential therapeutic targets in the treatment of neonatal diseases. By reviewing the expression and function of key Toll-like receptors, we aim to provide an important framework to understand the functional role of these receptors in response to stress and infection in premature infants.
Collapse
Affiliation(s)
- Maria L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Jiang Y, Xun Q, Wan R, Deng S, Hu X, Luo L, Li X, Feng J. GLCCI1 gene body methylation in peripheral blood is associated with asthma and asthma severity. Clin Chim Acta 2021; 523:97-105. [PMID: 34529984 DOI: 10.1016/j.cca.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Epigenetic changes play a role in the occurrence of asthma. In this study, we evaluated the methylation status of glucocorticoid-induced transcript 1 (GLCCI1) and assessed its associations with asthma and asthma severity. MATERIALS AND METHODS Peripheral blood mononuclear cells were harvested from 33 severe asthma patients, 84 mild-moderate asthma patients and 79 healthy controls of Han nationality. GLCCI1 methylation were screened using the MassArray Epityper platform (Agena). We also conducted mRNA sequencing of GLCCI1-knockout mice to further explore possible functions of this gene. RESULTS We found 5 GLCCI1 methylation sites independently correlated with asthma (adjusted p < 0.05) and perform well in asthma prediction with optimum area under the curve (AUC) value was 0.846 (p < 0.0001). In asthmatic group, only one sites independently associates with severe asthma. Area under the curve in predicting severe asthma is comparable with forced expiratory volume in 1 s predicted (AUC 0.865 and 0.857, p = 0.291). Spearman correlate analysis denoted GLCCI1 low methylation is associates with its low expression in asthma PBMCs. Its reduced level may influence PI3k-Akt and MAPK pathways by the results of RNA sequencing of GLCCI1-knockout mice (adjusted p value < 0.01). CONCLUSIONS Our research indicates a low GLCCI1 methylation level in asthma with certain sites are lower in severe asthma group. These GLCCI1 methylation sites may be contributed to detect asthma and asthma severity.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiufen Xun
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lisha Luo
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juntao Feng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Murdaca G, Greco M, Borro M, Gangemi S. Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmun Rev 2021; 20:102845. [PMID: 33971339 DOI: 10.1016/j.autrev.2021.102845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Since the start of the "modern era", characterized by the increase in urbanization, a progressive attention to hygiene and autoimmune conditions has considerably grown. Although these diseases are often multifactorial, it was demonstrated that environment factors such as pollution, diet and lifestyles may play a crucial role together with genetic signature. Our research, based on the newest and most significant literature of this topic, highlights that the progressive depletion of microbes and parasites due to increased socioeconomic improvement, may lead to a derangement of immunoregulatory mechanisms. Moreover, special attention was given to the complex interplay between microbial agents, as gut microbiome, diet and vitamin D supplementation with the aim of identifying promising future therapeutic options. In conclusion, autoimmunity cannot be limited to hygiene-hypothesis, but from the point of view of precision medicine, this theory represents a fundamental element together with the study of genomics, the microbiome and proteomics, in order to understand the complex functioning of the immune system.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Tezuka-Kagajo M, Maekawa M, Ogawa A, Hatta Y, Ishii E, Eguchi M, Higashiyama S. Development of Human CBF1-Targeting Single-Stranded DNA Aptamers with Antiangiogenic Activity In Vitro. Nucleic Acid Ther 2020; 30:365-378. [DOI: 10.1089/nat.2020.0875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Mari Tezuka-Kagajo
- Department of Biochemistry and Molecular Genetics and Ehime University Graduate School of Medicine, Toon, Japan
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics and Ehime University Graduate School of Medicine, Toon, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Atsushi Ogawa
- Division of Biomolecular Engineering, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoshiko Hatta
- Division of Biomolecular Engineering, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eiichi Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics and Ehime University Graduate School of Medicine, Toon, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
6
|
Kaur M, Gupta KB, Thakur S, Kaur S, Dhiman M. Parthenium hysterophorus mediated inflammation and hyper-responsiveness via NF-κB pathway in human A549 lung cancer cell line. ENVIRONMENTAL TOXICOLOGY 2020; 35:1241-1250. [PMID: 32686900 DOI: 10.1002/tox.22989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Being one of the notorious weed P. hysterophorus has invaded almost every part India and is the lead cause of skin allergies and severe dermatitis among farmers and rural population. It is an invasive obnoxious weed capable of surviving extreme environmental conditions and various parts of this plant are reported to cause severe contact allergies in humans due to the presence of high concentrations of toxic sesquiterpene lactones viz. parthenin. It can stimulate numerous cellular and immune responses that may translate into Oxidative stress, allergies, and inflammation. The effect of P. hysterophorus flower extract was evaluated on cell viability, oxidative stress and inflammation in A549 lung cancer cell line by spectrophotometric and reverse transcriptase-polymerase chain reaction methods. Schrodinger software based docking was performed for possible interactions studies. The A549 cells treated with P. hysterophorus flower extract favors increase in cell viability, reactive oxygen species generation. The mRNA expression of proinflammatory cytokines such as IFN-γ, TNF-α, and IL-1β was significantly increased whereas no change in IL-18 expression was observed. Significant increase in protein expression of NF-κB was observed, suggesting the role of NF-κB signalling in allergic responses. The docking studies demonstrated the potential interaction between Parthenin and NF-κB/IL-1β/IL-18 suggesting their activation leading to inflammation. The current study emphasize that P. hysterophorus mediates oxidative stress, and inflammatory process via alterations in expression of proinflammatory cytokines such as IL-1β, IFN-γ through NF-κB activation which was also confirmed in docking studies. Cellular and molecular mechanisms involved in pathogenesis of allergic/chronic inflammation and severe dermatitis need to be further investigated to identify specific binding partners responsible for severe inflammation which can provide some leads in developing effective targets against severe dermatitis and skin allergies.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Shweta Thakur
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
7
|
Wu HM, Zhao CC, Xie QM, Xu J, Fei GH. TLR2-Melatonin Feedback Loop Regulates the Activation of NLRP3 Inflammasome in Murine Allergic Airway Inflammation. Front Immunol 2020; 11:172. [PMID: 32117301 PMCID: PMC7025476 DOI: 10.3389/fimmu.2020.00172] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is suggested to initiate the activation of NLRP3 inflammasome, and considered to be involved in asthma. The findings that melatonin modulates TLRs-mediated immune responses, together with the suppressing effect of TLRs on endogenous melatonin synthesis, support the possibility that a feedback loop exists between TLRs system and endogenous melatonin synthesis. To determine whether TLR2-melatonin feedback loop exists in allergic airway disease and regulates NLRP3 inflammasome activity, wild-type (WT) and TLR2−/− mice were challenged with OVA to establish allergic airway disease model. Following OVA challenge, WT mice exhibited increased-expression of TLR2, activation of NLRP3 inflammasome and marked airway inflammation, which were all effectively inhibited in the TLR2−/− mice, indicating that TLR2-NLRP3 mediated airway inflammation. Meanwhile, melatonin biosynthesis was reduced in OVA-challenged WT mice, while such reduction was notably rescued by TLR2 deficiency, suggesting that TLR2-NLRP3-mediated allergic airway inflammation was associated with decreased endogenous melatonin biosynthesis. Furthermore, addition of melatonin to OVA-challenged WT mice pronouncedly ameliorated airway inflammation, decreased TLR2 expression and NLRP3 inflammasome activation, further implying that melatonin in turn inhibited airway inflammation via suppressing TLR2-NLRP3 signal. Most interestingly, although melatonin receptor antagonist luzindole significantly reduced the protein expressions of ASMT, AANAT and subsequent level of melatonin in OVA-challenged TLR2−/− mice, it exhibited null effect on leukocytes infiltration, Th2-cytokines production and NLRP3 activity. These results indicate that a TLR2-melatonin feedback loop regulates NLRP3 inflammasome activity in allergic airway inflammation, and melatonin may be a promising therapeutic medicine for airway inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Hui-Mei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Cui-Cui Zhao
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Qiu-Meng Xie
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Juan Xu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Key Laboratory of Geriatric Molecular Medicine, Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
McKernan DP. Pattern recognition receptors as potential drug targets in inflammatory disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:65-109. [PMID: 31997773 DOI: 10.1016/bs.apcsb.2019.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pattern recognition receptors (PRRs) are a key part of the innate immune system, the body's first line of defense against infection and tissue damage. This superfamily of receptors including Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs) and RIG-like receptors (RLRs) are responsible for initiation of the inflammatory response by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) during infection or in molecules released following tissue damage during acute or chronic disease states (such as sepsis or arthritis). These receptors are widely expressed and located on the cell surface, in intracellular compartments or in the cytoplasm can detect a single or subset of molecules including lipoproteins, carbohydrates or nucleic acids. In response, they initiate an intracellular signaling cascade that culminates in the synthesis and release of cytokines, chemokines and vasoactive molecules. These steps are necessary to maintain tissue homeostasis and remove potentially dangerous pathogens. However, during extreme or acute responses or during chronic disease, this can be damaging and even lead to death. Therefore, it is thought that targeting such receptors may offer a therapeutic approach in chronic inflammatory diseases or in cases of acute infection leading to sepsis. Herein, the current knowledge on the molecular biology of PRRs is reviewed along with their association with inflammatory and infectious diseases. Finally, the testing of therapeutic compounds and their future merit as targets is discussed.
Collapse
|
9
|
Aguilar D, Lemonnier N, Koppelman GH, Melén E, Oliva B, Pinart M, Guerra S, Bousquet J, Anto JM. Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS One 2019; 14:e0224448. [PMID: 31693680 PMCID: PMC6834334 DOI: 10.1371/journal.pone.0224448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The mechanisms explaining multimorbidity between asthma, dermatitis and rhinitis (allergic multimorbidity) are not well known. We investigated these mechanisms and their specificity in distinct cell types by means of an interactome-based analysis of expression data. METHODS Genes associated to the diseases were identified using data mining approaches, and their multimorbidity mechanisms in distinct cell types were characterized by means of an in silico analysis of the topology of the human interactome. RESULTS We characterized specific pathomechanisms for multimorbidities between asthma, dermatitis and rhinitis for distinct emergent non-eosinophilic cell types. We observed differential roles for cytokine signaling, TLR-mediated signaling and metabolic pathways for multimorbidities across distinct cell types. Furthermore, we also identified individual genes potentially associated to multimorbidity mechanisms. CONCLUSIONS Our results support the existence of differentiated multimorbidity mechanisms between asthma, dermatitis and rhinitis at cell type level, as well as mechanisms common to distinct cell types. These results will help understanding the biology underlying allergic multimorbidity, assisting in the design of new clinical studies.
Collapse
MESH Headings
- Asthma/epidemiology
- Asthma/genetics
- Asthma/immunology
- Blood Cells/immunology
- Blood Cells/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Datasets as Topic
- Dermatitis, Allergic Contact/epidemiology
- Dermatitis, Allergic Contact/genetics
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Gene Expression Profiling
- Humans
- Immunity, Cellular/genetics
- Multimorbidity
- Protein Interaction Maps/genetics
- Protein Interaction Maps/immunology
- Rhinitis, Allergic/epidemiology
- Rhinitis, Allergic/genetics
- Rhinitis, Allergic/immunology
Collapse
Affiliation(s)
- Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Barcelona, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- 6AM Data Mining, Barcelona, Spain
| | - Nathanael Lemonnier
- Institute for Advanced Biosciences, Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes, Site Santé, Allée des Alpes, La Tronche, France
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mariona Pinart
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Stefano Guerra
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jean Bousquet
- Hopital Arnaud de Villeneuve University Hospital, Montpellier, France
- Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany
| | - Josep M. Anto
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| |
Collapse
|
10
|
Maeda K, Caldez MJ, Akira S. Innate immunity in allergy. Allergy 2019; 74:1660-1674. [PMID: 30891811 PMCID: PMC6790574 DOI: 10.1111/all.13788] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
Innate immune system quickly responds to invasion of microbes and foreign substances through the extracellular and intracellular sensing receptors, which recognize distinctive molecular and structural patterns. The recognition of innate immune receptors leads to the induction of inflammatory and adaptive immune responses by activating downstream signaling pathways. Allergy is an immune-related disease and results from a hypersensitive immune response to harmless substances in the environment. However, less is known about the activation of innate immunity during exposure to allergens. New insights into the innate immune system by sensors and their signaling cascades provide us with more important clues and a framework for understanding allergy disorders. In this review, we will focus on recent advances in the innate immune sensing system.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Matias J. Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Shizuo Akira
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| |
Collapse
|
11
|
Pratti JES, da Fonseca Martins AM, da Silva JP, Ramos TD, Pereira JC, Firmino-Cruz L, Oliveira-Maciel D, Vieira TSDS, Lacerda LL, Vale AM, Freire-de-Lima CG, Gomes DCO, Saraiva EM, Rossi-Bergmann B, de Matos Guedes HL. The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy. PLoS Negl Trop Dis 2019; 13:e0007146. [PMID: 30802247 PMCID: PMC6405171 DOI: 10.1371/journal.pntd.0007146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 03/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.
Collapse
Affiliation(s)
| | - Alessandra Marcia da Fonseca Martins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Paiva da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Diniz Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joyce Carvalho Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Oliveira-Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Soares de Souza Vieira
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandra Linhares Lacerda
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre Macedo Vale
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celio G. Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel C. Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/ Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, ES, Brazil
| | - Elvira M. Saraiva
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Núcleo Multidisciplinar de Pesquisa UFRJ–Xerém em Biologia (NUMPEX-BIO), Campus Duque de Caxias Professor Geraldo Cidade (Polo Avançado de Xerém), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| |
Collapse
|
12
|
Huang C, Wang J, Zheng X, Chen Y, Wei H, Sun R, Tian Z. Activation of TLR Signaling in Sensitization-Recruited Inflammatory Monocytes Attenuates OVA-Induced Allergic Asthma. Front Immunol 2018; 9:2591. [PMID: 30510553 PMCID: PMC6252340 DOI: 10.3389/fimmu.2018.02591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
The activation of Toll-like receptor (TLR) signaling is widely reported to be involved in preventing the development of allergic asthma. However, the mechanism of the protective function of TLR signaling remains limited. Here, we studied the mouse model of ovalbumin (OVA)-induced allergic asthma and found that deficiency of TLR signaling or activating TLR signaling with agonist would aggravate or attenuate OVA-induced allergic asthma, respectively, and TLR signaling-mediated protective effect mainly affected the sensitization phase. After OVA/alum sensitization, neutrophils and inflammatory monocytes were recruited into peritoneal cavity and up-regulated TLRs expression. However, adoptive transfer of inflammatory monocytes but not peritoneal macrophages or neutrophils induced allergic symptoms in recipient mice after OVA challenge even without OVA/alum sensitization, and treating the inflammatory monocytes with TLR agonist in vitro before transfer could abolish this effect, indicating that recruited inflammatory monocytes played a determinant role in OVA-induced allergic asthma, and activation of TLR signaling in them could attenuate allergic symptoms. Finally, we found that activation of TLR signaling could increase the expression of T-helper (Th) 1-associated cytokines in inflammatory monocytes. Our results suggest that activation of TLR signaling in sensitization-recruited inflammatory monocytes attenuates OVA-induced allergic asthma by promoting the expression of Th1-associated cytokines.
Collapse
Affiliation(s)
- Chao Huang
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Jian Wang
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaodong Zheng
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yongyan Chen
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants' activities. Semin Immunol 2018; 39:22-29. [PMID: 30366662 PMCID: PMC6289613 DOI: 10.1016/j.smim.2018.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Malcolm S Duthie
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| |
Collapse
|
14
|
Michels KR, Lukacs NW, Fonseca W. TLR Activation and Allergic Disease: Early Life Microbiome and Treatment. Curr Allergy Asthma Rep 2018; 18:61. [PMID: 30259206 DOI: 10.1007/s11882-018-0815-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Allergy and asthma are growing problems in the developed world. The accelerated increase of these diseases may be related to microbiome modification that leads to aberrant activation of Toll-like receptors (TLRs). Current research supports the concept that changes in microbial communities in early life impact TLR activation, resulting in an altered risk for the development of asthma and allergies. RECENT FINDINGS Prenatal and early childhood events that generate microbiome modification are closely related with TLR activation. Early childhood exposure to a rich array of TLR agonists, particularly lipopolysaccharide, strongly predicts protection against allergic disease later in life even when other lifestyle factors are accounted for. Genetic deletion of TLR signaling components in mice results in reduced function of tolerogenic cell populations in the gut. In contrast, weak TLR signaling can promote allergic sensitization later in life. This review summarizes the role of TLR signaling in microbiome-mediated protection against allergy.
Collapse
Affiliation(s)
- Kathryn R Michels
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Lehto M, Wolff H, Leino R, Alenius H, Savolainen J. A novel glycocluster molecule prevents timothy-induced allergic airway inflammation in mice. Allergy 2018; 73:1700-1706. [PMID: 29377154 DOI: 10.1111/all.13419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (SIT) effectively alleviates type I allergic diseases characterized by T helper (Th)2-type immunity. Our recent studies have shown that a synthetic trivalent glycocluster, triacedimannose (TADM), suppresses the Th2-type allergic inflammation. The aim of this study was to compare TADM with two well-known adjuvants, unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) and monophosphoryl lipid A (MPLA) in a grass allergen-induced chronic allergic inflammation model in mice. METHODS Female BALB/c mice were intranasally sensitized with 50 μL of timothy grass pollen extract (TE) twice a week for a period of 15 weeks. Therapeutic intranasal treatments were then performed once a week after the tenth intranasal TE instillation using TADM (10 or 25 μg/50 μL), CpG-ODN (20 μg/50 μL) or MPLA (2 μg/50 μL). Groups of 9-10 animals per treatment were killed 24 hours after the last timothy dosage. Blood, bronchoalveolar lavage (BAL) fluids and lung biopsies were taken for subsequent analysis. RESULTS When mice were repeatedly exposed to TE for 15 weeks, the number of eosinophils and lymphocytes increased in the BAL fluids. The eosinophil and lymphocyte counts decreased dose-dependently and were practically abolished in the mice treated with TADM. Treatments with MPLA or CpG significantly increased the numbers of neutrophils, while CpG nonsignificantly decreased eosinophilia compared to timothy exposure. CONCLUSIONS A novel synthetic glycocluster molecule inhibited the development of grass-induced eosinophilic pulmonary inflammation in mice when administrated in the airways. This compound could be a candidate to be used either as an adjuvant in SIT or as a topical anti-inflammatory treatment.
Collapse
Affiliation(s)
- M. Lehto
- Department of Occupational Medicine; Finnish Institute of Occupational Health; Helsinki Finland
| | - H. Wolff
- Department of Pathology; Finnish Institute of Occupational Health; Helsinki Finland
| | - R. Leino
- Johan Gadolin Process Chemistry Centre; Laboratory of Organic Chemistry; Åbo Akademi University; Turku Finland
| | - H. Alenius
- Karolinska Institutet; Institute of Environmental Medicine; Stockholm Sweden
- Medical Faculty; University of Helsinki; Helsinki Finland
| | - J. Savolainen
- Department of Pulmonary Diseases and Clinical Allergology; University of Turku; Turku University Hospital; Turku Finland
| |
Collapse
|
16
|
Virkud YV, Wang J, Shreffler WG. Enhancing the Safety and Efficacy of Food Allergy Immunotherapy: a Review of Adjunctive Therapies. Clin Rev Allergy Immunol 2018; 55:172-189. [DOI: 10.1007/s12016-018-8694-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Kato AS, Witkin JM. Protein complexes as psychiatric and neurological drug targets. Biochem Pharmacol 2018; 151:263-281. [PMID: 29330067 DOI: 10.1016/j.bcp.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
The need for improved medications for psychiatric and neurological disorders is clear. Difficulties in finding such drugs demands that all strategic means be utilized for their invention. The discovery of forebrain specific AMPA receptor antagonists, which selectively block the specific combinations of principal and auxiliary subunits present in forebrain regions but spare targets in the cerebellum, was recently disclosed. This discovery raised the possibility that other auxiliary protein systems could be utilized to help identify new medicines. Discussion of the TARP-dependent AMPA receptor antagonists has been presented elsewhere. Here we review the diversity of protein complexes of neurotransmitter receptors in the nervous system to highlight the broad range of protein/protein drug targets. We briefly outline the structural basis of protein complexes as drug targets for G-protein-coupled receptors, voltage-gated ion channels, and ligand-gated ion channels. This review highlights heterodimers, subunit-specific receptor constructions, multiple signaling pathways, and auxiliary proteins with an emphasis on the later. We conclude that the use of auxiliary proteins in chemical compound screening could enhance the detection of specific, targeted drug searches and lead to novel and improved medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Jeffrey M Witkin
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
18
|
Wang N, McKell M, Dang A, Yamani A, Waggoner L, Vanoni S, Noah T, Wu D, Kordowski A, Köhl J, Hoebe K, Divanovic S, Hogan SP. Lipopolysaccharide suppresses IgE-mast cell-mediated reactions. Clin Exp Allergy 2017; 47:1574-1585. [PMID: 28833704 PMCID: PMC5865592 DOI: 10.1111/cea.13013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical and experimental analyses have identified a central role for IgE/FcεRI/mast cells in promoting IgE-mediated anaphylaxis. Recent data from human studies suggest that bacterial infections can alter susceptibility to anaphylaxis. OBJECTIVE We examined the effect of LPS exposure on the induction of IgE-mast cell (MC) mediated reactions in mice. METHODS C57BL/6 WT, tlr4-/- and IL10-/- mice were exposed to LPS, and serum cytokines (TNF and IL-10) were measured. Mice were subsequently treated with anti-IgE, and the symptoms of passive IgE-mediated anaphylaxis, MC activation, Ca2+ -mobilization and the expression of FcεRI on peritoneal MCs were quantitated. RESULTS We show that LPS exposure of C57BL/6 WT mice constraints IgE-MC-mediated reactions. LPS-induced suppression of IgE-MC-mediated responses was TLR-4-dependent and associated with increased systemic IL-10 levels, decreased surface expression of FcεRI on MCs and loss of sensitivity to IgE activation. Notably, LPS-induced desensitization of MCs was short term with MC sensitivity to IgE reconstituted within 48 hours, which was associated with recapitulation of FcεRI expression on the MCs. Mechanistic analyses revealed a requirement for IL-10 in LPS-mediated decrease in MC FcεRI surface expression. CONCLUSIONS & CLINICAL RELEVANCE Collectively, these studies suggest that LPS-induced IL-10 promotes the down-regulation of MC surface FcεRI expression and leads to desensitization of mice to IgE-mediated reactions. These studies indicate that targeting of the LPS-TLR-4-IL-10 pathway may be used as a therapeutic approach to prevent adverse IgE-mediated reactions.
Collapse
Affiliation(s)
- Nianrong Wang
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
- Chongqing Health Center for Women and Children, Yuzhong Qu, 400065 Chongqing Shi China
| | - Melanie McKell
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Andrew Dang
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Amnah Yamani
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Lisa Waggoner
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Simone Vanoni
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Taeko Noah
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - David Wu
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Kasper Hoebe
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Senad Divanovic
- Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| | - Simon P. Hogan
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229
| |
Collapse
|
19
|
The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 2017; 18:105-120. [PMID: 29034905 DOI: 10.1038/nri.2017.111] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.
Collapse
|
20
|
Larenas-Linnemann D, Luna-Pech JA, Mösges R. Debates in Allergy Medicine: Allergy skin testing cannot be replaced by molecular diagnosis in the near future. World Allergy Organ J 2017; 10:32. [PMID: 29043011 PMCID: PMC5604190 DOI: 10.1186/s40413-017-0164-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023] Open
Abstract
Percutaneous skin prick tests (SPT) have been considered the preferred method for confirming IgE-mediated sensitization. This reliable and minimally invasive technique correlates with in vivo challenges, has good reproducibility, is easily quantified, and allows analyzing multiple allergens simultaneously. Potent extracts and a proficient tester improve its accuracy. Molecular-based allergy diagnostics (MA-Dx) quantifies allergenic components obtained either from purification of natural sources or recombinant technology to identify the patient’s reactivity to those specific allergenic protein components. For a correct allergy diagnosis, the patient selection is crucial. MA-Dx has been shown to have a high specificity, however, as MA-Dx testing can be ordered by any physician, the pre-selection of patients might not always be optimal, reducing test specificity. Also, MA-Dx is less sensitive than in vitro testing with the whole allergen or SPT. Secondly, no allergen-specific immunotherapy (AIT) trial has yet shown efficacy with patients selected on the basis of their MA-Dx results. Thirdly, why would we need molecular diagnosis, as no molecular treatment can yet be offered? Then there are the practical arguments of costs (SPT highly cost-efficient), test availability for MA-Dx still lacking in wide areas of the world and scarce in others. As such, it is hard physicians can build confidence in the test and their interpretation of the MA-Dx results. In conclusion: as of now these techniques should be reserved for situations of complex allergies and polysensitization; in the future MA-Dx might help to reduce the number of allergens for AIT, but trials are needed to prove this concept.
Collapse
Affiliation(s)
- Désirée Larenas-Linnemann
- Investigational Unit, Hospital Médica Sur, Torre 2, consultorio 602, Puente de Piedra 150, Col. Toriello Guerra, Del. Tlalpan, 14050 Mexico City, Mexico
| | - Jorge A Luna-Pech
- Departamento de Disciplinas Filosófico, Metodológico e Instrumentales, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ralph Mösges
- Institute of Medical Statistics and Epidemiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Bazett M, Biala A, Huff RD, Zeglinksi MR, Hansbro PM, Bosiljcic M, Gunn H, Kalyan S, Hirota JA. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation. Respir Res 2017; 18:92. [PMID: 28506308 PMCID: PMC5433159 DOI: 10.1186/s12931-017-0577-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cigarette smoke exposure is the major risk factor for developing COPD. Presently, available COPD treatments focus on suppressing inflammation and providing bronchodilation. However, these options have varying efficacy in controlling symptoms and do not reverse or limit the progression of COPD. Treatments strategies using bacterial-derived products have shown promise in diseases characterized by inflammation and immune dysfunction. This study investigated for the first time whether a novel immunotherapy produced from inactivated Klebsiella (hereafter referred to as KB) containing all the major Klebsiella macromolecules, could attenuate cigarette smoke exposure-induced immune responses. We hypothesized that KB, by re-directing damaging immune responses, would attenuate cigarette smoke-induced lung inflammation and bronchoalveolar (BAL) cytokine and chemokine production. Methods KB was administered via a subcutaneous injection prophylactically before initiating a 3-week acute nose-only cigarette smoke exposure protocol. Control mice received placebo injection and room air. Total BAL and differential cell numbers were enumerated. BAL and serum were analysed for 31 cytokines, chemokines, and growth factors. Lung tissue and blood were analysed for Ly6CHI monocytes/macrophages and neutrophils. Body weight and clinical scores were recorded throughout the experiment. Results We demonstrate that KB treatment attenuated cigarette smoke-induced lung inflammation as shown by reductions in levels of BAL IFNγ, CXCL9, CXCL10, CCL5, IL-6, G-CSF, and IL-17. KB additionally attenuated the quantity of BAL lymphocytes and macrophages. In parallel to the attenuation of lung inflammation, KB induced a systemic immune activation with increases in Ly6CHI monocytes/macrophages and neutrophils. Conclusions This is the first demonstration that subcutaneous administration of a microbial-based immunotherapy can attenuate cigarette smoke-induced lung inflammation, and modulate BAL lymphocyte and macrophage levels, while inducing a systemic immune activation and mobilization. These data provide a foundation for future studies exploring how KB may be used to either reverse or prevent progression of established emphysema and small airways disease associated with chronic cigarette smoke exposure. The data suggest the intriguing possibility that KB, which stimulates rather than suppresses systemic immune responses, might be a novel means by which the course of COPD pathogenesis may be altered. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0577-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5
| | - Agnieszka Biala
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6
| | - Ryan D Huff
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6
| | - Matthew R Zeglinksi
- iCORD Research Centre, University of British Columbia, Vancouver, BC, Canada, V5Z 1M5
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, Canada, V5T 4T5.,Department of Medicine, Division of Endocrinology, CeMCOR, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada, V6H 3Z6. .,Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada, L8N 4A6.
| |
Collapse
|
22
|
Abstract
INTRODUCTION The potential roles of toll-like receptors (TLRs) in immunopathogenesis of Ebola virus disease should be unraveled to provoke possible prophylactic or therapeutic implications of TLRs for EVD. Areas covered: The Ebola virus (EBOV) infection virtually paralyses all the main mechanisms responsible for induction of type I interferon (IFN-I) response. To summarize, EBOV infection interferes with: a) the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway that is mediated by TLR3 and TLR4 signaling; b) the interferon regulatory factor 7 (IRF7) pathway that is stimulated by TLR7 and TLR9; c) the intracellular signaling that is induced by retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs); and d) the autocrine/paracrine feedback loop that is mediated by the IFN-stimulated gene factor 3 (ISGF3) complex. Upon infection with EBOV infection, TLR4 plays a key role in production of proinflammatory mediators. Expert opinion: It is theoretically possible that use of TLRs 3, 4, 7, and 9 agonists would be beneficial to improve the IFN-I response, despite their systemic side effects. Also, antagonist of TLR4 can be utilized to prevent production of proinflammatory cytokines. Additionally, it is highly recommended to design future investigations aimed at determining if the utilization of IFN-I would be beneficial for prophylactic/therapeutic programs of Ebola.
Collapse
Affiliation(s)
- Amene Saghazadeh
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Systematic Review and Meta-Analysis Expert Group (SRMEG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Systematic Review and Meta-Analysis Expert Group (SRMEG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,d Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Sheffield , UK
| |
Collapse
|
23
|
Ricketti PA, Alandijani S, Lin CH, Casale TB. Investigational new drugs for allergic rhinitis. Expert Opin Investig Drugs 2017; 26:279-292. [DOI: 10.1080/13543784.2017.1290079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peter A. Ricketti
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Division of Allergy and Immunology, Tampa, FL, USA
| | - Sultan Alandijani
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Division of Allergy and Immunology, Tampa, FL, USA
| | - Chen Hsing Lin
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Division of Allergy and Immunology, Tampa, FL, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Division of Allergy and Immunology, Tampa, FL, USA
| |
Collapse
|
24
|
Marogna M, Massolo A, Passalacqua G. Effect of adjuvanted and standard sublingual immunotherapy on respiratory function in pure rhinitis due to house dust mite over a 5-year period. World Allergy Organ J 2017; 10:7. [PMID: 28232857 PMCID: PMC5307763 DOI: 10.1186/s40413-016-0132-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) still remains the only causal treatment for IgE mediated respiratory diseases (rhinitis/asthma) In addition to the observed clinical decrease in symptoms, AIT can provide a long-lasting and preventive effect. In particular it can modify the progression from rhinitis to asthma. METHODS The study was observational, open, non randomized, controlled, prospective and performed in a real-life setting. Patients with pure mite-induced allergic rhinitis were followed-up, receiving adjuvanted SLIT (aSLIT), standard SLIT (sSLIT) or drug treatment alone, according to their preference starting between 2008 and 2009. The possible onset of asthma, changes in pulmonary function and bronchial hyperreactivity (BHR) were assessed over a 5-year horizon. Also the onset of new sensitizations and symptoms-medication score (SMS) were evaluated. RESULTS One hundred forty two patients fulfilling the inclusion criteria were assessed at baseline, and 124 had the 5-year evaluation (age range 8-57, 69 male). After 5 years of treatment, new sensitizations appeared differentially among treatments with 58.1% of new sensitizations in the drug treatment group, 13.2% in the sSLIT patients, and 8.1% in the aSLIT patients. At the end of 5 years, SMS significantly changed (P < 0.001) in all groups, with a negative trend for controls, as compared to the SLIT treatments. The SMS decreased in both SLIT groups at 5 years, with no change in patients on drug treatment alone. The use of salbutamol (absent at baseline), showed an overall increase only in the group receiving drugs alone with a significant difference at 5 years (P < 0.001). Considering the MCh challenge, there was a difference among treatments (P < 0.001) in PD20 after 5 years: the control group had a lower PD20 at 5 years. No significant difference in PD20 was detected between sSLIT and aSLIT. The FEV1 significantly decreased in controls, with no change in the sSLIT group and a significant increase in aSLIT as compared to sSLIT. DISCUSSION Despite the limitations inherent to a real-life setting study (absence of randomization and control, small sample size, lack of intermediate timepoint assessment) the results of this study evidenced that the investigated SLIT product, either adjuvanted or not, had a positive effect on the evolution of respiratory allergy due to house dust mite. CONCLUSION In the real life setting, considering a 5-year period, aSLIT and sSLIT reduced the onset of new sensistizations and maintained intact the pulmonary function, as compared to patients receiving drug treatment alone.
Collapse
Affiliation(s)
- Maurizio Marogna
- Pneumology Unit, Cuasso al Monte, Macchi Hospital Foundation, Varese, Italy
| | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.,O'Brien Institute for Public Health, University of Calgary, Alberta, Canada
| | - Giovanni Passalacqua
- Department of Internal Medicine, Allergy and Respiratory Diseases, IRCCS San Martino-IST-University of Genoa, Pad. Maragliano, Ospedale San Martino, L.go R. Benzi 10, 16133 Genova, Italy
| |
Collapse
|
25
|
Ziegler A, Gerber V, Marti E. In vitro effects of the toll-like receptor agonists monophosphoryl lipid A and CpG-rich oligonucleotides on cytokine production by equine cells. Vet J 2016; 219:6-11. [PMID: 28093114 DOI: 10.1016/j.tvjl.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Insect bite hypersensitivity (IBH) is an equine allergic dermatitis to Culicoides spp. antigens. Attempts at using allergen-specific immunotherapy (AIT) as a treatment for IBH have so far proven unsuccessful. Toll-like receptor (TLR) agonists can promote a shift in the immune response from the allergy-promoting T helper cell 2 (Th2) response towards a Th1 and/or regulatory response. The aim of this study was to evaluate two immunomodulatory TLR agonists in vitro as potential vaccine adjuvants for a more efficacious AIT in IBH. Peripheral blood mononuclear cells (PBMCs) from healthy and IBH-affected horses were stimulated with the TLR-agonists monophosphoryl lipid A (MPLA) or CpG-rich oligodeoxynucleotides (CpG-ODN) in the presence or absence of Culicoides spp. allergens. Cytokine concentrations of interferon (IFN)-α, IFN-γ, interleukin (IL)-4, IL-10 and IL-17 were quantified in the supernatants of stimulated PBMCs. MPLA induced IL-10 secretion in all horses, regardless of presence and nature of antigens, while suppressing antigen-induced production of IFN-γ, IL-4 and IL-17. CpG-ODN significantly increased IFN-α, IFN-γ and IL-4 production, but had little effect on IL-10 production. In conclusion, MPLA promotes a regulatory immune response and is therefore a promising adjuvant candidate for allergy vaccines in horses. While C-class CpG-ODN is an unsuitable adjuvant for AIT, it induces IFN-γ and IFN-α, and thus may be a useful adjuvant in combination with vaccines for equine infectious or neoplastic diseases.
Collapse
Affiliation(s)
- A Ziegler
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggass-Strasse 124, Bern CH-3001, Switzerland
| | - V Gerber
- Swiss Institute of Equine Medicine, University of Bern and Agroscope, Länggass-Strasse 124, Bern CH-3001, Switzerland
| | - E Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggass-Strasse 124, Bern CH-3001, Switzerland.
| |
Collapse
|
26
|
Elenius V, Jartti T. Vaccines: could asthma in young children be a preventable disease? . Pediatr Allergy Immunol 2016; 27:682-686. [PMID: 27171908 DOI: 10.1111/pai.12598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 12/14/2022]
Abstract
The long battle with asthma is far from over in developed countries. Its incidence, prevalence, and severity have been increasing for decades. By reducing the risk for asthma, significant healthcare costs can be saved. The desire to create a vaccine that might prevent asthma in young children is attractive and widely considered one of the main goals in translational asthma research. Several vaccination strategies have been tested. These include allergen-specific immunotherapy, vaccination against infectious pathogens, and modification of cell and cytokine responses. The lack of success in the prevention of asthma in young children lies on the complexity of the disease, which involves many genetic, epigenetic, and environmental interactions. This review provides a summary of current literature and aims to address key questions how to develop vaccines to prevent asthma in young children. .
Collapse
Affiliation(s)
- Varpu Elenius
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Tuomas Jartti
- Department of Pediatrics, Turku University Hospital, Turku, Finland.
| |
Collapse
|
27
|
Sampson HA. Food allergy: Past, present and future. Allergol Int 2016; 65:363-369. [PMID: 27613366 DOI: 10.1016/j.alit.2016.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/26/2023] Open
Abstract
Hippocrates is often credited with first recognizing that food could be responsible for adverse symptoms and even death in some individuals, but it was not until the seminal observations by Prausnitz that the investigation of food allergy was viewed on a more scientific basis. In the first half of the 20th century, there were periodic reports in the medical literature describing various food allergic reactions. In the mid- to late- 1970's, the studies of Charles May and colleagues began to penetrate the medical world's skepticism about the relevance of food allergy and how to diagnose it, since standard skin testing was known to correlate poorly with clinical symptoms. With May's introduction of the double-blind placebo-controlled oral food challenge, the study of food allergy became evidence-based and exponential strides have been made over the past four decades in the study of basic immunopathogenic mechanisms and natural history, and the diagnosis and management of food allergies. Today IgE- and non-IgE-mediated food allergic disorders are well characterized and efforts to treat these allergies by various immunotherapeutic strategies are well under way.
Collapse
|
28
|
Lee NR, Park BS, Kim SY, Gu A, Kim DH, Lee JS, Kim IS. Cytokine secreted by S100A9 via TLR4 in monocytes delays neutrophil apoptosis by inhibition of caspase 9/3 pathway. Cytokine 2016; 86:53-63. [PMID: 27459393 DOI: 10.1016/j.cyto.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
Dysregulation of neutrophil apoptosis causes pathogenesis and aggravation of allergy. S100A9 exists as one of the proteins in the neutrophils, triggering inflammatory responses by activating the immune cells. In this study, we investigated whether S100A9 affects constitutive neutrophil apoptosis by activating the monocytes in normal and allergic subjects. Supernatant from human monocytic THP-1 cells after treatment with S100A9 suppressed normal neutrophil apoptosis by inhibiting the activations of caspase 9 and caspase 3. S100A9 upregulated the release of MCP-1, IL-6, and IL-8 in THP-1 cells. An increase in cytokine was suppressed by CLI-095, a Toll-like receptor (TLR) 4 inhibitor, PP2, a Src inhibitor, rottlerin, a PKCδ inhibitor, MAP kinase inhibitors, including PD98059, SB202190, and SP600125, and BAY-11-7085, an NF-κB inhibitor. Src, PKCδ, ERK1/2, p38 MAPK, and JNK were phosphorylated by S100A9. The phosphorylation of Src and PKCδ was suppressed by CLI-095, and the activation of ERK1/2, p38 MAPK, and JNK was inhibited by CLI-095, PP2, and rottlerin. S100A9 induced NF-κB activity, and the activation was suppressed by CLI-095, PP2, rottlerin, and MAPK kinase inhibitors. In normal and allergic subjects, supernatant from normal and allergic monocytes after stimulation with S100A9 suppressed normal and allergic neutrophil apoptosis, respectively; MCP-1, IL-6, and IL-8 in the supernatant was increased by S100A9. The cytokine secretion induced by S100A9 is related to TLR4, Src, PKCδ, ERK1/2, p38 MAPK, JNK, and NF-κB. Taken together, S100A9 induces anti-apoptotic effect on normal and allergic neutrophils by increasing cytokine secretion of monocytes. These findings may help us to better understand neutrophil apoptosis regulated by S100A9 and pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Na Rae Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Seong Yeol Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Da Hye Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Republic of Korea.
| | - In Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
29
|
Wu TYH. Strategies for designing synthetic immune agonists. Immunology 2016; 148:315-25. [PMID: 27213842 DOI: 10.1111/imm.12622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
Abstract
Enhancing the immune system is a validated strategy to combat infectious disease, cancer and allergy. Nevertheless, the development of immune adjuvants has been hampered by safety concerns. Agents that can stimulate the immune system often bear structural similarities with pathogen-associated molecular patterns found in bacteria or viruses and are recognized by pattern recognition receptors (PRRs). Activation of these PRRs results in the immediate release of inflammatory cytokines, up-regulation of co-stimulatory molecules, and recruitment of innate immune cells. The distribution and duration of these early inflammatory events are crucial in the development of antigen-specific adaptive immunity in the forms of antibody and/or T cells capable of searching for and destroying the infectious pathogens or cancer cells. However, systemic activation of these PRRs is often poorly tolerated. Hence, different strategies have been employed to modify or deliver immune agonists in an attempt to control the early innate receptor activation through temporal or spatial restriction. These approaches include physicochemical manipulation, covalent conjugation, formulation and conditional activation/deactivation. This review will describe recent examples of discovery and optimization of synthetic immune agonists towards clinical application.
Collapse
|
30
|
Rahmani F, Rezaei N. Therapeutic targeting of Toll-like receptors: a review of Toll-like receptors and their signaling pathways in psoriasis. Expert Rev Clin Immunol 2016; 12:1289-1298. [PMID: 27359083 DOI: 10.1080/1744666x.2016.1204232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Expression of various Toll-like receptors (TLR) in keratinocytes (KCs) has offered new insights into the pathogenesis of psoriasis. When plasmacytoid dendritic cells (pDCs) are scarce in established psoriatic lesions, KCs take the responsibility to secrete IFN type 1 through TLR9 activation. Antagonists of TLR7 and TLR8 and anti-IL-12/IL-23 substances have shown promising results in treating psoriasis. Areas covered: References in this study were extracted from Scopus, PubMed and Embase databases by the search term: ('Toll-Like Receptors' OR 'TLR') AND ('Psoriasis' OR 'Arthritis, Psoriatic' OR 'PsA'). Expert commentary: As the prevailing cell type, KCs play a major role in the maintenance of psoriatic lesions. By specific upregulation of IL-36 R, KCs can start the IL-23/IL-12 axis, leading to production of major culprits of psoriatic phenotype IL-17 and IL-22. Targeting IL-36 R could be considered as a new therapeutic target to eliminate cutaneous manifestations of psoriasis.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,d Systematic Review and Meta-analysis Expert Group (SRMEG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
31
|
Pierzchalska M, Grabacka M. The potential role of some phytochemicals in recognition of mitochondrial damage-associated molecular patterns. Mitochondrion 2016; 30:24-34. [PMID: 27288721 DOI: 10.1016/j.mito.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are the source of damage-associated molecular patterns (DAMPs). DAMPs modulate responses to stress and trauma in animals, influencing the onset of many diseases. Dietary phytochemicals, which target various cellular molecules, are potential modulators of immunological status. In this review the existence of the possible impact of some plant-derived compounds with proven anti-cancer and anti-inflammatory properties (isothiocyanates and curcumin) on DAMPs recognition is highlighted. Special consideration is given to the mtDNA recognizing Toll-like receptor 9 and formyl peptide receptors. In the context of the phytochemicals action, the role of these receptors in epithelial homeostasis is also discussed.
Collapse
Affiliation(s)
- Malgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Poland.
| | - Maja Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Poland
| |
Collapse
|
32
|
London NR, Lane AP. Innate immunity and chronic rhinosinusitis: What we have learned from animal models. Laryngoscope Investig Otolaryngol 2016; 1:49-56. [PMID: 28459101 PMCID: PMC5409101 DOI: 10.1002/lio2.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Chronic rhinosinusitis (CRS) is a heterogeneous and multifactorial disease characterized by dysregulated inflammation. Abnormalities in innate immune function including sinonasal epithelial cell barrier function, mucociliary clearance, response to pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs), and the contribution of innate immune cells will be highlighted in this review. DATA SOURCES PubMed literature review. REVIEW METHODS A review of the literature was conducted to determine what we have learned from animal models in relation to innate immunity and chronic rhinosinusitis. RESULTS Dysregulation of innate immune mechanisms including sinonasal barrier function, mucociliary clearance, PAMPs, and innate immune cells such as eosinophils, mast cells, and innate lymphoid cells may contribute to CRS pathogenesis. Sinonasal inflammation has been studied using mouse, rat, rabbit, pig, and sheep explant or in vivo models. Study using these models has allowed for analysis of experimental therapeutics and furthered our understanding of the aforementioned aspects of the innate immune mechanism as it relates to sinonasal inflammation. These include augmenting mucociliary clearance through activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and study of drug toxicity on ciliary beat frequency. Knockout models of Toll-like receptors (TLR) have demonstrated the critical role these PRRs play in allergic inflammation as loss of TLR2 and TLR4 leads to decreased lower airway inflammation. Mast cell deficient mice are less susceptible to ovalbumin-induced sinonasal inflammation. CONCLUSION Animal models have shed light as to the potential contribution of dysregulated innate immunity in chronic sinonasal inflammation.
Collapse
Affiliation(s)
- Nyall R. London
- Department of OtolaryngologyHead and Neck Surgery, Johns Hopkins School of MedicineBaltimoreMarylandU.S.A.
| | - Andrew P. Lane
- Department of OtolaryngologyHead and Neck Surgery, Johns Hopkins School of MedicineBaltimoreMarylandU.S.A.
| |
Collapse
|
33
|
Zeyer F, Mothes B, Will C, Carevic M, Rottenberger J, Nürnberg B, Hartl D, Handgretinger R, Beer-Hammer S, Kormann MSD. mRNA-Mediated Gene Supplementation of Toll-Like Receptors as Treatment Strategy for Asthma In Vivo. PLoS One 2016; 11:e0154001. [PMID: 27101288 PMCID: PMC4839613 DOI: 10.1371/journal.pone.0154001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 01/22/2023] Open
Abstract
Asthma is the most common chronic disease in childhood. Although several therapeutic options are currently available to control the symptoms, many drugs have significant side effects and asthma remains an incurable disease. Microbial exposure in early life reduces the risk of asthma and several studies have suggested protective effects of Toll-like receptor (TLR) activation. We showed previously that modified mRNA provides a safe and efficient therapeutic tool for in vivo gene supplementation. Since current asthma drugs do not take patient specific immune and TLR backgrounds into consideration, treatment with tailored mRNA could be an attractive approach to account for the patient's individual asthma phenotype. Therefore, we investigated the effect of a preventative treatment with combinations of Tlr1, Tlr2 and Tlr6 mRNA in a House Dust Mite-induced mouse model of asthma. We used chemically modified mRNA which is-in contrast to conventional viral vectors-non-integrating and highly efficient in gene transfer. In our study, we found that treatment with either Tlr1/2 mRNA or Tlr2/6 mRNA, but not Tlr2 mRNA alone, resulted in better lung function as well as reduced airway inflammation in vivo. The present results point to a potentially protective effect of TLR heterodimers in asthma pathogenesis.
Collapse
Affiliation(s)
- Franziska Zeyer
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Benedikt Mothes
- Department of Pharmacology and Experimental Therapy and ICePhA, University of Tübingen, Tübingen, Germany
| | - Clara Will
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Melanie Carevic
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Jennifer Rottenberger
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy and ICePhA, University of Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy and ICePhA, University of Tübingen, Tübingen, Germany
| | - Michael S. D. Kormann
- Department of Pediatrics I - Pediatric Infectiology and Immunology - Translational Genomics and Gene Therapy, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
34
|
Licari A, Castagnoli R, Bottino C, Marseglia A, Marseglia G, Ciprandi G. Emerging drugs for the treatment of perennial allergic rhinitis. Expert Opin Emerg Drugs 2016; 21:57-67. [PMID: 26733401 DOI: 10.1517/14728214.2016.1139082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Allergic rhinitis is a worldwide health problem, currently affecting up to 40% of the general population, and characterized by the following symptoms in a variable degree of severity and duration: nasal congestion/obstruction, rhinorrhea, itchy nose and/or eyes, and/or sneezing. General symptoms like fatigue, reduced quality of sleep, impaired concentration and reduced productivity, if left untreated, may significantly affect quality of life. In addition, of being associated to various comorbidities, allergic rhinitis is also an independent risk factor for the development and worsening of asthma. Perennial allergic rhinitis is caused by allergens present around the year. AREAS COVERED Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines currently recommend a stepwise therapeutic approach that combines patient education with specific allergen avoidance, symptomatic pharmacotherapy and allergen immunotherapy. The available treatment strategies provide suboptimal symptom relief in patients with moderate-to-severe disease who continue to experience symptoms while treated, even on multiple therapies. EXPERT OPINION New insights into current therapy have been provided with the development of new symptomatic drugs with improved pharmacokinetics and safety. However, the ultimate research goal is beyond symptomatic treatment, and is mainly directed at modifying the immune response to allergens and prevent the progression of allergic rhinitis towards asthma. In this direction, promising advances are expected in the fields of allergen immunotherapy and biological drugs, such as omalizumab. Finally, significant research efforts are also focused on the growing number of new specific molecular targets involved in the Th2 pathway inflammation of allergic diseases.
Collapse
Affiliation(s)
- Amelia Licari
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Riccardo Castagnoli
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Chiara Bottino
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Alessia Marseglia
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - GianLuigi Marseglia
- a Department of Pediatrics, Foundation IRCCS Policlinico San Matteo , University of Pavia , Pavia , Italy
| | - Giorgio Ciprandi
- b Department of Medicine , IRCCS-A.O.U. San Martino di Genova , Genoa , Italy
| |
Collapse
|