1
|
Wisnewski AV, Liu J. Lung Gene Expression Suggests Roles for Interferon-Stimulated Genes and Adenosine Deaminase Acting against RNA-1 in Pathologic Responses to Diisocyanate. Chem Res Toxicol 2024; 37:476-485. [PMID: 38494904 DOI: 10.1021/acs.chemrestox.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520, Connecticut United States
| | - Jian Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520, Connecticut United States
| |
Collapse
|
2
|
Sabbioni G, Pugh SA. New Method to Biomonitor Workers Exposed to 1,6-Hexamethylene Diisocyanate. Chem Res Toxicol 2022; 35:2285-2295. [PMID: 36413493 DOI: 10.1021/acs.chemrestox.2c00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isocyanates such as 1,6-hexamethylene diisocyanate (HDI), 4,4'-methylenediphenyl diisocyanate, and toluene diisocyanate are highly reactive compounds that have a variety of commercial applications, including manufacturing polyurethane foam, elastomers, paints, adhesives, coatings, insecticides, and many other products. Their primary route of occupational exposure is through inhalation. Due to their high chemical reactivity, they are toxic and have adverse effects at the cellular and subcellular levels, leading to irritative and immunological reactions associated with lung disease. High concentrations of isocyanates are strong respiratory irritants. Bronchial sensitization and asthma are among the major adverse clinical reactions associated with low-level chronic exposure to isocyanates. Albumin adducts have been linked to the mechanism of occupational asthma caused by isocyanates. Isocyanates react in vivo with albumin, which is recognized by the immune system. Albumin adducts of isocyanates trigger immune responses and are probably the antigenic basis for isocyanate asthma. Sensitization to isocyanates is the main pathway for adverse health effects. Therefore, markers for the biologically effective dose such as albumin adducts of HDI are needed. A new isocyanate adduct of HDI with lysine─Nε-[(6-amino-hexyl-amino)carbonyl]-lysine (HDI-Lys)─was synthesized and characterized by 1H-NMR, 13C-NMR, and mass spectrometry (MS). Appropriate internal standards─HDI-Lys-4,4'-5,5'-d4 (HDI-d4-Lys) and Nε-[(7-amino-heptyl-amino)carbonyl]-lysine (Hep-Lys)─were synthesized to establish a LC-MS/MS method for the analysis of HDI adducts in in vitro modified albumin and in workers. The presence of HDI-Lys was found after pronase digestion of albumin and confirmed by two independent chromatographic approaches: with a C8 reversed-phase column and with a hydrophilic interaction liquid chromatography column. Quantification was performed with positive electrospray ionization (ESI)-MS. The adduct peak found in vivo was confirmed with the less sensitive negative ESI-MS. In summary, these are new compounds and methods to determine isocyanate-specific adducts with albumin in workers exposed to HDI.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nussbaumstrasse 26, D-80336 München, Germany
| | - Shirley A Pugh
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| |
Collapse
|
3
|
Word LJ, McAden EP, Poole C, Nylander-French LA. The genetics of occupational asthma development among workers exposed to diisocyanates: A systematic literature review with meta-analysis. Front Genet 2022; 13:944197. [PMID: 36276967 PMCID: PMC9582143 DOI: 10.3389/fgene.2022.944197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Diisocyanates are widely used compounds that pose a safety concern for workers in occupations within the spray-paint, spray-foam insulation, and furniture varnish industries. Epidemiological studies show that only a subset of workers exposed to diisocyanates develop diisocyanate-induced occupational asthma (diisocyanate asthma, DA), indicating that genetic susceptibility may play a role. The purpose of this systematic literature review was to compile and meta-analyze the reported data on genetic susceptibility markers for DA. Three databases (Embase, Pubmed, and Scopus) were searched and 169 non-duplicate publications were identified, of which 22 relevant occupational studies were included in this review. Researchers reported prevalence odds ratios (PORs) for 943 comparisons in 82 different genes/serotypes. Protein network functions for the DA-associated genes from this review include: antigen processing, lymphocyte activation, cytokine production regulation, and response to oxidative stress. Meta-analysis of comparisons between workers with DA and controls was conducted for 23 genetic markers within: CTNNA3, GSTM1, GSTP1, GSTT1, HLA-C, HLA-DQB1, HLA-DR1, HLA-DR3, HLA-DR4, HLA-DR7, and HLA-DR8. These genes code for proteins that are involved in cell-cell adhesions (CTNNA3), glutathione conjugation for xenobiotic metabolism (GST gene family), and immune system response (HLA gene family). The most compelling pooled PORs were for two studies on CTNNA3 (increased DA risk: rs10762058 GG, rs7088181 GG, rs4378283 TT; PORs 4.38–4.97) and three studies on HLA-DR1 (decreased DA risk, POR 0.24). Bioinformatics of the predicted protein pathways for DA shows overlap with biomarker-associated pathways in workers before development of asthma, suggesting overlap in toxicokinetic and toxicodynamic pathways of diisocyanates. The control groups were also compared against each other and differences were negligible. Suggestions for improving future research are also presented. Of the highest importance, the literature was found to be profoundly publication-biased, in which researchers need to report the data for all studied markers regardless of the statistical significance level. We demonstrate the utility of evaluating the overlap in predicted protein pathway functions for identifying more consistency across the reported literature including for asthma research, biomarker research, and in vitro studies. This will serve as an important resource for researchers to use when generating new hypothesis-driven research about diisocyanate toxicology.
Collapse
Affiliation(s)
- Laura J. Word
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emily P. McAden
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles Poole
- Epidemiology, University of North Carolina at Chapel Hilll, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Leena A. Nylander-French,
| |
Collapse
|
4
|
Taylor LW, French JE, Robbins ZG, Boyer JC, Nylander-French LA. Influence of Genetic Variance on Biomarker Levels After Occupational Exposure to 1,6-Hexamethylene Diisocyanate Monomer and 1,6-Hexamethylene Diisocyanate Isocyanurate. Front Genet 2020; 11:836. [PMID: 32973864 PMCID: PMC7466756 DOI: 10.3389/fgene.2020.00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
We evaluated the impact of genetic variance on biomarker levels in a population of workers in the automotive repair and refinishing industry who were exposed to respiratory sensitizers 1,6-hexamethylene diisocyanate (HDI) monomer and one of its trimers, HDI isocyanurate. The exposures and respective urine and plasma biomarkers 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) were measured in 33 workers; and genome-wide microarrays (Affymetrix 6.0) were used to genotype the workers' single-nucleotide polymorphisms (SNPs). Linear mixed model analyses have indicated that interindividual variations in both inhalation and skin exposures influenced these biomarker levels. Using exposure values as covariates and a false discovery rate < 0.10 to assess statistical significance, we observed that seven SNPs were associated with HDA in plasma, five were associated with HDA in urine, none reached significance for TAHI in plasma, and eight were associated with TAHI levels in urine. The different genotypes for the 20 significant SNPs accounted for 4- to 16-fold changes observed in biomarker levels. Associated gene functions include transcription regulation, calcium ion transport, vascular morphogenesis, and transforming growth factor beta signaling pathway, which may impact toxicokinetics indirectly by altering inflammation levels. Additionally, in an expanded analysis using a minor allele cutoff of 0.05 instead of 0.10, there were biomarker-associated SNPs within three genes that have been associated with isocyanate-induced asthma: ALK, DOCK2, and LHPP. We demonstrate that genetic variance impacts the biomarker levels in workers exposed to HDI monomer and HDI isocyanurate and that genetics can be used to refine exposure predictions in small cohorts when quantitative personal exposure and biomarker measurements are included in the models.
Collapse
Affiliation(s)
- Laura W. Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E. French
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G. Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Wisnewski AV, Liu J, Redlich CA. Analysis of Lung Gene Expression Reveals a Role for Cl - Channels in Diisocyanate-induced Airway Eosinophilia in a Mouse Model of Asthma Pathology. Am J Respir Cell Mol Biol 2020; 63:25-35. [PMID: 32101465 PMCID: PMC7328250 DOI: 10.1165/rcmb.2019-0400oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Diisocyanates are well-recognized causes of asthma. However, sensitized workers frequently lack diisocyanate-specific IgE, which complicates diagnosis and suggests the disease involves IgE-independent mechanisms. We used a mouse model of methylene diphenyl diisocyanate (MDI) asthma to identify biological pathways that may contribute to asthma pathogenesis. MDI sensitization and respiratory tract exposure were performed in Balb/c, transgenic B-cell (e.g., IgE)-deficient mice and a genetic background (C57BL/6)-matched strain. Eosinophils in airway fluid were quantitated by flow cytometry. Lung tissue gene expression was assessed using whole-genome mRNA microarrays. Informatic software was used to identify biological pathways affected by respiratory tract exposure and potential targets for disease intervention. Airway eosinophilia and changes (>1.5-fold; P value < 0.05) in expression of 192 genes occurred in all three mouse strains tested, with enrichment in chemokines and a pattern associated with alternatively activated monocytes/macrophages. CLCA1 (calcium-activated chloride channel regulator 1) was the most upregulated gene transcript (>100-fold) in all exposed mouse lungs versus controls, followed closely by SLC26A4, another transcript involved in Cl- conductance. Crofelemer, a U.S. Food and Drug Administration-approved Cl- channel inhibitor, reduced MDI exposure induction of airway eosinophilia, mucus, CLCA1, and other asthma-associated gene transcripts. Expression changes in a core set of genes occurs independent of IgE in a mouse model of chemical-induced airway eosinophilia. In addition to chemokines and alternatively activated monocytes/macrophages, the data suggest a crucial role for Cl- channels in diisocyanate asthma pathology and as a possible target for intervention.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jian Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Carrie A Redlich
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Kim KW, Ober C. Lessons Learned From GWAS of Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:170-187. [PMID: 30661310 PMCID: PMC6340805 DOI: 10.4168/aair.2019.11.2.170] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 02/05/2023]
Abstract
Asthma is a common complex disease of the airways. Genome-wide association studies (GWASs) of asthma have identified many risk alleles and loci that have been replicated in worldwide populations. Although the risk alleles identified by GWAS have small effects and explain only a small portion of prevalence, the discovery of asthma loci can provide an understanding of its genetic architecture and the molecular pathways involved in disease pathogenesis. These discoveries can translate into advances in clinical care by identifying therapeutic targets, preventive strategies and ultimately approaches for personalized medicine. In this review, we summarize results from GWAS of asthma from the past 10 years and the insights gleaned from these discoveries.
Collapse
Affiliation(s)
- Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Sanz-Lozano CS, García-Solaesa V, Davila I, Isidoro-García M. Applications of Molecular Genetics to the Study of Asthma. Methods Mol Biol 2017; 1434:1-13. [PMID: 27300527 DOI: 10.1007/978-1-4939-3652-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Asthma is a multifactorial disease. This fact, associated to the diversity of asthma phenotypes, has made difficult to obtain a clear pattern of inheritance. With the huge development of molecular genetics technologies, candidate gene studies are giving way to different types of studies from the genomic point of view.These approaches are allowing the identification of several genes associated with asthma. However, in these studies, there are some conflicting results between different populations and there is still a lack of knowledge about the actual influence of the gene variants. Some confounding factors are, among others, the inappropriate sample size, population stratification, differences in the classification of the phenotypes, or inadequate coverage of the genes.To confirm the real effect of the reported associations, it is necessary to consider both the genetic and environmental factors and perform functional studies that explain the molecular mechanisms mediating between the emergence of gene variants and the development of the disease.The development of experimental techniques opens a new horizon that allows the identification of major genetic factors of susceptibility to asthma. The resulting classification of the population groups based on their genetic characteristics, will allow the application of specific and highly efficient treatments.
Collapse
Affiliation(s)
- Catalina S Sanz-Lozano
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain. .,Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.
| | - Virginia García-Solaesa
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Clinical Genetics, University Hospital of Navarra, Pamplona, Navarra, Spain
| | - Ignacio Davila
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Allergy, University Hospital of Salamanca, Salamanca, Spain.,Department of Biomedical Science and Diagnosis, University of Salamanca, Salamanca, Spain
| | - María Isidoro-García
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Work-related asthma is a common disorder among adult asthma patients, and in the case of occupational asthma, it is induced by workplace exposures. RECENT FINDINGS Occupational asthma provides an excellent model and benchmark for identifying and testing different allergy or inflammatory biomarkers associated with its inception or progression. Moreover, specific inhalation challenge with the incriminated agent represents an experimental setting to identify and validate potential systemic or local biomarkers. Some biomarkers are mainly blood-borne, while local airway biomarkers are derived from inflammatory or resident cells. Genetic and gene-environment interaction studies also provide an excellent framework to identify relevant profiles associated with the risk of developing these work-related conditions. Despite significant efforts to identify clinically relevant inflammatory and genomic markers for occupational asthma, apart from the documented utility of airway inflammatory biomarkers, it remains elusive to define specific markers or signatures clearly associated with different endpoints or outcomes in occupational asthma.
Collapse
|
9
|
Singer AB, Burstyn I, Thygesen M, Mortensen PB, Fallin MD, Schendel DE. Parental exposures to occupational asthmagens and risk of autism spectrum disorder in a Danish population-based case-control study. Environ Health 2017; 16:31. [PMID: 28359263 PMCID: PMC5374665 DOI: 10.1186/s12940-017-0230-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Environmental exposures and immune conditions during pregnancy could influence development of autism spectrum disorder (ASD) in offspring. However, few studies have examined immune-triggering exposures in relation to ASD. We evaluated the association between parental workplace exposures to risk factors for asthma ("asthmagens") and ASD. METHODS We conducted a population-based case-control study in the Danish population using register linkage. Our study population consisted of 11,869 ASD cases and 48,046 controls born from 1993 through 2007. Cases were identified by ICD-10 codes in the Danish Psychiatric Central Register. ASD cases and controls were linked to parental Danish International Standard Classification of Occupations (DISCO-88) job codes. Parental occupational asthmagen exposure was estimated by linking DISCO-88 codes to an asthma-specific job-exposure matrix. RESULTS Our maternal analyses included 6706 case mothers and 29,359 control mothers employed during the pregnancy period. We found a weak inverse association between ASD and any maternal occupational asthmagen exposure, adjusting for sociodemographic covariates (adjusted OR: 0.92, 95% CI: 0.86-0.99). In adjusted analyses, including 7647 cases and 31,947 controls with employed fathers, paternal occupational asthmagen exposure was not associated with ASD (adjusted OR: 0.98, 95% CI: 0.92-1.05). CONCLUSIONS We found a weak inverse association between maternal occupational asthmagen exposure and ASD, and a null association between paternal occupational exposure and ASD. We suggest that unmeasured confounding negatively biased the estimate, but that this unmeasured confounding is likely not strong enough to bring the effect above the null. Overall, our results were consistent with no positive association between parental asthmagen exposure and ASD in the children.
Collapse
Affiliation(s)
- Alison B Singer
- Department of Epidemiology and Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA.
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark.
- Department of Epidemiology, University of North Carolina at Chapel Hill, CB #7435, Chapel Hill, NC, 27599, USA.
| | - Igor Burstyn
- Department of Environmental and Occupational Health, Department of Epidemiology and Biostatistics, the A.J. Drexel Autism Institute, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Malene Thygesen
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Fuglesangs Allé 4, Building 2631, DK-8210, Aarhus V, Denmark
| | - Preben Bo Mortensen
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Fuglesangs Allé 4, Building 2631, DK-8210, Aarhus V, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - M Daniele Fallin
- Department of Epidemiology and Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Diana E Schendel
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Fuglesangs Allé 4, Building 2631, DK-8210, Aarhus V, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Public Health, Section for Epidemiology, Aarhus University, Bartholins Allé 2, Building 1260, DK-8000, Aarhus C, Denmark
| |
Collapse
|
10
|
An official American Thoracic Society Workshop Report: presentations and discussion of the fifth Jack Pepys Workshop on Asthma in the Workplace. Comparisons between asthma in the workplace and non-work-related asthma. Ann Am Thorac Soc 2016. [PMID: 26203621 DOI: 10.1513/annalsats.201505-281st] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fifth Jack Pepys Workshop on Asthma in the Workplace focused on the similarities and differences of work-related asthma (WRA) and non-work-related asthma (non-WRA). WRA includes occupational asthma (OA) and work-exacerbated asthma (WEA). There are few biological differences in the mechanisms of sensitization to environmental and occupational allergens. Non-WRA and OA, when due to high-molecular-weight agents, are both IgE mediated; it is uncertain whether OA due to low-molecular-weight agents is also IgE mediated. Risk factors for OA include female sex, a history of upper airway symptoms, and a history of bronchial hyperresponsiveness. Atopy is a risk factor for OA due to high-molecular-weight agents, and exposure to cleaning agents is a risk factor for both OA and non-WRA. WEA is important among workers with preexisting asthma and may overlap with irritant-induced asthma, a type of OA. Induced sputum cytology can confirm airway inflammation, but specific inhalation challenge is the reference standard diagnostic test. Inhalation challenges are relatively safe, with the most severe reactions occurring with low-molecular-weight agents. Indirect health care costs account for about 50% of total asthma costs. Workers with poor asthma control (WRA or non-WRA) are less likely to be employed. Income loss is a major contributor to the indirect costs of WRA. Overall, asthma outcomes probably are worse for adult-onset than for childhood-onset asthma but better for OA than adult-onset non-WRA. Important aspects of management of OA are rapid and proper confirmation of the diagnosis and reduction of exposure to sensitizers or irritants at work and home.
Collapse
|
11
|
Yucesoy B, Kissling GE, Johnson VJ, Lummus ZL, Gautrin D, Cartier A, Boulet LP, Sastre J, Quirce S, Tarlo SM, Cruz MJ, Munoz X, Luster MI, Bernstein DI. N-Acetyltransferase 2 Genotypes Are Associated With Diisocyanate-Induced Asthma. J Occup Environ Med 2015; 57:1331-6. [PMID: 26641831 PMCID: PMC5215051 DOI: 10.1097/jom.0000000000000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate whether genetic variants of N-acetyltransferase (NAT) genes are associated with diisocyanate asthma (DA). METHODS The study population consisted of 354 diisocyanate-exposed workers. Genotyping was performed using a 5'-nuclease polymerase chain reaction assay. RESULTS The NAT2 rs2410556 and NAT2 rs4271002 variants were significantly associated with DA in the univariate analysis. In the first logistic regression model comparing DA+ and asymptomatic worker groups, the rs2410556 (P = 0.004) and rs4271002 (P < 0.001) single nucleotide polymorphisms and the genotype combination, NAT2 rs4271002*NAT1 rs11777998, showed associations with DA risk (P = 0.014). In the second model comparing DA+ and DA- groups, NAT2 rs4271002 variant and the combined genotype, NAT1 rs8190845*NAT2 rs13277605, were significantly associated with DA risk (P = 0.022, P = 0.036, respectively). CONCLUSIONS These findings suggest that variations in the NAT2 gene and their interactions contribute to DA susceptibility.
Collapse
Affiliation(s)
- Berran Yucesoy
- Division of Immunology, Allergy and Rheumatology (Drs Yucesoy, Lummus, and Bernstein), University of Cincinnati, Ohio; NIEHS/NIH (Dr Kissling), Research Triangle Park; BRT-Burleson Research Technologies (Dr Johnson), Morrisville, North Carolina; Hôpital du Sacré-Coeur de Montréal (Drs Gautrin and Cartier), Université de Montréal, Montreal, Quebec; Hôpital Laval (Dr Boulet), Université Laval, Sainte-Foy, Québec, Canada; Department of Allergy (Dr Sastre), Fundación Jiménez Díaz and CIBER de Enfermedades Respiratorias CIBERES; Department of Allergy (Dr Quirce), Hospital La Paz-IdiPAZ and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain; Department of Medicine and Dalla Lana School of Public Health (Dr Tarlo), University of Toronto, Ontario, Canada; Hospitals Vall D'Hebron (Drs Cruz and Munoz), Barcelona and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain; and School of Public Health (Dr Luster), West Virginia University, Morgantown
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yucesoy B, Kaufman KM, Lummus ZL, Weirauch MT, Zhang G, Cartier A, Boulet LP, Sastre J, Quirce S, Tarlo SM, Cruz MJ, Munoz X, Harley JB, Bernstein DI. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma. Toxicol Sci 2015; 146:192-201. [PMID: 25918132 DOI: 10.1093/toxsci/kfv084] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10(-14)). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10(-9) and rs2514805, p = 1.22 × 10(-8), respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10(-6)). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies.
Collapse
Affiliation(s)
- Berran Yucesoy
- *Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kenneth M Kaufman
- Cincinnati Children's Hospital Medical Center, Center for Autoimmune Genomics and Etiology, and Cincinnati VA Medical Center
| | - Zana L Lummus
- *Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio,Cincinnati Children's Hospital Medical Center, Center for Autoimmune Genomics and Etiology, and Cincinnati VA Medical Center,Cincinnati Children's Hospital Medical Center, Divisions of Biomedical Informatics and Developmental Biology,Cincinnati Children's Hospital Medical Center, Division of Human Genetics,Université de Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,Université Laval, Hôpital Laval, Sainte-Foy, Québec, Canada,Department of Allergy, Fundación Jiménez Díaz and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain,Department of Allergy, Hospital La Paz-IdiPAZ and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain,University of Toronto, Toronto, Ontario, Canada and**Hospitals Vall D'Hebron, Barcelona and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | - Matthew T Weirauch
- Cincinnati Children's Hospital Medical Center, Center for Autoimmune Genomics and Etiology, and Cincinnati VA Medical Center, Cincinnati Children's Hospital Medical Center, Divisions of Biomedical Informatics and Developmental Biology
| | - Ge Zhang
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics
| | - André Cartier
- Université de Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | | | - Joaquin Sastre
- Department of Allergy, Fundación Jiménez Díaz and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz-IdiPAZ and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | | | - Maria-Jesus Cruz
- **Hospitals Vall D'Hebron, Barcelona and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | - Xavier Munoz
- **Hospitals Vall D'Hebron, Barcelona and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Center for Autoimmune Genomics and Etiology, and Cincinnati VA Medical Center
| | - David I Bernstein
- *Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio,
| |
Collapse
|
13
|
Is the analysis of histamine and/or interleukin-4 release after isocyanate challenge useful in the identification of patients with IgE-mediated isocyanate asthma? J Immunol Methods 2015; 422:35-50. [PMID: 25865264 DOI: 10.1016/j.jim.2015.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/21/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
Isocyanates are a well-known and frequent cause of occupational asthma. The implementation of specific inhalation challenges (SICs) is the gold standard in asthma diagnosis supporting occupational case history, lung function testing, specific skin prick tests and the detection of specific IgE. However, the diagnosis is not always definitive. An interesting new approach, analyses of individual genetic susceptibilities, requires discrimination between a positive SIC reaction arising from IgE-mediated immune responses and one from other pathophysiological mechanisms. Hence, additional refinement tools would be helpful in defining sub-classes of occupational asthma and diagnosis. We used total IgE levels, specific IgE and SIC results for sub-classification of 27 symptomatic isocyanate workers studied. Some mutations in glutathione S-transferases (GSTs) are suspected either to enhance or to decrease the individual risk in the development of isocyanate asthma. Our patient groups were assessed for the point mutations GSTP1*I105V and GSTP1*A114V as well as deletions (null mutations) of GSTM1 and GSTT1. There seems to be a higher risk in developing IgE-mediated reactions when GSTM1 is deleted, while GSTT1 deletions were found more frequently in the SIC positive group. Blood samples taken before SIC, 30-60 min and 24h after SIC, were analyzed for histamine and IL-4, classical markers for the IgE-mediated antigen-specific activation of basophils or mast cells. We suggest that the utility of histamine measurements might provide an additional useful marker reflecting isocyanate-induced cellular reactions (although the sampling times require optimization). The promising measurement of IL-4 is not feasible at present due to the lack of a reliable, validated assay.
Collapse
|
14
|
Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced Asthma. J Occup Environ Med 2014; 56:382-7. [PMID: 24709764 DOI: 10.1097/jom.0000000000000138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the association between single nucleotide polymorphisms (SNPs) located across the major histocompatibility complex and susceptibility to diisocyanate-induced asthma (DA). METHODS The study population consisted of 140 diisocyanate-exposed workers. Genotyping was performed using the Illumina GoldenGate major histocompatibility complex panels. RESULTS The HLA-E rs1573294 and HLA-DPB1 rs928976 SNPs were associated with an increased risk of DA under dominant (odds ratio [OR], 6.27; 95% confidence interval [CI], 2.37 to 16.6; OR, 2.79, 95% CI, 0.99 to 7.81, respectively) and recessive genetic models (OR, 6.27, 95% CI, 1.63 to 24.13; OR, 10.10, 95% CI, 3.16 to 32.33, respectively). The HLA-B rs1811197, HLA-DOA rs3128935, and HLA-DQA2 rs7773955 SNPs conferred an increased risk of DA in a dominant model (OR, 7.64, 95% CI, 2.25 to 26.00; OR, 19.69, 95% CI, 2.89 to 135.25; OR, 8.43, 95% CI, 3.03 to 23.48, respectively). CONCLUSION These results suggest that genetic variations within HLA genes play a role in DA risk.
Collapse
|
15
|
Abstract
Occupational asthma (OA) is a difficult diagnosis to make. The present review describes the work environments in which workers are at risk for developing OA, the characteristics of the individuals in whom OA should be suspected and the investigation that can be performed to diagnose the condition. Accurately diagnosing OA is crucial because of the major social and economic consequences of this diagnosis on the patient.
Collapse
|
16
|
Abstract
Occupational asthma is a form of asthma that is often under-diagnosed and under-reported. Unrecognized occupational asthma can lead to progression of disease and increased morbidity. The medical history is a critical element for establishing a diagnosis of OA. The history should include a detailed assessment of the workplace environment, the work process, changes in symptoms in and away from the workplace, and a review of relevant material safety data sheets that may provide clues regarding exposure(s) and the potential cause(s). Objective testing including spirometry pre- and post-bronchodilators, peak expiratory flow rate monitoring in and out of the workplace, provocation testing (i.e., methacholine challenge) to assess for airway hyperresponsiveness, and, if feasible, specific provocation by experienced personnel in a controlled setting to a suspected inciting agent are necessary for confirming a diagnosis. Skin or serologic testing for specific IgE to aeroallergens to assess the worker's atopic status is useful especially when considering certain forms of OA where atopy is a risk factor. Specialized laboratory testing may be useful for specific OA causes. It is important to correctly make the diagnosis of OA as the impact on the worker's future employment and earning power can be significantly affected.
Collapse
|
17
|
Genome-wide association studies in asthma: what they really told us about pathogenesis. Curr Opin Allergy Clin Immunol 2013; 13:112-8. [PMID: 23222155 DOI: 10.1097/aci.0b013e32835c1674] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Over the past years, several consortia have provided a data deluge from large-scale, genome-wide association studies (GWASs) for numerous asthma and allergy related traits. Dozens of reviews have already summarized the main results, although a coherent picture is still missing, referred to as 'missing' or 'unexplained' heritability. RECENT FINDINGS We identify the factors responsible for the unexplained heritability including imprecise phenotyping, biased single-nucleotide polymorphism selection (preferentially gene-based and high allele frequency with poor linkage disequilibrium tagging capacity), heterogeneity and insufficient significance ranking test statistics. In spite of these problems, three major outcomes can already be identified. First, rare variants give the highest risk estimates but are limited to small subgroups indicating a complex origin of asthma that may involve hundreds of variants that are either population, family or individual specific. Second, only a few common variants are shared amongst all asthmatics where the IL33/ST2 pathway turns out to be the most relevant factor. Third, transcription factor binding sites are enriched amongst the top association results pointing towards disturbed regulatory network function in asthma. SUMMARY The next wave of asthma genetic studies will use full-genome sequencing and overcome most GWAS-associated problems. It will be the last step of a century-long search for asthma genes, satisfying scientific curiosity and, hopefully, also providing data applicable in translational medicine.
Collapse
|
18
|
Ouyang B, Bernstein DI, Lummus ZL, Ying J, Boulet LP, Cartier A, Gautrin D, Ho SM. Interferon-γ promoter is hypermethylated in blood DNA from workers with confirmed diisocyanate asthma. Toxicol Sci 2013; 133:218-24. [PMID: 23535363 DOI: 10.1093/toxsci/kft079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Risk factors have not been identified that determine susceptibility for development of diisocyanate-induced occupational asthma (DA). We hypothesized that diisocyanate (DI) exposure could modify gene promoter regions regulating transcription of cytokine mediators and thereby influence expression of DA. A cross-sectional study was designed to investigate the promoter methylation status of candidate genes in DI-exposed workers. Subjects consisted of 131 workers in three groups: 40 cases with DA confirmed by a positive specific inhalation challenge (SIC) (DA+), 41 exposed workers with lower respiratory symptoms and negative SIC (DA-), and 50 asymptomatic exposed workers (AWs). We studied four candidate genes (GSTM1, DUSP22, IFN-γ, and IL-4) for which altered promoter methylation has been previously investigated for relationships with a variety of other environmental exposures. Methylation status was determined using methylation-specific quantitative PCR performed on genomic DNA extracted from whole blood. Results showed that relative methylation of IFN-γ promoter was significantly increased in DA+ in comparison with both comparator groups (DA- and AW), and it exhibited good sensitivity (77.5%) and specificity (80%) for identifying DA workers in a multivariate predictive model after adjusting for type of DI exposure, smoking status, methacholine PC₂₀, and gender. IL-4 promoter was slightly less methylated only in DA+ compared with AW among nonsmoking workers. Both GSTM1 and DUSP22 promoter methylations were found not associated with DA. Our finding suggests that exposure to occupational chemicals could play a heretofore undefined mechanistic role via epigenetic modification of specific genes in the promoter region.
Collapse
Affiliation(s)
- Bin Ouyang
- Department of Environmental Health Sciences, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bernstein DI, Kashon M, Lummus ZL, Johnson VJ, Fluharty K, Gautrin D, Malo JL, Cartier A, Boulet LP, Sastre J, Quirce S, Germolec D, Tarlo SM, Cruz MJ, Munoz X, Luster MI, Yucesoy B. CTNNA3 (α-catenin) gene variants are associated with diisocyanate asthma: a replication study in a Caucasian worker population. Toxicol Sci 2012; 131:242-6. [PMID: 22977168 DOI: 10.1093/toxsci/kfs272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, a genome-wide association study (GWAS) conducted in Korean subjects identified four CTNNA3 (alpha-T catenin) single nucleotide polymorphisms (SNPs) (rs10762058, rs7088181, rs1786929, and rs4378283) associated with diisocyanate-induced occupational asthma (DA). The CTNNA3 gene codes for a cadherin involved in formation of stretch-resistant cell-cell adhesions. We conducted a candidate gene association study to replicate these findings in Caucasian workers. Genotyping was performed on DNA using a 5' nuclease PCR assay collected from 410 diisocyanate-exposed and predominantly Canadian workers including 132 workers with DA confirmed by a specific inhalation challenge (DA+); 131 symptomatic workers in whom DA was excluded by a negative challenge (DA-); and 147 hexamethylene diisocyanate-exposed asymptomatic workers (AWs). As in the Korean study, highly linked CTNNA3 rs7088181 and rs10762058 SNPs (but not rs4378283 and rs1786929) were significantly associated with DA+ when compared with AWs but not in comparison with DA- workers (p ≤ 0.05). After adjusting for potentially confounding variables of age, smoking status, and duration of exposure, minor allele homozygotes of rs7088181 and rs10762058 SNPs were at increased risk for DA compared with AWs (OR = 9.05 [95% CI: 1.69, 48.54] and OR = 6.82 [95% CI: 1.65, 28.24], respectively). In conclusion, we replicated results from the only reported GWAS study of DA demonstrating an association between two closely linked CTNNA3 gene SNPs and DA. These findings lend further support to the clinical relevance of these genotypes in predicting susceptibility to DA and the potential importance of catenins in the disease process.
Collapse
Affiliation(s)
- David I Bernstein
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Current world literature. Curr Opin Allergy Clin Immunol 2012; 12:211-7. [PMID: 22382450 DOI: 10.1097/aci.0b013e3283520fda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Lummus ZL, Wisnewski AV, Bernstein DI. Pathogenesis and disease mechanisms of occupational asthma. Immunol Allergy Clin North Am 2012; 31:699-716, vi. [PMID: 21978852 DOI: 10.1016/j.iac.2011.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Occupational asthma (OA) is one of the most common forms of work-related lung disease in all industrialized nations. The clinical management of patients with OA depends on an understanding of the multifactorial pathogenetic mechanisms that can contribute to this disease. This article discusses the various immunologic and nonimmunologic mechanisms and genetic susceptibility factors that drive the inflammatory processes of OA.
Collapse
Affiliation(s)
- Zana L Lummus
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3255 Eden Avenue, Cincinnati, OH 45267-0563, USA
| | | | | |
Collapse
|