1
|
Hou J, Nie Y, Wen Y, Hua S, Hou Y, He H, Sun S. The role and mechanism of AMPK in pulmonary hypertension. Ther Adv Respir Dis 2024; 18:17534666241271990. [PMID: 39136335 PMCID: PMC11322949 DOI: 10.1177/17534666241271990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease with high mortality. There has been more and more research focusing on the role of AMPK in PH. AMPK consists of three subunits-α, β, and γ. The crosstalk among these subunits ultimately leads to a delicate balance to affect PH, which results in conflicting conclusions about the role of AMPK in PH. It is still unclear how these subunits interfere with each other and achieve balance to improve or deteriorate PH. Several signaling pathways are related to AMPK in the treatment of PH, including AMPK/eNOS/NO pathway, Nox4/mTORC2/AMPK pathway, AMPK/BMP/Smad pathway, and SIRT3-AMPK pathway. Among these pathways, the role and mechanism of AMPK/eNOS/NO and Nox4/mTORC2/AMPK pathways are clearer than others, while the SIRT3-AMPK pathway remains still unclear in the treatment of PH. There are drugs targeting AMPK to improve PH, such as metformin (MET), MET combination, and rhodiola extract. In addition, several novel factors target AMPK for improving PH, such as ADAMTS8, TUFM, and Salt-inducible kinases. However, more researches are needed to explore the specific AMPK signaling pathways involved in these novel factors in the future. In conclusion, AMPK plays an important role in PH.
Collapse
Affiliation(s)
- Jing Hou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Class Three & Class Eight, 2021Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yu Nie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Class Three & Class Eight, 2021Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming 650032, China
| |
Collapse
|
2
|
Tiboldi A, Hunyadi-Gulyas E, Wohlrab P, Schmid JA, Markstaller K, Klein KU, Tretter V. Effects of Hyperoxia and Hyperoxic Oscillations on the Proteome of Murine Lung Microvascular Endothelium. Antioxidants (Basel) 2022; 11:2349. [PMID: 36552557 PMCID: PMC9774699 DOI: 10.3390/antiox11122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Patients presenting with insufficient tissue oxygenation and impaired lung function as in acute respiratory distress syndrome (ARDS) frequently require mechanical ventilation with supplemental oxygen. Despite the lung being used to experiencing the highest partial pressure of oxygen during healthy breathing, the organ is susceptible to oxygen-induced injury at supraphysiological concentrations. Hyperoxia-induced lung injury (HALI) has been regarded as a second hit to pre-existing lung injury and ventilator-induced lung injury (VILI) attributed to oxidative stress. The injured lung has a tendency to form atelectasis, a cyclic collapse and reopening of alveoli. The affected lung areas experience oxygen conditions that oscillate between hyperoxia and hypoxia rather than remaining in a constant hyperoxic state. Mechanisms of HALI have been investigated in many animal models previously. These studies provided insights into the effects of hyperoxia on the whole organism. However, cell type-specific responses have not been dissected in detail, but are necessary for a complete mechanistic understanding of ongoing pathological processes. In our study, we investigated the effects of constant and intermittent hyperoxia on the lung endothelium from a mouse by an in vitro proteomic approach. We demonstrate that these oxygen conditions have characteristic effects on the pulmonary endothelial proteome that underlie the physiological (patho)mechanisms.
Collapse
Affiliation(s)
- Akos Tiboldi
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Eva Hunyadi-Gulyas
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Peter Wohlrab
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Olson KR. A Case for Hydrogen Sulfide Metabolism as an Oxygen Sensing Mechanism. Antioxidants (Basel) 2021; 10:antiox10111650. [PMID: 34829521 PMCID: PMC8615108 DOI: 10.3390/antiox10111650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to detect oxygen availability is a ubiquitous attribute of aerobic organisms. However, the mechanism(s) that transduce oxygen concentration or availability into appropriate physiological responses is less clear and often controversial. This review will make the case for oxygen-dependent metabolism of hydrogen sulfide (H2S) and polysulfides, collectively referred to as reactive sulfur species (RSS) as a physiologically relevant O2 sensing mechanism. This hypothesis is based on observations that H2S and RSS metabolism is inversely correlated with O2 tension, exogenous H2S elicits physiological responses identical to those produced by hypoxia, factors that affect H2S production or catabolism also affect tissue responses to hypoxia, and that RSS efficiently regulate downstream effectors of the hypoxic response in a manner consistent with a decrease in O2. H2S-mediated O2 sensing is then compared to the more generally accepted reactive oxygen species (ROS) mediated O2 sensing mechanism and a number of reasons are offered to resolve some of the confusion between the two.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| |
Collapse
|
4
|
Jasiński T, Stefaniak J. COVID-19 and haemodynamic failure: a point of view on mechanisms and treatment. Anaesthesiol Intensive Ther 2020; 52:409-417. [PMID: 33327700 PMCID: PMC10183984 DOI: 10.5114/ait.2020.101813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022] Open
Abstract
The SARS-CoV-2-related disease has an undoubted impact on the healthcare system. In the treatment of severe COVID-19 cases, the main focus is on respiratory failure. However, available data suggest an important contribution of haemodynamic impairment in the course of this disease. SARS-CoV-2 may affect the circulatory system in various ways that are universal for septic conditions. Nonetheless, unique features of this pathogen, e.g. direct insult leading to myocarditis and renin-angiotensin-aldosterone axis dysregulation, must be taken into account. Although current recommendations on COVID-19 resemble previous septic shock guidelines, special attention to haemodynamic monitoring and treatment is necessary. Regarding treatment, one must take into account the potential profound hypovolaemia of severe COVID-19 patients. Pharmacological cardiovascular support should follow existing guidelines and practice. Interesting concepts of decatecholaminisation and the effect of vasopressors on pulmonary circulation are also presented in this review on COVID-19-related haemodynamic failure.
Collapse
Affiliation(s)
- Tomasz Jasiński
- Department of Anaesthesiology and Intensive Therapy, Medical University of Gdansk, Poland
| | | |
Collapse
|
5
|
Coburn RF. Coronary and cerebral metabolism-blood flow coupling and pulmonary alveolar ventilation-blood flow coupling may be disabled during acute carbon monoxide poisoning. J Appl Physiol (1985) 2020; 129:1039-1050. [PMID: 32853110 DOI: 10.1152/japplphysiol.00172.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current evidence indicates that the toxicity of carbon monoxide (CO) poisoning results from increases in reactive oxygen species (ROS) generation plus tissue hypoxia resulting from decreases in capillary Po2 evoked by effects of increases in blood [carboxyhemoglobin] on the oxyhemoglobin dissociation curve. There has not been consideration of how increases in Pco could influence metabolism-blood flow coupling, a physiological mechanism that regulates the uniformity of tissue Po2, and alveolar ventilation-blood flow coupling, a mechanism that increases the efficiency of pulmonary O2 uptake. Using published data, I consider hypotheses that these coupling mechanisms, triggered by O2 and CO sensors located in arterial and arteriolar vessels in the coronary and cerebral circulations and in lung intralobar arteries, are disrupted during acute CO poisoning. These hypotheses are supported by calculations that show that the Pco in these vessels can reach levels during CO poisoning that would exert effects on signal transduction molecules involved in these coupling mechanisms.NEW & NOTEWORTHY This article introduces and supports a postulate that the tissue hypoxia component of carbon monoxide poisoning results in part from impairment of physiological adaptation mechanisms whereby tissues can match regional blood flow to O2 uptake, and the lung can match regional blood flow to alveolar ventilation.
Collapse
Affiliation(s)
- Ronald F Coburn
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Yoshida T, Matsuura K, Goya S, Ma D, Shimada K, Kitpipatkun P, Namiki R, Uemura A, Suzuki K, Tanaka R. Metformin prevents the development of monocrotaline-induced pulmonary hypertension by decreasing serum levels of big endothelin-1. Exp Ther Med 2020; 20:149. [PMID: 33093887 PMCID: PMC7571338 DOI: 10.3892/etm.2020.9278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with poor prognosis, and it is characterized by the progressive elevation of pulmonary vascular resistance and pressure. Various factors are associated with the pathology of PH, including AMP-activated protein kinase (AMPK) deficiency. The present study aimed to evaluate the therapeutic effect of metformin, an AMPK activator, in a monocrotaline (MCT)-induced PH rat model. Rats were randomly divided into the following three groups: i) Saline-injected group (sham group); ii) monocrotaline (MCT)-injected group (PH group); iii) MCT-injected and metformin-treated group (MT group). Four weeks following MCT injection, cardiac ultrasonography, invasive hemodynamic measurements, measurement of serum levels of big endothelin-1 (big ET-1) and histological analysis were performed to evaluate the effect of metformin treatment in PH. Pulmonary arterial pressure and serum big ET-1 concentrations were reduced in the MT group compared with the PH group. Medial wall thickness and wall area of the pulmonary arterioles in the MT group were decreased compared with the PH group. Comparing the right heart functional parameters among groups revealed that the acceleration time/ejection time ratio improved in the MT group compared with the PH group. Thus, the present study demonstrated the efficacy of metformin in an MCT-induced PH rat model and suggested that metformin may be a valuable, potential novel therapeutic for the treatment of PH.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Katsuhiro Matsuura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Seijirow Goya
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Danfu Ma
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Pitipat Kitpipatkun
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryosuke Namiki
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuhiko Suzuki
- Department of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Abstract
The transition from fetal to newborn life involves a complex series of physiological events that commences with lung aeration, which is thought to involve 3 mechanisms. Two mechanisms occur during labour, Na+ reabsorption and fetal postural changes, and one occurs after birth due to pressure gradients generated by inspiration. However, only one of these mechanisms, fetal postural changes, involves the loss of liquid from the respiratory system. Both other mechanisms involve liquid being reabsorbed from the airways into lung tissue. While this stimulates an increase in pulmonary blood flow (PBF), in large quantities this liquid can adversely affect postnatal respiratory function. The increase in PBF (i) facilitates the onset of pulmonary gas exchange and (ii) allows pulmonary venous return to take over the role of providing preload for the left ventricle, a role played by umbilical venous return during fetal life. Thus, aerating the lung and increasing PBF before umbilical cord clamping (known as physiological based cord clamping), can avoid the loss of preload and reduction in cardiac output that normally accompanies immediate cord clamping.
Collapse
|
8
|
Shovlin CL, Condliffe R, Donaldson JW, Kiely DG, Wort SJ. British Thoracic Society Clinical Statement on Pulmonary Arteriovenous Malformations. Thorax 2017; 72:1154-1163. [DOI: 10.1136/thoraxjnl-2017-210764] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023]
|
9
|
Nagaraj C, Tabeling C, Nagy BM, Jain PP, Marsh LM, Papp R, Pienn M, Witzenrath M, Ghanim B, Klepetko W, Weir EK, Heschl S, Kwapiszewska G, Olschewski A, Olschewski H. Hypoxic vascular response and ventilation/perfusion matching in end-stage COPD may depend on p22phox. Eur Respir J 2017; 50:50/1/1601651. [PMID: 28729471 DOI: 10.1183/13993003.01651-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease in which the amount of emphysema and airway disease may be very different between individuals, even in end-stage disease. Emphysema formation may be linked to the involvement of the small pulmonary vessels. The NAPDH oxidase (Nox) family is emerging as a key disease-related factor in vascular diseases, but currently its role in hypoxia-induced pulmonary remodelling in COPD remains unclear.Here we investigate the role of p22phox, a regulatory subunit of Nox, in COPD lungs, hypoxic pulmonary vasoconstriction (HPV), hypoxia-induced pulmonary vascular remodelling and pulmonary hypertension.In COPD, compared to control lungs, p22phox expression was significantly reduced. The expression was correlated positively with mean pulmonary arterial pressure and oxygenation index and negatively with the diffusing capacity of the lung for carbon monoxide (p<0.02). This suggests a role of p22phox in ventilation/perfusion ratio matching, vascular remodelling and loss of perfused lung area. In p22phox-/- mice, HPV was significantly impaired. In the chronic hypoxic setting, lack of p22phox was associated with improved right ventricular function and decreased pulmonary vascular remodelling.p22phox-dependent Nox plays an important role in the COPD phenotype, by its action on phase II HPV and chronic vascular remodelling.
Collapse
Affiliation(s)
- Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Christoph Tabeling
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Pritesh P Jain
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Michael Pienn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Martin Witzenrath
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahil Ghanim
- Dept of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
| | - E Kenneth Weir
- Dept of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Stefan Heschl
- Dept of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria .,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Zouk AN, Wells JM. In Rotterdam, size really does matter: implications of pulmonary artery enlargement on mortality. Eur Respir J 2017; 49:49/6/1700750. [PMID: 28619963 DOI: 10.1183/13993003.00750-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Aline N Zouk
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,UAB Lung Health Center, Birmingham, AL, USA
| | - J Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA .,UAB Lung Health Center, Birmingham, AL, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
11
|
Ketabchi F, Bajoovand S, Adlband M, Naseh M, Nekooeian AA, Mashghoolozekr E. Right ventricular pressure elevated in one-kidney, one clip Goldblatt hypertensive rats. Clin Exp Hypertens 2017; 39:344-349. [PMID: 28513232 DOI: 10.1080/10641963.2016.1259329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Both renal and respiratory diseases are common with high mortality rate around the world. This study was the first to compare effects of two kidneys, one clip (2K1C) and one-kidney, one clip (1K1C) Goldblatt hypertension on right ventricular pressure during normal condition and mechanical ventilation with hypoxia gas. Male Sprague-Dawley rats were subjected to control, 2K1C, or 1K1C groups. Twenty-eight days after the first surgery, animals were anesthetized, and femoral artery and vein, and right ventricle cannulated. Systemic arterial pressure and right ventricular systolic pressures (RVSP) were recorded during ventilation the animals with normoxic or hypoxic gas. RVSP in the 1K1C group was significantly more than the control and 2K1C groups during baseline conditions and ventilation the animals with hypoxic gas. Administration of antioxidant Trolox increased RVSP in the 1K1C and control groups compared with their baselines. Furthermore, there was no alteration in RVSP during hypoxia in the presence of Trolox. This study indicated that RVSP only increased after 28 days induction of 1K1C but not 2K1C model. In addition, it seems that the response to hypoxic gas and antioxidants in 1K1C is more than 2K1C. These data also suggest that effects of 1K1C may partially be related to reactive oxygen species (ROS) pathways.
Collapse
Affiliation(s)
- Farzaneh Ketabchi
- a Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Shirin Bajoovand
- b Department of Food and Drug, Reference Laboratory, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mojtaba Adlband
- a Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Naseh
- a Department of Physiology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali A Nekooeian
- c Department of Phamacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elaheh Mashghoolozekr
- c Department of Phamacology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
12
|
Li P, Liu Y, Burns N, Zhao KS, Song R. SIRT1 is required for mitochondrial biogenesis reprogramming in hypoxic human pulmonary arteriolar smooth muscle cells. Int J Mol Med 2017; 39:1127-1136. [PMID: 28339017 PMCID: PMC5403509 DOI: 10.3892/ijmm.2017.2932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/16/2017] [Indexed: 12/28/2022] Open
Abstract
Although recent studies have reported that mitochondria are putative oxygen sensors underlying hypoxic pulmonary vasoconstriction, little is known concerning the sirtuin 1 (SIRT1)-mediated mitochondrial biogenesis regulatory program in pulmonary arteriolar smooth muscle cells (PASMCs) during hypoxia/reoxygenation (H/R). We investigated the epigenetic regulatory mechanism of mitochondrial biogenesis and function in human PASMCs during H/R. Human PASMCs were exposed to hypoxia of 24–48 h and reoxygenation of 24–48 h. The expression of SIRT1 was reduced in a time-dependent manner. Mitochondrial transcription factor A (TFAM) expression was increased during hypoxia and decreased during reoxygenation, while the release of TFAM was increased in a time-dependent manner. Lentiviral overexpression of SIRT1 preserved SIRT3 deacetylase activity in human PASMCs exposed to H/R. Knockdown of PGC-1α suppressed the effect of SIRT1 on SIRT3 activity. Knockdown of SIRT3 abrogated SIRT1-mediated deacetylation of cyclophilin D (CyPD). Notably, knockdown of SIRT3 or PGC-1α suppressed the incremental effect of SIRT1 on mitochondrial TFAM, mitochondrial DNA (mtDNA) content and cellular ATP levels. Importantly, polydatin restored SIRT1 levels in human PASMCs exposed to H/R. Knockdown of SIRT1 suppressed the effect of polydatin on mitochondrial TFAM, mtDNA content and cellular ATP levels. In conclusion, SIRT1 expression is decreased in human PASMCs during H/R. TFAM expression in mitochondria is reduced and the release of TFAM is increased by H/R. PGC-1α/SIRT3/CyPD mediates the protective effect of SIRT1 on expression and release of TFAM and mitochondrial biogenesis and function. Polydatin improves mitochondrial biogenesis and function by enhancing SIRT1 expression in hypoxic human PASMCs.
Collapse
Affiliation(s)
- Pengyun Li
- Guangdong Key Laboratory of Shock and Microcirculation Research, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan Liu
- Department of Pharmacy, Henan Medical College, Zhengzhou, Henan 450046, P.R. China
| | - Nana Burns
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Ke-Seng Zhao
- Guangdong Key Laboratory of Shock and Microcirculation Research, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Rui Song
- Guangdong Key Laboratory of Shock and Microcirculation Research, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
Xue J, Nelin LD, Chen B. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα 1 signaling. Am J Physiol Lung Cell Mol Physiol 2017; 312:L568-L578. [PMID: 28213467 DOI: 10.1152/ajplung.00117.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs.
Collapse
Affiliation(s)
- Jianjing Xue
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
15
|
Teramachi R, Taniguchi H, Kondoh Y, Ando M, Kimura T, Kataoka K, Suzuki A, Furukawa T, Sakamoto K, Hasegawa Y. Progression of mean pulmonary arterial pressure in idiopathic pulmonary fibrosis with mild to moderate restriction. Respirology 2017; 22:986-990. [DOI: 10.1111/resp.12986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 12/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Teramachi
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Hiroyuki Taniguchi
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research; Nagoya University Hospital; Nagoya Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Atsushi Suzuki
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Taiki Furukawa
- Department of Respiratory Medicine and Allergy; Tosei General Hospital; Seto Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
16
|
Chen T, Yang C, Li M, Tan X. Alveolar Hypoxia-Induced Pulmonary Inflammation: From Local Initiation to Secondary Promotion by Activated Systemic Inflammation. J Vasc Res 2016; 53:317-329. [PMID: 27974708 DOI: 10.1159/000452800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with high mortality and morbidity. Hypoxic PH (HPH) is a common form of PH occurring mainly due to lung disease and/or hypoxia. Most causes of HPH are associated with persistent or intermittent alveolar hypoxia, including exposure to high altitude and chronic obstructive respiratory disease. Recent evidence suggests that inflammation is a critical step for HPH initiation and development. A detailed understanding of the initiation and progression of pulmonary inflammation would help in exploring potential clinical treatments for HPH. In this review, the mechanism for alveolar hypoxia-induced local lung inflammation and its progression are discussed as follows: (1) low alveolar PO2 levels activate resident lung cells, mainly the alveolar macrophages, which initiate pulmonary inflammation; (2) systemic inflammation is induced by alveolar hypoxia through alveolar macrophage activation; (3) monocytes are recruited into the pulmonary circulation by alveolar hypoxia-induced macrophage activation, which then contributes to the progression of pulmonary inflammation during the chronic phase of alveolar hypoxia, and (4) alveolar hypoxia-induced systemic inflammation contributes to the development of HPH. We hypothesize that a combination of alveolar hypoxia-induced local lung inflammation and the initiation of systemic inflammation ("second hit") is essential for HPH progression.
Collapse
Affiliation(s)
- Ting Chen
- Department of High Altitude Physiology and Biology, College of High Altitude Medicine, Third Military Medical University, Ministry of Education, Chongqing, China
| | | | | | | |
Collapse
|
17
|
Evans AM, Mahmoud AD, Moral-Sanz J, Hartmann S. The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochem J 2016; 473:2561-72. [PMID: 27574022 PMCID: PMC5003690 DOI: 10.1042/bcj20160002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 01/25/2023]
Abstract
Regulation of breathing is critical to our capacity to accommodate deficits in oxygen availability and demand during, for example, sleep and ascent to altitude. It is generally accepted that a fall in arterial oxygen increases afferent discharge from the carotid bodies to the brainstem and thus delivers increased ventilatory drive, which restores oxygen supply and protects against hypoventilation and apnoea. However, the precise molecular mechanisms involved remain unclear. We recently identified as critical to this process the AMP-activated protein kinase (AMPK), which is key to the cell-autonomous regulation of metabolic homoeostasis. This observation is significant for many reasons, not least because recent studies suggest that the gene for the AMPK-α1 catalytic subunit has been subjected to natural selection in high-altitude populations. It would appear, therefore, that evolutionary pressures have led to AMPK being utilized to regulate oxygen delivery and thus energy supply to the body in the short, medium and longer term. Contrary to current consensus, however, our findings suggest that AMPK regulates ventilation at the level of the caudal brainstem, even when afferent input responses from the carotid body are normal. We therefore hypothesize that AMPK integrates local hypoxic stress at defined loci within the brainstem respiratory network with an index of peripheral hypoxic status, namely afferent chemosensory inputs. Allied to this, AMPK is critical to the control of hypoxic pulmonary vasoconstriction and thus ventilation-perfusion matching at the lungs and may also determine oxygen supply to the foetus by, for example, modulating utero-placental blood flow.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Amira D Mahmoud
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| | - Javier Moral-Sanz
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| | - Sandy Hartmann
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| |
Collapse
|
18
|
MicroRNA-223 Attenuates Hypoxia-induced Vascular Remodeling by Targeting RhoB/MLC2 in Pulmonary Arterial Smooth Muscle Cells. Sci Rep 2016; 6:24900. [PMID: 27121304 PMCID: PMC4848472 DOI: 10.1038/srep24900] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/06/2016] [Indexed: 01/12/2023] Open
Abstract
There is growing evidence that microRNAs are implicated in pulmonary arterial hypertension (PAH), but underlying mechanisms remain elusive. Here, we identified that miR-223 was significantly downregulated in chronically hypoxic mouse and rat lungs, as well as in pulmonary artery and pulmonary artery smooth muscle cells (PASMC) exposed to hypoxia. Knockdown of miR-223 increased PASMC proliferation. In contrast, miR-223 overexpression abrogated cell proliferation, migration and stress fiber formation. Administering miR-223 agomir in vivo antagonized hypoxia-induced increase in pulmonary artery pressure and distal arteriole muscularization. RhoB, which was increased by hypoxia, was identified as one of the targets of miR-223. Overexpressed miR-223 suppressed RhoB and inhibited the consequent phosphorylation of myosin phosphatase target subunit (MYPT1) and the expression of myosin light chain of myosin II (MLC2), which was identified as another target of miR-223. Furthermore, serum miR-223 levels were decreased in female patients with PAH associated with congenital heart disease. Our study provides the first evidence that miR-223 can regulate PASMC proliferation, migration, and actomyosin reorganization through its novel targets, RhoB and MLC2, resulting in vascular remodeling and the development of PAH. It also highlights miR-223 as a potential circulating biomarker and a small molecule drug for diagnosis and treatment of PAH.
Collapse
|
19
|
Werkman M, Jeneson J, Helders P, Arets B, van der Ent K, Velthuis B, Nievelstein R, Takken T, Hulzebos E. Exercise oxidative skeletal muscle metabolism in adolescents with cystic fibrosis. Exp Physiol 2016; 101:421-31. [PMID: 26707538 PMCID: PMC4925307 DOI: 10.1113/ep085425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do intrinsic abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance in adolescents with mild cystic fibrosis? What is the main finding and its importance? This study found no evidence that in adolescents with mild cystic fibrosis in a stable clinical state intrinsic abnormalities in skeletal muscle oxidative metabolism seem to play a clinical significant role. Based on these results, we concluded that there is no metabolic constraint to benefit from exercise training. Patients with cystic fibrosis (CF) are reported to have limited exercise capacity. There is no consensus about a possible abnormality in skeletal muscle oxidative metabolism in CF. Our aim was to test the hypothesis that abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance in adolescents with mild CF. Ten adolescents with CF (12-18 years of age; forced expiratory volume in 1 s >80% of predicted; and resting oxygen saturation >94%) and 10 healthy age-matched control (HC) subjects were tested with supine cycle ergometry using near-infrared spectroscopy and (31)P magnetic resonance spectroscopy to study skeletal muscle oxygenation and oxidative metabolism during rest, exercise and recovery. No statistically significant (P > 0.1) differences in peak workload and peak oxygen uptake per kilogram lean body mass were found between CF and HC subjects. No differences were found between CF and HC subjects in bulk changes of quadriceps phosphocreatine (P = 0.550) and inorganic phosphate (P = 0.896) content and pH (P = 0.512) during symptom-limited exercise. Furthermore, we found statistically identical kinetics for phosphocreatine resynthesis during recovery for CF and HC subjects (P = 0.53). No statistically significant difference in peak exercise arbitrary units for total haemoglobin content was found between CF and HC subjects (P = 0.66). The results of this study provide evidence that in patients with mild CF and a stable clinical status (without signs of systemic inflammation and/or chronic Pseudomonas aeruginosa colonization), no intrinsic metabolic constraints and/or abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance.
Collapse
Affiliation(s)
- Maarten Werkman
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Jeneson
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul Helders
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bert Arets
- Cystic Fibrosis Center and Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kors van der Ent
- Cystic Fibrosis Center and Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Birgitta Velthuis
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Rutger Nievelstein
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Tim Takken
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Partner of Shared Utrecht Pediatric Exercise Research (SUPER) Laboratory, Utrecht, The Netherlands
| | - Erik Hulzebos
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Ketabchi F, Mansoori S, Moosavi SMS. The role of anion exchanger on pulmonary vascular response to sustained alveolar hypoxia in the isolated perfused rabbit lung. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:256-63. [PMID: 25999626 PMCID: PMC4430888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND Some respiratory diseases may induce alveolar hypoxia thereby hypoxic pulmonary vasoconstriction (HPV). However, the mechanisms of this physiologic phenomenon are not fully understood. This study was the first to investigate the role of anion exchanger in sustained HPV. METHODS Experiments were performed in the isolated perfused rabbit lung. After preparation, the lungs were divided into six groups: two DIDS (4,4-diisothiocyanostilbene 2,2-disulfonic acid, anion exchanger inhibitor)-treated [200 µM (n=5) or 400 µM (n=3)] hypoxic groups, two HCO3 (-) free hypoxic groups, one control hypoxic group (n=7) and one control normoxic group (n=4). DIDS were added to the perfusate at 10 minutes before starting the experiments. In the HCO3 (-) free groups, HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) were added to the perfusate instead of bicarbonate. Furthermore, in the HEPES1 (n=4) and HEPES2 (n=4) groups, the lungs were ventilated with hypoxic gas with or without CO2, respectively. RESULTS Ventilation of the lungs with hypoxic gas resulted in biphasic HPV, the acute (0-20 minutes) and sustained (20-60 minutes) phases. No alteration in both phases of HPV was detected by DIDS (200 µM). However, DIDS (400 µM), extended the ascending part of acute HPV until min 24. Both phases of HPV were decreased in the HEPES1 group. However, in the HEPES 2 group, HPV tended to increase during the rising part of the acute phase of HPV. CONCLUSIONS Since DIDS (400 µM) extended acute phase of HPV, and HCO3 (-) free perfusate buffer enhanced rising phase of it, therefore it can be suggested that anion exchanger may modulate HPV especially during the acute phase. The abstract of this article was presented as a poster in the congress of European Respiratory Society (ERS) on Monday, 08 September 2014, Munich, Germany and was published in the ERJ September 1, 2014 vol. 44 no. Suppl 58 P2343.
Collapse
|
21
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
22
|
Howard LSGE, Santhirapala V, Murphy K, Mukherjee B, Busbridge M, Tighe HC, Jackson JE, Hughes JMB, Shovlin CL. Cardiopulmonary exercise testing demonstrates maintenance of exercise capacity in patients with hypoxemia and pulmonary arteriovenous malformations. Chest 2015; 146:709-718. [PMID: 24676541 DOI: 10.1378/chest.13-2988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Patients with pulmonary arteriovenous malformations (PAVMs) are unusual because hypoxemia results from right-to-left shunting and not airway or alveolar disease. Their surprisingly well-preserved exercise capacity is not generally appreciated. METHODS To examine why exercise tolerance is preserved, cardiopulmonary exercise tests were performed while breathing room air in 21 patients with radiologically proven PAVMs, including five restudied 3 to 12 months after embolization when their PAVMs had regressed. Where physiologic matching was demonstrable, comparisons were made with 12 healthy control subjects. RESULTS The majority of patients achieved their predicted work rate despite a resting arterial oxygen saturation (SaO₂) of 80% to 96%. Peak work rate and oxygen consumption (VO₂) were no lower in patients with more hypoxemia. Despite higher SaO₂ following embolization (median, 96% and 90%; P = .009), patients achieved similar work rates and similar peak VO₂. Strikingly, treated patients reset to virtually identical peak oxygen pulses (ie, VO₂ per heart beat) and in many cases to the same point on the peak oxygen pulse/work rate plot. The 21 patients had increased minute ventilation (VE) for given increases in CO₂ production (VE/VCO₂ slope), but perceived dyspnea was no greater than in the 12 control subjects or in the same patients before compared to after embolization comparison. Overall, work rate and peak VO₂ were associated not with oxygenation parameters but with VE/VCO₂ slope, BMI, and anaerobic threshold. CONCLUSIONS Patients with hypoxemia and PAVMs can maintain normal oxygen delivery/VO₂ during peak exercise. Following improvement of SaO₂ by embolization, patients appeared to reset compensatory mechanisms and, as a result, achieved similar peak VO₂ per heart beat and peak work rates.
Collapse
Affiliation(s)
- Luke S G E Howard
- Divisions of Cardiovascular Medicine, Imperial College Healthcare NHS Trust
| | - Vatshalan Santhirapala
- National Heart and Lung Institute Cardiovascular Sciences, Imperial College London, London, England; Respiratory Sciences, Imperial College London, London, England; Imperial College School of Medicine, Imperial College London, London, England
| | - Kevin Murphy
- Respiratory Medicine, Imperial College Healthcare NHS Trust
| | - Bhashkar Mukherjee
- Divisions of Cardiovascular Medicine, Imperial College Healthcare NHS Trust
| | - Mark Busbridge
- Clinical Chemistry, Imperial College Healthcare NHS Trust
| | - Hannah C Tighe
- Respiratory Medicine, Imperial College Healthcare NHS Trust
| | | | - J Michael B Hughes
- Respiratory Medicine, Imperial College Healthcare NHS Trust; National Heart and Lung Institute Cardiovascular Sciences, Imperial College London, London, England; Respiratory Sciences, Imperial College London, London, England
| | - Claire L Shovlin
- Respiratory Medicine, Imperial College Healthcare NHS Trust; National Heart and Lung Institute Cardiovascular Sciences, Imperial College London, London, England.
| |
Collapse
|
23
|
Evans AM, Lewis SA, Ogunbayo OA, Moral-Sanz J. Modulation of the LKB1-AMPK Signalling Pathway Underpins Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:89-99. [PMID: 26303471 DOI: 10.1007/978-3-319-18440-1_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Perhaps the defining characteristic of pulmonary arteries is the process of hypoxic pulmonary vasoconstriction (HPV) which, under physiological conditions, supports ventilation-perfusion matching in the lung by diverting blood flow away from oxygen deprived areas of the lung to oxygen rich regions. However, when alveolar hypoxia is more widespread, either at altitude or with disease (e.g., cystic fibrosis), HPV may lead to hypoxic pulmonary hypertension. HPV is driven by the intrinsic response to hypoxia of pulmonary arterial smooth muscle and endothelial cells, which are acutely sensitive to relatively small changes in pO2 and have evolved to monitor oxygen supply and thus address ventilation-perfusion mismatch. There is now a consensus that the inhibition by hypoxia of mitochondrial oxidative phosphorylation represents a key step towards the induction of HPV, but the precise nature of the signalling pathway(s) engaged thereafter remains open to debate. We will consider the role of the AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), an upstream kinase through which AMPK is intimately coupled to changes in oxygen supply via mitochondrial metabolism. A growing body of evidence, from our laboratory and others, suggests that modulation of the LKB1-AMPK signalling pathway underpins both hypoxic pulmonary vasoconstriction and the development of pulmonary hypertension.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK,
| | | | | | | |
Collapse
|
24
|
Guo W, Jin XJ, Yu J, Liu Y, Zhang JP, Yang DW, Zhang L, Guo JR. Effects of stellate ganglion block on the peri-operative vasomotor cytokine content and intrapulmonary shunt in patients with esophagus cancer. Asian Pac J Cancer Prev 2014; 15:9505-9. [PMID: 25422247 DOI: 10.7314/apjcp.2014.15.21.9505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effects of stellate ganglion block (SGB) on the peri-operative vasomotor cytokine content and intrapulmonary shunt in patients with esophagus cancer who underwent thoracotomy. MATERIALS AND METHODS Forty patients undergoing elective resection of esophageal cancer patients who had I~II American Society of Anesthesiologist (ASA) were randomly divided into total intravenous anesthesia group (group N, n=20) and total intravenous anesthesia combined with SGB group (group S, n=20, 0.12 mL/kg 1% lidocaine was used for SGB 10 min before induction). Heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), mean pulmonary arterial pressure (MPAP) and continuous cardiac output (CCO) were continuously monitored. The blood from internal jugular vein was drawn respectively before induction (T0), and 30 min (T1), 60 min (T2) and 120 min (T3) after one-lung ventilation (OLV), and 30 min (T4) after two-lung ventilation. The contents of plasma endothelin (ET), nitric oxide (NO) and calcitonin gene-related peptide (CGRP) were detected with enzyme linked immunosorbent assay (ELISA). Meanwhile, arterial and mixed venous blood samples were collected for determination of blood gas and calculation of intrapulmonary shunt fraction (Qs/Qt). RESULTS During OLV, ET contents were increased significantly in two groups (P<0.05), and no significant difference was presented (P>0.05). NO content in group S was obviously higher than in group N at T3 (P<0.05), whereas CGRP content in group N was markedly lower than in group S at each time point (P<0.05). Qs/Qt was significantly increased in both groups after OLV, but there was no statistical significant regarding the Qs/Qt at each time point between two groups. CONCLUSIONS Total intravenous anesthesia combined with SGB is conducive to regulation of perioperative vasomotor cytokines in thoracotomy, and has little effect on intrapulmonary shunt at the time of OLV.
Collapse
Affiliation(s)
- Wei Guo
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New District, Shanghai, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review discusses the current impact of pulmonary hypertension on the outcome and treatment of cystic fibrosis (CF). RECENT FINDINGS Pulmonary hypertension is commonly encountered in advanced lung diseases such as CF. The prevalence of pulmonary hypertension in CF patients varies based on disease severity and methodology used for diagnosis. Chronic alveolar hypoxia is the most likely cause. The majority of recent studies have shown worse survival in CF patients who develop pulmonary hypertension. The impact of pulmonary hypertension-specific therapies on symptomatology and outcomes in CF patients has not been well studied. SUMMARY Pulmonary hypertension is common in patients with CF and it occurs largely because of hypoxemia. The presence of pulmonary hypertension in patients with CF is likely associated with worse outcome; however, it remains unknown whether treatment with pulmonary hypertension-specific therapies would be beneficial.
Collapse
|
26
|
Santhirapala V, Williams LC, Tighe HC, Jackson JE, Shovlin CL. Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations. PLoS One 2014; 9:e90777. [PMID: 24637882 PMCID: PMC3956463 DOI: 10.1371/journal.pone.0090777] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/04/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity. METHODOLOGY 165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100. PRINCIPAL FINDINGS There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up. SIGNIFICANCE Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses.
Collapse
Affiliation(s)
- Vatshalan Santhirapala
- Imperial College School of Medicine, Imperial College, London, United Kingdom
- National Heart and Lung Institute (NHLI) Cardiovascular Science, Imperial College, London, United Kingdom
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Louisa C. Williams
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Hannah C. Tighe
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - James E. Jackson
- Department of Imaging, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Claire L. Shovlin
- National Heart and Lung Institute (NHLI) Cardiovascular Science, Imperial College, London, United Kingdom
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) continues to fascinate cardiopulmonary physiologists and clinicians since its definitive description in 1946. Hypoxic vasoconstriction exists in all vertebrate gas exchanging organs. This fundamental response of the pulmonary vasculature in air breathing animals has relevance to successful fetal transition to air breathing at birth and as a mechanism of ventilation-perfusion matching in health and disease. It is a complex process intrinsic to the vascular smooth muscle, but with in vivo modulation by a host of factors including the vascular endothelium, erythrocytes, pulmonary innervation, circulating hormones and acid-base status to name only a few. This review will provide a broad overview of HPV and its mechansms and discuss the advantages and disadvantages of HPV in normal physiology, disease and high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
28
|
Rieg AD, Suleiman S, Perez-Bouza A, Braunschweig T, Spillner JW, Schröder T, Verjans E, Schälte G, Rossaint R, Uhlig S, Martin C. Milrinone relaxes pulmonary veins in guinea pigs and humans. PLoS One 2014; 9:e87685. [PMID: 24498166 PMCID: PMC3909212 DOI: 10.1371/journal.pone.0087685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Material and Methods Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). Results In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of KATP-, BKCa2+- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Discussion Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on KATP-, BKCa2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.
Collapse
Affiliation(s)
- Annette D. Rieg
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- Department of Anesthesiology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- * E-mail:
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Alberto Perez-Bouza
- Institute of Pathology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- Institute of Pathology, Medical Faculty of Rhenish Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Jan W. Spillner
- Department of Cardiac and Thorax Surgery, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Aachen, Germany
| | - Eva Verjans
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
- Department of Pediatrics, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Gereon Schälte
- Department of Anesthesiology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty of Rhenish-Westphalian Technical University Aachen, Aachen, Germany
| |
Collapse
|
29
|
Abstract
Hydrogen sulfide (H2S), a gas characterized by the odor of rotten eggs, is produced by many cells in the airways and lungs, and may regulate physiologic and pathophysiologic processes. It plays a role in cellular signaling, and represents the third gasotransmitter after nitric oxide and carbon monoxide. Endogenous and exogenous H₂S have anti-inflammatory and anti-proliferative effects, with inhibitory effects in models of lung inflammation and fibrosis. Under certain conditions, H₂S may also be proinflammatory. It is generally a vasodilator and relaxant of airway and vascular smooth muscle cells. It acts as a reducing agent, being able to scavenge superoxide and peroxynitrite. H₂S is detectable in serum and in sputum supernatants with raised levels observed in asthmatics. The sputum levels correlated inversely with lung function. H₂S may play a role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Kian F Chung
- National Heart & Lung Institute, Imperial College & NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, UK +44 207 352 8121
| |
Collapse
|
30
|
Yan J, Chen R, Liu P, Gu Y. Docosahexaenoic acid attenuates hypoxic pulmonary vasoconstriction by activating the large conductance Ca2+-activated K+ currents in pulmonary artery smooth muscle cells. Pulm Pharmacol Ther 2013; 28:9-16. [PMID: 24269522 DOI: 10.1016/j.pupt.2013.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/14/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND The inhibition of potassium (K(+)) channels plays an important role in pulmonary circulation for its close relationship with hypoxic pulmonary vasoconstriction (HPV). Docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid, is well known for its prevention and treatment of cardiovascular diseases. However the role which DHA plays in HPV remains unclear. Here, we tested the hypothesis that DHA contributes to pulmonary vascular tone by activating the large conductance Ca(2+)-activated K(+) (BKCa) channels via calcium sparks. METHODS AND RESULTS Isolated resistance pulmonary artery preparation was used to study the vasomotor response to DHA. Pulmonary artery smooth muscle cells (PASMCs) were isolated from third- to fourth order branches of pulmonary arteries by collagenase digestion method. BKCa and the voltage-dependent potassium channel (Kv) currents in PASMCs were measured by the whole-cell patch-clamp technique. Fluo-8 was used as a fluorescence indicator for the real-time measurement of calcium dynamics in PASMCs. DHA dilated resistance pulmonary arteries in a dose-dependent manner in hypoxic or normoxic solution, and the effects of DHA were abolished after pre-treatment with heparin (100 μg/ml), a 1,4,5-triphosphate (IP3) receptor (IP3R) inhibitor or iberiotoxin (100 nmol/L), a specific inhibitor of BKCa channel. DHA activated BKCa channels in a dose-dependent manner, however, the activation induced by DHA was not seen in PASMCs pre-incubated with heparin. While the Kv currents decreased from 102.6 ± 5.4 to 36.5 ± 6.7 pA/pF by addition of 10 μmol/L DHA. DHA also caused calcium sparks in PASMCs. Moreover, hypoxia inhibited BKCa currents in PASMCs, but this inhibition was reversed by DHA. CONCLUSION Our findings suggest that DHA is a novel BKCa opener in PASMCs, which may indicate a potential therapeutic role in HPV.
Collapse
Affiliation(s)
- Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, China.
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, China
| | - Peijing Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, China.
| | - Yuchun Gu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Role of voltage-gated potassium channels in pathogenesis of chronic pulmonary heart disease. ACTA ACUST UNITED AC 2013; 33:644-649. [DOI: 10.1007/s11596-013-1174-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 07/03/2013] [Indexed: 01/14/2023]
|
32
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
33
|
Rieg AD, Rossaint R, Verjans E, Maihöfer NA, Uhlig S, Martin C. Levosimendan Relaxes Pulmonary Arteries and Veins in Precision-Cut Lung Slices - The Role of KATP-Channels, cAMP and cGMP. PLoS One 2013; 8:e66195. [PMID: 23824760 PMCID: PMC3688856 DOI: 10.1371/journal.pone.0066195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/05/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Levosimendan is approved for left heart failure and is also used in right heart failure to reduce right ventricular afterload. Despite the fact that pulmonary arteries (PAs) and pulmonary veins (PVs) contribute to cardiac load, their responses to levosimendan are largely unknown. MATERIALS AND METHODS Levosimendan-induced vasorelaxation of PAs and PVs was studied in precision-cut lung slices from guinea pigs by videomicroscopy; baseline luminal area was defined as 100%. Intracellular cAMP- and cGMP-levels were measured by ELISA and NO end products were determined by the Griess reaction. RESULTS Levosimendan relaxed control PVs (116%) and those pre-constricted with an endothelinA-receptor agonist (119%). PAs were only relaxed if pre-constricted (115%). Inhibition of KATP-channels (glibenclamide), adenyl cyclase (SQ 22536) and protein kinase G (KT 5823) largely attenuated the levosimendan-induced relaxation in control PVs, as well as in pre-constricted PAs and PVs. Inhibition of BKCa (2+)-channels (iberiotoxin) and Kv-channels (4-aminopyridine) only contributed to the relaxant effect of levosimendan in pre-constricted PAs. In both PAs and PVs, levosimendan increased intracellular cAMP- and cGMP-levels, whereas NO end products remained unchanged. Notably, basal NO-levels were higher in PVs. The KATP-channel activator levcromakalim relaxed PAs dependent on cAMP/PKA/PKG and increased cAMP-levels in PAs. DISCUSSION Levosimendan initiates complex and divergent signaling pathways in PAs and PVs. Levosimendan relaxes PAs and PVs primarily via KATP-channels and cAMP/cGMP; in PAs, BKCa (2+)- and Kv-channels are also involved. Our findings with levcromakalim do further suggest that in PAs the activation of KATP-channels leads to the production of cAMP/PKA/PKG. In conclusion, these results suggest that levosimendan might reduce right ventricular afterload by relaxation of PAs as well as pulmonary hydrostatic pressure and pulmonary edema by relaxation of PVs.
Collapse
Affiliation(s)
- Annette D. Rieg
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- Department of Anesthesiology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- * E-mail:
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Eva Verjans
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- Department of Pediatrics, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Nina A. Maihöfer
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| |
Collapse
|
34
|
Bolignano D, Rastelli S, Agarwal R, Fliser D, Massy Z, Ortiz A, Wiecek A, Martinez-Castelao A, Covic A, Goldsmith D, Suleymanlar G, Lindholm B, Parati G, Sicari R, Gargani L, Mallamaci F, London G, Zoccali C. Pulmonary hypertension in CKD. Am J Kidney Dis 2012; 61:612-22. [PMID: 23164943 DOI: 10.1053/j.ajkd.2012.07.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension is a rare disease often associated with positive antinuclear antibody and high mortality. Pulmonary hypertension, which rarely is severe, occurs frequently in patients with chronic kidney disease (CKD). The prevalence of pulmonary hypertension ranges from 9%-39% in individuals with stage 5 CKD, 18.8%-68.8% in hemodialysis patients, and 0%-42% in patients on peritoneal dialysis therapy. No epidemiologic data are available yet for earlier stages of CKD. Pulmonary hypertension in patients with CKD may be induced and/or aggravated by left ventricular disorders and risk factors typical of CKD, including volume overload, an arteriovenous fistula, sleep-disordered breathing, exposure to dialysis membranes, endothelial dysfunction, vascular calcification and stiffening, and severe anemia. No specific intervention trial aimed at reducing pulmonary hypertension in patients with CKD has been performed to date. Correcting volume overload and treating left ventricular disorders are factors of paramount importance for relieving pulmonary hypertension in patients with CKD. Preventing pulmonary hypertension in this population is crucial because even kidney transplantation may not reverse the high mortality associated with established pulmonary hypertension.
Collapse
Affiliation(s)
- Davide Bolignano
- Nephrology, Dialysis and Transplantation Unit, Reggio Calabria, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Buttigieg J, Pan J, Yeger H, Cutz E. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence. Am J Physiol Lung Cell Mol Physiol 2012; 303:L598-607. [PMID: 22865553 DOI: 10.1152/ajplung.00170.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pulmonary neuroepithelial bodies (NEBs), composed of clusters of amine [serotonin (5-HT)] and peptide-producing cells, are widely distributed within the airway mucosa of human and animal lungs. NEBs are thought to function as airway O(2)-sensors, since they are extensively innervated and release 5-HT upon hypoxia exposure. The small cell lung carcinoma cell line (H146) provides a useful model for native NEBs, since they contain (and secrete) 5-HT and share the expression of a membrane-delimited O(2) sensor [classical NADPH oxidase (NOX2) coupled to an O(2)-sensitive K(+) channel]. In addition, both native NEBs and H146 cells express different NADPH oxidase homologs (NOX1, NOX4) and its subunits together with a variety of O(2)-sensitive voltage-dependent K(+) channel proteins (K(v)) and tandem pore acid-sensing K(+) channels (TASK). Here we used H146 cells to investigate the role and interactions of various NADPH oxidase components in O(2)-sensing using a combination of coimmunoprecipitation, Western blot analysis (quantum dot labeling), and electrophysiology (patchclamp, amperometry) methods. Coimmunoprecipitation studies demonstrated formation of molecular complexes between NOX2 and K(v)3.3 and K(v)4.3 ion channels but not with TASK1 ion channels, while NOX4 associated with TASK1 but not with K(v) channel proteins. Downregulation of mRNA for NOX2, but not for NOX4, suppressed hypoxia-sensitive outward current and significantly reduced hypoxia -induced 5-HT release. Collectively, our studies suggest that NOX2/K(v) complexes are the predominant O(2) sensor in H146 cells and, by inference, in native NEBs. Present findings favor a NEB cell-specific plasma membrane model of O(2)-sensing and suggest that unique NOX/K(+) channel combinations may serve diverse physiological functions.
Collapse
Affiliation(s)
- Josef Buttigieg
- Division of Pathology, Dept. of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Chen X, Liu H, Pan Z, Miao Q, Zhang Y. The inhibitory effects of m-nisoldipine on the 5-hydroxytryptamine-induced proliferation of pulmonary artery smooth muscle cells via Ca2+ antagonism and antioxidant mechanisms. Eur J Pharmacol 2012; 686:32-40. [PMID: 22575515 DOI: 10.1016/j.ejphar.2012.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/15/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
The excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays a critical role in the development of pulmonary arterial hypertension. Recent studies indicate that Ca(2+) and reactive oxygen species are critically involved in the process of smooth muscle cell proliferation stimulated by mitogens, such as 5-hydroxytryptamine (5-HT). Because m-nisoldipine, a Ca(2+) channel blocker of the dihydropyridine class, possesses some calcium antagonistic and antioxidant properties, we investigated the effect of m-nisoldipine on PASMC proliferation. The results indicated that m-nisoldipine inhibited 5-HT-induced PASMC proliferation, evaluated by BrdU incorporation and the MTT assay, and this effect was associated with a decreased expression of proliferating cell nuclear antigen (PCNA). Flow cytometry analysis showed that m-nisoldipine blocked 5-HT-induced cell-cycle progression by arresting the cells in the G(0)/G(1) phase. Next, the production of reactive oxygen species and the levels of [Ca(2+)](i) in PASMCs were measured by laser scanning confocal microscopy; m-nisoldipine pretreatment attenuated the [Ca(2+)](i) elevation and the production of reactive oxygen species induced by 5-HT. In addition, m-nisoldipine significantly decreased the 5-HT-induced activation of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) and the subsequent c-fos and c-jun mRNA expression. Meanwhile, results also showed that N-acetylcysteine (a reactive oxygen species scavenger) suppressed the proliferation and the ERK1/2 and JNK activation induced by 5-HT. In summary, this study demonstrated that m-nisoldipine effectively suppressed the 5-HT-induced PASMC proliferation, ERK1/2 and JNK activation and subsequent c-fos and c-jun mRNA expression, all of which might be associated with the Ca(2+) antagonistic and antioxidant properties of m-nisoldipine.
Collapse
Affiliation(s)
- Xueyan Chen
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China
| | | | | | | | | |
Collapse
|
37
|
Fähling M, Persson PB. Oxygen sensing, uptake, delivery, consumption and related disorders. Acta Physiol (Oxf) 2012; 205:191-3. [PMID: 22520692 DOI: 10.1111/j.1748-1716.2012.02432.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. Fähling
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| |
Collapse
|
38
|
Wojciak-Stothard B, Zhao L, Oliver E, Dubois O, Wu Y, Kardassis D, Vasilaki E, Huang M, Mitchell JA, Harrington LS, Louise H, Prendergast GC, Wilkins MR. Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 2012; 110:1423-34. [PMID: 22539766 DOI: 10.1161/circresaha.112.264473] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE RhoA and Rho kinase contribute to pulmonary vasoconstriction and vascular remodeling in pulmonary hypertension. RhoB, a protein homologous to RhoA and activated by hypoxia, regulates neoplastic growth and vasoconstriction but its role in the regulation of pulmonary vascular function is not known. OBJECTIVE To determine the role of RhoB in pulmonary endothelial and smooth muscle cell responses to hypoxia and in pulmonary vascular remodeling in chronic hypoxia-induced pulmonary hypertension. METHODS AND RESULTS Hypoxia increased expression and activity of RhoB in human pulmonary artery endothelial and smooth muscle cells, coincidental with activation of RhoA. Hypoxia or adenoviral overexpression of constitutively activated RhoB increased actomyosin contractility, induced endothelial permeability, and promoted cell growth; dominant negative RhoB or manumycin, a farnesyltransferase inhibitor that targets the vascular function of RhoB, inhibited the effects of hypoxia. Coordinated activation of RhoA and RhoB maximized the hypoxia-induced stress fiber formation caused by RhoB/mammalian homolog of Drosophila diaphanous-induced actin polymerization and RhoA/Rho kinase-induced phosphorylation of myosin light chain on Ser19. Notably, RhoB was specifically required for hypoxia-induced factor-1α stabilization and for hypoxia- and platelet-derived growth factor-induced cell proliferation and migration. RhoB deficiency in mice markedly attenuated development of chronic hypoxia-induced pulmonary hypertension, despite compensatory expression of RhoA in the lung. CONCLUSIONS RhoB mediates adaptational changes to acute hypoxia in the vasculature, but its continual activation by chronic hypoxia can accentuate vascular remodeling to promote development of pulmonary hypertension. RhoB is a potential target for novel approaches (eg, farnesyltransferase inhibitors) aimed at regulating pulmonary vascular tone and structure.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- Centre for Pharmacology and Therapeutics, Experimental Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen Y, Wang R. The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Respir Physiol Neurobiol 2012; 184:130-8. [PMID: 22476058 DOI: 10.1016/j.resp.2012.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H(2)S) is an important gasotransmitter in the mammalian respiratory system. The enzymes that produce H(2)S - mainly cystathionine-β-synthase and cystathionine-γ-lyase - are expressed in pulmonary and airway tissues. Endogenous H(2)S participates in the regulation of the respiratory system's physiological functions and pathophysiological alterations, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis and hypoxia-induced pulmonary hypertension, to name a few. The cellular targets of H(2)S in the respiratory system are diverse, including airway smooth muscle cells, epithelial cells, fibroblasts, and pulmonary artery smooth muscle cells. H(2)S also regulates respiratory functions such as airway constriction, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and neurogenic inflammation. Cross-talk between H(2)S and other gasotransmitters also affects the net outcome of lung function. The metabolism of H(2)S in the lungs and airway may serve as a biomarker for specific respiratory diseases. It is expected that strategies targeted at the metabolism and function of H(2)S will prove useful for the prevention and treatment of selective chronic respiratory diseases.
Collapse
Affiliation(s)
- Yahong Chen
- Respiratory Department, Peking University Third Hospital, Beijing, China
| | | |
Collapse
|
40
|
Paddenberg R, Tiefenbach M, Faulhammer P, Goldenberg A, Gries B, Pfeil U, Lips KS, Piruat JI, López-Barneo J, Schermuly RT, Weissmann N, Kummer W. Mitochondrial complex II is essential for hypoxia-induced pulmonary vasoconstriction of intra- but not of pre-acinar arteries. Cardiovasc Res 2012; 93:702-10. [DOI: 10.1093/cvr/cvr359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
41
|
Evans AM, Peers C, Wyatt CN, Kumar P, Hardie DG. Ion channel regulation by the LKB1-AMPK signalling pathway: the key to carotid body activation by hypoxia and metabolic homeostasis at the whole body level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:81-90. [PMID: 23080146 DOI: 10.1007/978-94-007-4584-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our recent investigations provide further support for the proposal that, consequent to inhibition of mitochondrial oxidative phosphorylation, activation of AMP-activated protein kinase (AMPK) mediates carotid body excitation by hypoxia. Consistent with the effects of hypoxia, intracellular dialysis from a patch pipette of an active (thiophosphorylated) recombinant AMPK heterotrimer (α2β2γ1) or application of the AMPK activators AICAR and A769662: (1) Inhibited BK(Ca) currents and TASK K(+) currents in rat carotid body type I cells; (2) Inhibited whole-cell currents carried by KCa1.1 and TASK3, but not TASK1 channels expressed in HEK293 cells; (3) Triggered carotid body activation. Furthermore, preliminary studies using mice with conditional knockout in type I cells of the primary upstream kinase that activates AMPK in response to metabolic stresses, LKB1, appear to confirm our working hypothesis. Studies on mice with knockout of the catalytic α1 subunit and α2 subunits of AMPK, respectively, have proved equally consistent. Accumulating evidence therefore suggests that the LKB1-AMPK signalling pathway is necessary for hypoxia-response coupling by the carotid body, and serves to regulate oxygen and therefore energy supply at the whole body level.
Collapse
Affiliation(s)
- A Mark Evans
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
42
|
Rieg AD, Rossaint R, Uhlig S, Martin C. Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices. PLoS One 2011; 6:e29698. [PMID: 22216346 PMCID: PMC3246495 DOI: 10.1371/journal.pone.0029698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022] Open
Abstract
Introduction Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins. Materials and Methods Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins. Results Pulmonary veins responded stronger than arteries to α1-agonists (contraction) and β2-agonists (relaxation). Notably, inhibition of β2-adrenoceptors unmasked the α1-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V1a and AT1 receptors, respectively, without affecting pulmonary arteries. Discussion Vasopressin and (nor)epinephrine in combination with β2-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT1 receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α1-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany.
| | | | | | | |
Collapse
|
43
|
Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol 2011; 179:103-10. [PMID: 21968289 DOI: 10.1016/j.resp.2011.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 09/09/2011] [Accepted: 09/19/2011] [Indexed: 01/04/2023]
Abstract
There is considerable controversy surrounding the initial step that transduces a fall in [Formula: see text] into a physiological signal, i.e., the "oxygen sensor" in chemoreceptors. Initial studies on systemic and respiratory vessels suggested that the metabolism of hydrogen sulfide (H(2)S) could serve as the oxygen sensor. This model was subsequently extended to chemoreceptors in fish and tissues of other animals. In this model, constitutive production of biologically active H(2)S is offset by H(2)S oxidation; when oxygen availability falls, production of H(2)S exceeds metabolism, and the resultant increase in intracellular H(2)S initiates the appropriate physiological responses. This model is supported by observations that the effects of hypoxia and H(2)S are similar, if not identical in many tissues: hypoxic responses are inhibited by inhibitors of H(2)S biosynthesis and augmented by sulfur donating molecules, and the tipping point between H(2)S production and oxidation occurs at physiologically relevant [Formula: see text] . Recent studies from other laboratories support this mechanism of O(2) sensing in the carotid body. This review summarizes information that supports the H(2)S metabolic hypothesis in these tissues with emphasis on the carotid chemoreceptors. Evidence suggesting that H(2)S is not involved in oxygen sensing in the carotid body is also critically evaluated.
Collapse
|