1
|
Hayward S, Cardinael C, Tait C, Reid M, McCarthy A. Exploring the adoption of diaphragm and lung ultrasound (DLUS) by physiotherapists, physical therapists, and respiratory therapists: an updated scoping review. Ultrasound J 2025; 17:9. [PMID: 39832026 PMCID: PMC11747032 DOI: 10.1186/s13089-025-00412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The adoption of diaphragm and lung ultrasound (DLUS) by physiotherapists, physical therapists, and respiratory therapists ("therapists") to examine and assess the diaphragm and lungs continues to grow. The aim of this updated scoping review is to re-explore and re-collate the evidence around the adoption of DLUS by therapists. METHODS This scoping review followed the PRISMA-ScR guidelines. Data sources searched included AMED, EmCare, CINAHL, Embase, Medline, PubMed and Pedro. Grey literature sources were searched alongside communication with leading authors in the field. The Participants, Concept and Context (PCC) approach was employed to formulate the research question. A charting form was developed and piloted to extract: title, authors, year of publication, country of origin, professional group involved (population), lung or diaphragm ultrasound (concept), evaluation method, educational, clinical or research setting (context), subject/disease/patient group, sample size, study design and professional group performing DLUS. RESULTS 133 studies met all inclusion criteria, an increase of 107 new studies compared to the original scoping review searches 7-years ago. Studies were included from 17 new countries and included 17 new participant populations. Lung ultrasound saw the largest increase in study number with education and implementation emerging as a new area of investigation. Full list of included studies is provided in Supplementary File 1. CONCLUSION The number of DLUS studies involving therapists continues to show international growth with studies investigating an increasing range of participant populations. Published studies now include research on DLUS adoption, implementation, and utility amongst all three of the therapy professions who use DLUS. The potential of DLUS and its direct impact on patient outcomes still needs to be explored further. However, DLUS remains a novel and innovative imaging technique in the hands of physiotherapists, physical therapists, and respiratory therapists as its utility continues to grow in various research, clinical and educational settings.
Collapse
Affiliation(s)
- Simon Hayward
- Physiotherapy Department, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8PY, UK.
| | - Camella Cardinael
- Acute Medicine Physiotherapy, Lancashire Teaching Hospitals NHS Foundation Trust, Sharoe Green Lane, Fulwood, Preston, PR2 9HT, UK
| | - Chloe Tait
- Physiotherapy Department, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8PY, UK
| | - Michael Reid
- Library and Knowledge Services, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8PY, UK
| | - Andrew McCarthy
- Physiotherapy Department, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8PY, UK
| |
Collapse
|
2
|
Wang CJ, Wang IT, Chen CH, Tang YH, Lin HW, Lin CY, Wu CL. Recruitment-Potential-Oriented Mechanical Ventilation Protocol and Narrative Review for Patients with Acute Respiratory Distress Syndrome. J Pers Med 2024; 14:779. [PMID: 39201971 PMCID: PMC11355260 DOI: 10.3390/jpm14080779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Even though much progress has been made to improve clinical outcomes, acute respiratory distress syndrome (ARDS) remains a significant cause of acute respiratory failure. Protective mechanical ventilation is the backbone of supportive care for these patients; however, there are still many unresolved issues in its setting. The primary goal of mechanical ventilation is to improve oxygenation and ventilation. The use of positive pressure, especially positive end-expiratory pressure (PEEP), is mandatory in this approach. However, PEEP is a double-edged sword. How to safely set positive end-inspiratory pressure has long been elusive to clinicians. We hereby propose a pressure-volume curve measurement-based method to assess whether injured lungs are recruitable in order to set an appropriate PEEP. For the most severe form of ARDS, extracorporeal membrane oxygenation (ECMO) is considered as the salvage therapy. However, the high level of medical resources required and associated complications make its use in patients with severe ARDS controversial. Our proposed protocol also attempts to propose how to improve patient outcomes by balancing the possible overuse of resources with minimizing patient harm due to dangerous ventilator settings. A recruitment-potential-oriented evaluation-based protocol can effectively stabilize hypoxemic conditions quickly and screen out truly serious patients.
Collapse
Affiliation(s)
- Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - I-Ting Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung 950408, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Tamsui 251020, Taiwan
| | - Hsin-Wei Lin
- Department of Chest Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - Chien-Liang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
| |
Collapse
|
3
|
Wong H, Chi Y, Zhang R, Yin C, Jia J, Wang B, Liu Y, Shang Y, Wang R, Long Y, Zhao Z, He H. Multicentre, parallel, open-label, two-arm, randomised controlled trial on the prognosis of electrical impedance tomography-guided versus low PEEP/FiO2 table-guided PEEP setting: a trial protocol. BMJ Open 2024; 14:e080828. [PMID: 38307528 PMCID: PMC10836340 DOI: 10.1136/bmjopen-2023-080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Previous studies suggested that electrical impedance tomography (EIT) has the potential to guide positive end-expiratory pressure (PEEP) titration via quantifying the alveolar collapse and overdistension. The aim of this trial is to compare the effect of EIT-guided PEEP and acute respiratory distress syndrome (ARDS) network low PEEP/fraction of inspired oxygen (FiO2) table strategy on mortality and other clinical outcomes in patients with ARDS. METHODS This is a parallel, two-arm, multicentre, randomised, controlled trial, conducted in China. All patients with ARDS under mechanical ventilation admitted to the intensive care unit will be screened for eligibility. The enrolled patients are stratified by the aetiology (pulmonary/extrapulmonary) and partial pressure of arterial oxygen/FiO2 (≥150 mm Hg or <150 mm Hg) and randomised into the intervention group or the control group. The intervention group will receive recruitment manoeuvre and EIT-guided PEEP titration. The EIT-guided PEEP will be set for at least 12 hours after titration. The control group will not receive recruitment manoeuvre routinely and the PEEP will be set according to the lower PEEP/FiO2 table proposed by the ARDS Network. The primary outcome is 28-day survival. ANALYSIS Qualitative data will be analysed using the χ2 test or Fisher's exact test, quantitative data will be analysed using independent samples t-test or Mann-Whitney U test. Kaplan-Meier analysis with log-rank test will be used to evaluate the 28-day survival rate between two groups. All outcomes will be analysed based on the intention-to-treat principle. ETHICS AND DISSEMINATION The trial is approved by the Institutional Research and Ethics Committee of the Peking Union Medical College Hospital. Data will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05307913.
Collapse
Affiliation(s)
- HouPeng Wong
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yi Chi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Rui Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai, China
| | | | - Jianwei Jia
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - You Shang
- Critical Care Medicine, Wuhan Union Hospital, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Zhanqi Zhao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Silva PL, Scharffenberg M, Rocco PRM. Understanding the mechanisms of ventilator-induced lung injury using animal models. Intensive Care Med Exp 2023; 11:82. [PMID: 38010595 PMCID: PMC10682329 DOI: 10.1186/s40635-023-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Mechanical ventilation is a life-saving therapy in several clinical situations, promoting gas exchange and providing rest to the respiratory muscles. However, mechanical ventilation may cause hemodynamic instability and pulmonary structural damage, which is known as ventilator-induced lung injury (VILI). The four main injury mechanisms associated with VILI are as follows: barotrauma/volutrauma caused by overstretching the lung tissues; atelectrauma, caused by repeated opening and closing of the alveoli resulting in shear stress; and biotrauma, the resulting biological response to tissue damage, which leads to lung and multi-organ failure. This narrative review elucidates the mechanisms underlying the pathogenesis, progression, and resolution of VILI and discusses the strategies that can mitigate VILI. Different static variables (peak, plateau, and driving pressures, positive end-expiratory pressure, and tidal volume) and dynamic variables (respiratory rate, airflow amplitude, and inspiratory time fraction) can contribute to VILI. Moreover, the potential for lung injury depends on tissue vulnerability, mechanical power (energy applied per unit of time), and the duration of that exposure. According to the current evidence based on models of acute respiratory distress syndrome and VILI, the following strategies are proposed to provide lung protection: keep the lungs partially collapsed (SaO2 > 88%), avoid opening and closing of collapsed alveoli, and gently ventilate aerated regions while keeping collapsed and consolidated areas at rest. Additional mechanisms, such as subject-ventilator asynchrony, cumulative power, and intensity, as well as the damaging threshold (stress-strain level at which tidal damage is initiated), are under experimental investigation and may enhance the understanding of VILI.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
5
|
Mao JY, Zhang HM, Liu DW, Wang XT. Visual Rounds Based on Multiorgan Point-of-Care Ultrasound in the ICU. Front Med (Lausanne) 2022; 9:869958. [PMID: 35692540 PMCID: PMC9174546 DOI: 10.3389/fmed.2022.869958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Point-of-care ultrasonography (POCUS) is performed by a treating clinician at the patient's bedside, provides a acquisition, interpretation, and immediate clinical integration based on ultrasonographic imaging. The use of POCUS is not limited to one specialty, protocol, or organ system. POCUS provides the treating clinician with real-time diagnostic and monitoring information. Visual rounds based on multiorgan POCUS act as an initiative to improve clinical practice in the Intensive Care Unit and are urgently needed as part of routine clinical practice.
Collapse
Affiliation(s)
- Jia-Yu Mao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Hong-Min Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiao-Ting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiao-Ting Wang
| |
Collapse
|
6
|
Lin H, Chen Y, Xie S, Yu M, Deng D, Sun T, Hu Y, Chen M, Chen S, Chen X. A Dual-modal Imaging Method Combining Ultrasound and Electromagnetism for Simultaneous Measurement of Tissue Elasticity and Electrical Conductivity. IEEE Trans Biomed Eng 2022; 69:2499-2511. [PMID: 35119996 DOI: 10.1109/tbme.2022.3148120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanical and electrical properties of soft tissues are relative to soft tissues' pathological state. Modern medical imaging devices have shown a trend to multi-modal imaging, which will provide complementary functional information to improve the accuracy of disease diagnosis. However, no method or system can simultaneously measure the mechanical and electrical properties of the soft tissue. In this study, we proposed a novel dual-modal imaging method integrated by shear wave elasticity imaging (SWEI) and Magneto-acousto-electrical tomography (MAET) to measure soft tissue's elasticity and conductivity simultaneously. A dual-modal imaging system based on a linear array transducer is built, and the imaging performances of MAET and SWEI were respectively evaluated by phantoms experiment and \textit{in vitro} experiment. Conductivity phantom experiments show that the MAET in this dual-modal system can image conductivity gradient as low as 0.4 S/m. The phantom experiments show that the reconstructed 2-D elasticity maps of the phantoms with inclusions with a diameter larger than 5 mm are relatively accurate. \textit{In vitro} experiments show that the elasticity parameter can significantly distinguish the changes in tissue before and after heating. This study first proposes a method that can simultaneously obtain tissue elasticity and electrical conductivity to the best of our knowledge. Although this paper just carried out the proof of concept experiments of the new method, it demonstrates great potential for disease diagnosis in the future.
Collapse
|
7
|
Murray A, Gow AJ, Venosa A, Andres J, Malaviya R, Adler D, Yurkow E, Laskin JD, Laskin DL. Assessment of mustard vesicant lung injury and anti-TNF-α efficacy in rodents using live-animal imaging. Ann N Y Acad Sci 2020; 1480:246-256. [PMID: 33165947 DOI: 10.1111/nyas.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
Nitrogen mustard (NM) causes acute lung injury, which progresses to fibrosis. This is associated with a macrophage-dominant inflammatory response and the production of proinflammatory/profibrotic mediators, including tumor necrosis factor alpha (TNF-α). Herein, we refined magnetic resonance imaging (MRI) and computed tomography (CT) imaging methodologies to track the progression of NM-induced lung injury in rodents and assess the efficacy of anti-TNF-α antibody in mitigating toxicity. Anti-TNF-α antibody was administered to rats (15 mg/kg, every 8 days, intravenously) beginning 30 min after treatment with phosphate-buffered saline control or NM (0.125 mg/kg, intratracheally). Animals were imaged by MRI and CT prior to exposure and 1-28 days postexposure. Using MRI, we characterized acute lung injury and fibrosis by quantifying high-signal lung volume, which represents edema, inflammation, and tissue consolidation; these pathologies were found to persist for 28 days following NM exposure. CT scans were used to assess structural components of the lung and to register changes in tissue radiodensities. CT scans showed that in control animals, total lung volume increased with time. Treatment of rats with NM caused loss of lung volume; anti-TNF-α antibody mitigated this decrease. These studies demonstrate that MRI and CT can be used to monitor lung disease and the impact of therapeutic intervention.
Collapse
Affiliation(s)
- Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah
| | - Jaclynn Andres
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Derek Adler
- Molecular Imaging Center, Rutgers University, Piscataway, New Jersey
| | - Edward Yurkow
- Molecular Imaging Center, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
8
|
Barrett NA, Hart N, Camporota L. Assessment of Work of Breathing in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. COPD 2019; 16:418-428. [PMID: 31694406 DOI: 10.1080/15412555.2019.1681390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The assessment of the work of breathing (WOB) of patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) is difficult, particularly when the patient first presents with acute hypercapnia and respiratory acidosis. Acute exacerbations of COPD patients are in significant respiratory distress and noninvasive measurements of WOB are easier for the patient to tolerate. Given the interest in using alternative therapies to noninvasive ventilation, such as high flow nasal oxygen therapy or extracorporeal carbon dioxide removal, understanding the physiological changes are key and this includes assessment of WOB. This narrative review considers the role of three different methods of assessing WOB in patients with acute exacerbations of COPD. Esophageal pressure is a very well validated measure of WOB, however the ability of patients with acute exacerbations of COPD to tolerate esophageal tubes is poor. Noninvasive alternative measurements include parasternal electromyography (EMG) and electrical impedance tomography (EIT). EMG is easily applied and is a well validated measure of neural drive but is more likely to be degraded by the electrical environment in intensive care or high dependency. EIT is less well validated as a tool for WOB in COPD but extremely well tolerated by patients. Each of the different methods assess WOB in a different way and have different advantages and disadvantages. For research into therapies treating acute exacerbations of COPD, combinations of EIT, EMG and esophageal pressure are likely to be better than only one of these.
Collapse
Affiliation(s)
- N A Barrett
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - N Hart
- Lane Fox Respiratory Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - L Camporota
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
9
|
Liu B, Wang G, Li Y, Zeng L, Li H, Gao Y, Ma Y, Lian Y, Heng CH. A 13-Channel 1.53-mW 11.28-mm 2 Electrical Impedance Tomography SoC Based on Frequency Division Multiplexing for Lung Physiological Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:938-949. [PMID: 31331896 DOI: 10.1109/tbcas.2019.2927132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electrical impedance tomography (EIT) system based on frequency division multiplexing (FDM) is proposed for real-time lung physiological imaging. The FDM technique allows the integration of 13 dedicated voltage sensing channels by combining data on-chip and sharing of ADC to alleviate area penalty caused by multi-channel. The EIT system-on-chip (SoC) is of the following features. 1) Early I/Q demodulation to relax the bandwidth requirement of analog front end and minimize the impact of motion artifacts and dc electrode offset. 2) Eliminates the need of adaptive gain control with constant inverted "U-shape" gain configuration to compensate amplitude variations across all channels. 3) FDM to combine 13 pairs of I/Q signals into two data streams for quantization using only two ΔΣ modulators. 4) Batch data recovery by Blackman window corrected fast Fourier transform without any digital filtering involved. 5) Lowest power consumption and smallest area occupation per channel reported to date. The EIT SoC occupies an area of 11.28 mm2 in 130-nm CMOS technology with a total power consumption of 1.53 mW under 1-V power supply. As a result, it generates lung EIT images at up to five frames per second.
Collapse
|
10
|
Modified Lung Ultrasound Examinations in Assessment and Monitoring of Positive End-Expiratory Pressure-Induced Lung Reaeration in Young Children With Congenital Heart Disease Under General Anesthesia. Pediatr Crit Care Med 2019; 20:442-449. [PMID: 31058784 DOI: 10.1097/pcc.0000000000001865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Lung ultrasound can reliably diagnose pulmonary atelectasis. The object of this study is to determine the most efficient region to assess changes in atelectasis in children with congenital heart disease under general anesthesia. DESIGN Randomized controlled trial. SETTING Operating room at university-affiliated children's hospital. PATIENTS Children between 3 months and 3 years old, scheduled for elective congenital heart disease surgery under general anesthesia. INTERVENTIONS Forty children with congenital heart disease were randomly allocated to either a 5 cm H2O positive end-expiratory pressure group or a standard therapy control group. MEASUREMENTS AND MAIN RESULTS Preoperative lung ultrasound was performed twice in each patient-after 1 and 15 minutes of mechanical ventilation. Atelectatic areas and B-lines were compared between two examinations. Different ultrasound regions were evaluated using Bland-Altman plots. The occurrence rate of atelectasis was much higher in inferoposterior lung regions (Scans 4-6) than in anterior and lateral regions (Scans 1-3). The median (interquartile range) lung ultrasound scores were lower in the positive end-expiratory pressure group than in the control group after treatment: 8 (3.3-9.8) versus 13 (8.3-17.5; p < 0.001). The atelectatic area was significantly decreased after treatment in the positive end-expiratory pressure group: 128 mm (34.5.5-213.3 mm) versus 49.5 mm (5.3-75.5 mm; p < 0.001). Bland-Altman plots revealed concordance between measurements in Scans 1-6 and those in Scans 4-6. In the posterior axillary line regions, changes in atelectatic area were significantly larger in the positive end-expiratory pressure group than in the control group (p = 0.03, 0.007, and 0.018). CONCLUSIONS Lung ultrasound in inferoposterior lung regions may be more likely to reflect changes in atelectasis and save examination time; 5 cm H2O positive end-expiratory pressure may be useful in lung reaeration and can reduce, but not eliminate, atelectasis in children with congenital heart disease.
Collapse
|
11
|
Vasques F, Sanderson B, Barrett NA, Camporota L. Monitoring of regional lung ventilation using electrical impedance tomography. Minerva Anestesiol 2019; 85:1231-1241. [PMID: 30945516 DOI: 10.23736/s0375-9393.19.13477-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among recent lung imaging techniques and devices, electrical impedance tomography (EIT) can provide dynamic information on the distribution regional lung ventilation. EIT images possess a high temporal and functional resolution allowing the visualization of dynamic physiological and pathological changes on a breath-by-breath basis. EIT detects changes in electric impedance (i.e., changes in gas/fluid ratio) and describes them in real time, both visually through images and waveforms, and numerically, allowing the clinician to monitor disease evolution and response to treatment. The use of EIT in clinical practice is supported by several studies demonstrating a good correlation between impedance tomography data and other validated methods of measuring lung volume. In this review, we will provide an overview on the rationale, basic functioning and most common applications of EIT in the management of mechanically ventilated patients.
Collapse
Affiliation(s)
- Francesco Vasques
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Barnaby Sanderson
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Nicholas A Barrett
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK - .,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Fong KM, Au SY, Lily Chan KL, George Ng WY. Update on management of acute respiratory distress syndrome. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Ball L, Vercesi V, Costantino F, Chandrapatham K, Pelosi P. Lung imaging: how to get better look inside the lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:294. [PMID: 28828369 DOI: 10.21037/atm.2017.07.20] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last years, imaging has played a key role in the diagnosis and monitoring and critical illness, including acute respiratory distress syndrome (ARDS). Chest X-ray (CXR) and computed tomography (CT) are the conventional techniques most performed in the critically ill patients, the latter being the gold standard to assess lung aeration in ARDS patients. In addition, two bedside techniques are now gaining popularity alongside the conventional ones: lung ultrasound (LUS) and electrical impedance tomography (EIT). These techniques do not involve the use of ionizing radiations, are non-invasive and relatively easy to use, and are under extensive investigation as a complement, and for some application a substitution of conventional techniques. At last, positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide functional information on the lung and respiratory function, and are increasingly used in research to improve the understanding of the pathophysiological mechanisms underlying ARDS. The purpose of this review is to give an up-to-date overview of the conventional and emerging imaging techniques available the diagnosis and management of patients with ARDS.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Veronica Vercesi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Federico Costantino
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Karthikka Chandrapatham
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| |
Collapse
|
14
|
Klapsing P, Herrmann P, Quintel M, Moerer O. Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute respiratory distress syndrome-A comparative diagnostic study. J Crit Care 2016; 42:184-191. [PMID: 28759880 DOI: 10.1016/j.jcrc.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/01/2022]
Abstract
Quantitative lung computed tomographic (CT) analysis yields objective data regarding lung aeration but is currently not used in clinical routine primarily because of the labor-intensive process of manual CT segmentation. Automatic lung segmentation could help to shorten processing times significantly. In this study, we assessed bias and precision of lung CT analysis using automatic segmentation compared with manual segmentation. In this monocentric clinical study, 10 mechanically ventilated patients with mild to moderate acute respiratory distress syndrome were included who had received lung CT scans at 5- and 45-mbar airway pressure during a prior study. Lung segmentations were performed both automatically using a computerized algorithm and manually. Automatic segmentation yielded similar lung volumes compared with manual segmentation with clinically minor differences both at 5 and 45 mbar. At 5 mbar, results were as follows: overdistended lung 49.58mL (manual, SD 77.37mL) and 50.41mL (automatic, SD 77.3mL), P=.028; normally aerated lung 2142.17mL (manual, SD 1131.48mL) and 2156.68mL (automatic, SD 1134.53mL), P = .1038; and poorly aerated lung 631.68mL (manual, SD 196.76mL) and 646.32mL (automatic, SD 169.63mL), P = .3794. At 45 mbar, values were as follows: overdistended lung 612.85mL (manual, SD 449.55mL) and 615.49mL (automatic, SD 451.03mL), P=.078; normally aerated lung 3890.12mL (manual, SD 1134.14mL) and 3907.65mL (automatic, SD 1133.62mL), P = .027; and poorly aerated lung 413.35mL (manual, SD 57.66mL) and 469.58mL (automatic, SD 70.14mL), P=.007. Bland-Altman analyses revealed the following mean biases and limits of agreement at 5 mbar for automatic vs manual segmentation: overdistended lung +0.848mL (±2.062mL), normally aerated +14.51mL (±49.71mL), and poorly aerated +14.64mL (±98.16mL). At 45 mbar, results were as follows: overdistended +2.639mL (±8.231mL), normally aerated 17.53mL (±41.41mL), and poorly aerated 56.23mL (±100.67mL). Automatic single CT image and whole lung segmentation were faster than manual segmentation (0.17 vs 125.35seconds [P<.0001] and 10.46 vs 7739.45seconds [P<.0001]). Automatic lung CT segmentation allows fast analysis of aerated lung regions. A reduction of processing times by more than 99% allows the use of quantitative CT at the bedside.
Collapse
Affiliation(s)
- Philipp Klapsing
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| | - Peter Herrmann
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| | - Onnen Moerer
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University Hospital Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| |
Collapse
|
15
|
Radke OC, Schneider T, Braune A, Pirracchio R, Fischer F, Koch T. Comparison of distribution of lung aeration measured with EIT and CT in spontaneously breathing, awake patients1. Biomed Mater Eng 2016; 27:315-325. [PMID: 27689566 DOI: 10.3233/bme-161588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Both Electrical Impedance Tomography (EIT) and Computed Tomography (CT) allow the estimation of the lung area. We compared two algorithms for the detection of the lung area per quadrant from the EIT images with the lung areas derived from the CT images. METHODS 39 outpatients who were scheduled for an elective CT scan of the thorax were included in the study. For each patient we recorded EIT images immediately before the CT scan. The lung area per quadrant was estimated from both CT and EIT data using two different algorithms for the EIT data. RESULTS Data showed considerable variation during spontaneous breathing of the patients. Overall correlation between EIT and CT was poor (0.58-0.77), the correlation between the two EIT algorithms was better (0.90-0.92). Bland-Altmann analysis revealed absence of bias, but wide limits of agreement. CONCLUSIONS Lung area estimation from CT and EIT differs significantly, most probably because of the fundamental difference in image generation.
Collapse
Affiliation(s)
- Oliver C Radke
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Bremerhaven-Reinkenheide, Postbrookstr. 103, 27574 Bremerhaven, Germany.,Department of Anesthesia & Perioperative Care, San Francisco General Hospital, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA.,Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Thomas Schneider
- Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anja Braune
- Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Romain Pirracchio
- Department of Anesthesia & Perioperative Care, San Francisco General Hospital, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA 94110, USA.,Department of Anesthesia and Intensive Care Medicine, Hôpital Européen Georges Pompidou, Université Paris 5 Descartes, Sorbonne Paris Cité, Paris, France
| | - Felix Fischer
- Drägerwerk AG & Co. KGaA, Moislinger Allee 53-55, 23558 Lübeck, Germany
| | - Thea Koch
- Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
16
|
Ball L, Brusasco C, Corradi F, Paparo F, Garlaschi A, Herrmann P, Quintel M, Pelosi P. Lung hyperaeration assessment by computed tomography: correction of reconstruction-induced bias. BMC Anesthesiol 2016; 16:67. [PMID: 27553378 PMCID: PMC4995787 DOI: 10.1186/s12871-016-0232-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/16/2016] [Indexed: 02/01/2023] Open
Abstract
Background Computed tomography (CT) reconstruction parameters, such as slice thickness and convolution kernel, significantly affect the quantification of hyperaerated parenchyma (VHYPER%). The aim of this study was to investigate the mathematical relation between VHYPER% calculated at different reconstruction settings, in mechanically ventilated and spontaneously breathing patients with different lung pathology. Methods In this retrospective observational study, CT scans of patients of the intensive care unit and emergency department were collected from two CT scanners and analysed with different kernel-thickness combinations (reconstructions): 1.25 mm soft kernel, 5 mm soft kernel, 5 mm sharp kernel in the first scanner; 2.5 mm slice thickness with a smooth (B41s) and a sharp (B70s) kernel on the second scanner. A quantitative analysis was performed with Maluna® to assess lung aeration compartments as percent of total lung volume. CT variables calculated with different reconstructions were compared in pairs, and their mathematical relationship was analysed by using quadratic and power functions. Results 43 subjects were included in the present analysis. Image reconstruction parameters influenced all the quantitative CT-derived variables. The most relevant changes occurred in the hyperaerated and normally aerated volume compartments. The application of a power correction formula led to a significant reduction in the bias between VHYPER% estimations (p < 0.001 in all cases). The bias in VHYPER% assessment did not differ between lung pathology nor ventilation mode groups (p > 0.15 in all cases). Conclusions Hyperaerated percent volume at different reconstruction settings can be described by a fixed mathematical relationship, independent of lung pathology, ventilation mode, and type of CT scanner.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy.
| | - Claudia Brusasco
- Anaesthesia and Intensive Care, E.O. Ospedali Galliera, Genova, Italy
| | - Francesco Corradi
- Anaesthesia and Intensive Care, E.O. Ospedali Galliera, Genova, Italy
| | | | - Alessandro Garlaschi
- Dipartimento di Diagnostica per Immagini, IRCCS-Azienda Ospedaliera Universitaria-IST, Genova, Italy
| | - Peter Herrmann
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Germany
| | - Michael Quintel
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen Medical Center, Göttingen, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
How much esophageal pressure-guided end-expiratory transpulmonary pressure is sufficient to maintain lung recruitment in lavage-induced lung injury? J Trauma Acute Care Surg 2016; 80:302-7. [PMID: 26517781 DOI: 10.1097/ta.0000000000000900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Because of limitations of the esophageal balloon technique, the value of using esophageal pressure (Pes)-guided end-expiratory transpulmonary pressure (PL-exp) to maintain lung recruitment in adult respiratory distress syndrome is controversial. This study aimed to investigate whether tailoring PL-exp to greater than 0 was enough to maintain lung recruitment. METHODS Ten pigs with severe lavage-induced lung injury were mechanically ventilated in a decremental positive end-expiratory pressure (PEEP) trial that was reduced from 20 to 6 cm H2O after full-lung recruitment. Respiratory mechanics, blood gases, hemodynamic data, and whole-lung computed tomography scans were recorded at each PEEP level. Open-lung PEEP (OL-PEEP) was determined by computed tomography, while Pes-guided PEEP (Pes-PEEP) was to maintain PL-exp greater than 0. RESULTS OL-PEEP was higher than Pes-PEEP, which induced a higher PL-exp at OL-PEEP than at Pes-PEEP (4.6 [1.6] cm H2O vs. 1.2 [0.6] cm H2O, p < 0.001). Compared with OL-PEEP, the nonaerated lung region was significantly increased at Pes-PEEP. Superimposed pressure (SP) of the lung tissue between the esophageal plane and the dorsal level was higher at Pes-PEEP than at OL-PEEP, whereas PL-exp at the dorsal level was lower at Pes-PEEP than at OL-PEEP (-1.5 [0.7] cm H2O vs. 2.5 [1.5] cm H2O, p < 0.001). The SP correlated with PL-exp at the dorsal level and the nonaerated lung region. CONCLUSION In this surfactant-depleted model, maintaining PL-exp just greater than 0 using Pes was unable to maintain lung recruitment; this was partly caused by a lack of compensation for the increased SP between the esophageal plane and the dorsal level.
Collapse
|
18
|
Packham B, Barnes G, Dos Santos GS, Aristovich K, Gilad O, Ghosh A, Oh T, Holder D. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography. Physiol Meas 2016; 37:951-67. [PMID: 27203477 PMCID: PMC5717540 DOI: 10.1088/0967-3334/37/6/951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.
Collapse
Affiliation(s)
- B Packham
- Department of Medical Physics & Bioengineering, University College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Physiological Effects of the Open Lung Approach in Patients with Early, Mild, Diffuse Acute Respiratory Distress Syndrome: An Electrical Impedance Tomography Study. Anesthesiology 2016; 123:1113-21. [PMID: 26397017 DOI: 10.1097/aln.0000000000000862] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND To test the hypothesis that in early, mild, acute respiratory distress syndrome (ARDS) patients with diffuse loss of aeration, the application of the open lung approach (OLA) would improve homogeneity in lung aeration and lung mechanics, without affecting hemodynamics. METHODS Patients were ventilated according to the ARDS Network protocol at baseline (pre-OLA). OLA consisted in a recruitment maneuver followed by a decremental positive end-expiratory pressure trial. Respiratory mechanics, gas exchange, electrical impedance tomography (EIT), cardiac index, and stroke volume variation were measured at baseline and 20 min after OLA implementation (post-OLA). Esophageal pressure was used for lung and chest wall elastance partitioning. The tomographic lung image obtained at the fifth intercostal space by EIT was divided in two ventral and two dorsal regions of interest (ROIventral and ROIDorsal). RESULTS Fifteen consecutive patients were studied. The OLA increased arterial oxygen partial pressure/inspired oxygen fraction from 216 ± 13 to 311 ± 19 mmHg (P < 0.001) and decreased elastance of the respiratory system from 29.4 ± 3 cm H2O/l to 23.6 ± 1.7 cm H2O/l (P < 0.01). The driving pressure (airway opening plateau pressure - total positive end-expiratory pressure) decreased from 17.9 ± 1.5 cm H2O pre-OLA to 15.4 ± 2.1 post-OLA (P < 0.05). The tidal volume fraction reaching the dorsal ROIs increased, and consequently the ROIVentral/Dorsal impedance tidal variation decreased from 2.01 ± 0.36 to 1.19 ± 0.1 (P < 0.01). CONCLUSIONS The OLA decreases the driving pressure and improves the oxygenation and lung mechanics in patients with early, mild, diffuse ARDS. EIT is useful to assess the impact of OLA on regional tidal volume distribution.
Collapse
|
20
|
Aristovich KY, Packham BC, Koo H, Santos GSD, McEvoy A, Holder DS. Imaging fast electrical activity in the brain with electrical impedance tomography. Neuroimage 2015; 124:204-213. [PMID: 26348559 PMCID: PMC4655915 DOI: 10.1016/j.neuroimage.2015.08.071] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/16/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2ms and <200μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7×5×2mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures.
Collapse
Affiliation(s)
- Kirill Y Aristovich
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK.
| | - Brett C Packham
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Hwan Koo
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Gustavo Sato Dos Santos
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Andy McEvoy
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London, WC1N 3BG, UK
| | - David S Holder
- Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
21
|
Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur Respir Rev 2014; 23:519-30. [DOI: 10.1183/09059180.00001314] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Imaging plays a key role in the diagnosis and follow-up of acute respiratory distress syndrome (ARDS). Chest radiography, bedside lung ultrasonography and computed tomography scans can provide useful information for the management of patients and detection of prognostic factors. However, imaging findings are not specific and several possible differential diagnoses should be taken into account. Herein we will review the role of radiological techniques in ARDS, highlight the plain radiological and computed tomography findings according to the pathological stage of the disease (exudative, inflammatory and fibroproliferative), and summarise the main points for the differential diagnosis with cardiogenic oedema, which is still challenging in the acute stage.
Collapse
|
22
|
Ball L, Sutherasan Y, Pelosi P. Monitoring respiration: what the clinician needs to know. Best Pract Res Clin Anaesthesiol 2014; 27:209-23. [PMID: 24012233 DOI: 10.1016/j.bpa.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
A recent large prospective cohort study showed an unexpectedly high in-hospital mortality after major non-cardiac surgery in Europe, as well as a high incidence of postoperative pulmonary complications. The direct effect of postoperative respiratory complications on mortality is still under investigation, for intensive care unit (ICU) and in the perioperative period. Although respiratory monitoring has not been actually proven to affect in-hospital mortality, it plays an important role in patient care, leading to appropriate setting of ventilatory support as well as risk stratification. The aim of this article is to provide an overview of various respiratory monitoring techniques including the role of conventional and most recent methods in the perioperative period and in critically ill patients. The most recent techniques proposed for bedside respiratory monitoring, including lung imaging, are presented and discussed, comparing them to those actually considered as gold standards.
Collapse
Affiliation(s)
- Lorenzo Ball
- IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| | | | | |
Collapse
|
23
|
Ultrasound for the anesthesiologists: present and future. ScientificWorldJournal 2013; 2013:683685. [PMID: 24348179 PMCID: PMC3856172 DOI: 10.1155/2013/683685] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 12/13/2022] Open
Abstract
Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD) measurement and transcranial color coded duplex (TCCD) are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE) and transesophageal (TEE) echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum.
Collapse
|
24
|
Chiumello D, Froio S, Bouhemad B, Camporota L, Coppola S. Clinical review: Lung imaging in acute respiratory distress syndrome patients--an update. Crit Care 2013; 17:243. [PMID: 24238477 PMCID: PMC4056355 DOI: 10.1186/cc13114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective.
Collapse
Affiliation(s)
- Davide Chiumello
- Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| | - Sara Froio
- Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| | - Belaïd Bouhemad
- Multidisciplinary Critical Care Unit, La Pitié-Salpêtrière Hospital, University Pierre and Marie Curie Paris, Paris, France
| | - Luigi Camporota
- Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, UK
| | - Silvia Coppola
- Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan, Italy
| |
Collapse
|
25
|
Czaplik M, Biener I, Dembinski R, Pelosi P, Soodt T, Schroeder W, Leonhardt S, Marx G, Rossaint R, Bickenbach J. Analysis of regional compliance in a porcine model of acute lung injury. Respir Physiol Neurobiol 2012; 184:16-26. [PMID: 22820182 DOI: 10.1016/j.resp.2012.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/25/2022]
Abstract
Lung protective ventilation in acute lung injury (ALI) focuses on using low tidal volumes and adequate levels of positive end-expiratory pressure (PEEP). Identifying optimal pressure is difficult because pressure-volume (PV) relations differ regionally. Precise analysis demands local measurements of pressures and related alveolar morphologies. In a porcine model of surfactant depletion (n=24), we combined measuring static pressures with endoscopic microscopy and electrical impedance tomography (EIT) to examine regional PV loops and morphologic heterogeneities between healthy (control group; CON) and ALI lungs ventilated with low (LVT) or high tidal volumes (HVT). Quantification included indices for microscopy (Volume Air Index (VAI), Heterogeneity and Circularity Index), EIT analysis and calculation of regional compliances due to generated PV loops. We found that: (1) VAI decreased in lower lobe after ALI, (2) electrical impedance decreased in dorsal regions and (3) PV loops differed regionally. Further studies should prove the potentials of these techniques on individual respiratory settings and clinical outcome.
Collapse
Affiliation(s)
- Michael Czaplik
- Department of Anesthesiology, University Hospital RWTH, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|