1
|
Peerboom C, de Kater S, Jonker N, Rieter MPJM, Wijne T, Wierenga CJ. Delaying the GABA Shift Indirectly Affects Membrane Properties in the Developing Hippocampus. J Neurosci 2023; 43:5483-5500. [PMID: 37438107 PMCID: PMC10376938 DOI: 10.1523/jneurosci.0251-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
During the first two postnatal weeks, intraneuronal chloride concentrations in rodents gradually decrease, causing a shift from depolarizing to hyperpolarizing GABA responses. The postnatal GABA shift is delayed in rodent models for neurodevelopmental disorders and in human patients, but the impact of a delayed GABA shift on the developing brain remains obscure. Here we examine the direct and indirect consequences of a delayed postnatal GABA shift on network development in organotypic hippocampal cultures made from 6- to 7-d-old mice by treating the cultures for 1 week with VU0463271, a specific inhibitor of the chloride exporter KCC2. We verified that VU treatment delayed the GABA shift and kept GABA signaling depolarizing until DIV9. We found that the structural and functional development of excitatory and inhibitory synapses at DIV9 was not affected after VU treatment. In line with previous studies, we observed that GABA signaling was already inhibitory in control and VU-treated postnatal slices. Surprisingly, 14 d after the VU treatment had ended (DIV21), we observed an increased frequency of spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, while excitatory currents were not changed. Synapse numbers and release probability were unaffected. We found that dendrite-targeting interneurons in the stratum radiatum had an elevated resting membrane potential, while pyramidal cells were less excitable compared with control slices. Our results show that depolarizing GABA signaling does not promote synapse formation after P7, and suggest that postnatal intracellular chloride levels indirectly affect membrane properties in a cell-specific manner.SIGNIFICANCE STATEMENT During brain development, the action of neurotransmitter GABA shifts from depolarizing to hyperpolarizing. This shift is a thought to play a critical role in synapse formation. A delayed shift is common in rodent models for neurodevelopmental disorders and in human patients, but its consequences for synaptic development remain obscure. Here, we delayed the GABA shift by 1 week in organotypic hippocampal cultures and carefully examined the consequences for circuit development. We find that delaying the shift has no direct effects on synaptic development, but instead leads to indirect, cell type-specific changes in membrane properties. Our data call for careful assessment of alterations in cellular excitability in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Sam de Kater
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Nikki Jonker
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Marijn P J M Rieter
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Tessel Wijne
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
2
|
Xiao A, Feng Y, Yu S, Xu C, Chen J, Wang T, Xiao W. General anesthesia in children and long-term neurodevelopmental deficits: A systematic review. Front Mol Neurosci 2022; 15:972025. [PMID: 36238262 PMCID: PMC9551616 DOI: 10.3389/fnmol.2022.972025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMillions of children experienced surgery procedures requiring general anesthesia (GA). Any potential neurodevelopmental risks of pediatric anesthesia can be a serious public health issue. Various animal studies have provided evidence that commonly used GA induced a variety of morphofunctional alterations in the developing brain of juvenile animals.MethodsWe conducted a systematic review to provide a brief overview of preclinical studies and summarize the existing clinical studies. Comprehensive literature searches of PubMed, EMBASE, CINAHL, OVID Medline, Web of Science, and the Cochrane Library were conducted using the relevant search terms “general anesthesia,” “neurocognitive outcome,” and “children.” We included studies investigating children who were exposed to single or multiple GA before 18, with long-term neurodevelopment outcomes evaluated after the exposure(s).ResultsSeventy-two clinical studies originating from 18 different countries published from 2000 to 2022 are included in this review, most of which are retrospective studies (n = 58). Two-thirds of studies (n = 48) provide evidence of negative neurocognitive effects after GA exposure in children. Neurodevelopmental outcomes are categorized into six domains: academics/achievement, cognition, development/behavior, diagnosis, brain studies, and others. Most studies focusing on children <7 years detected adverse neurocognitive effects following GA exposure, but not all studies consistently supported the prevailing view that younger children were at greater risk than senior ones. More times and longer duration of exposures to GA, and major surgeries may indicate a higher risk of negative outcomes.ConclusionBased on current studies, it is necessary to endeavor to limit the duration and numbers of anesthesia and the dose of anesthetic agents. For future studies, we require cohort studies with rich sources of data and appropriate outcome measures, and carefully designed and adequately powered clinical trials testing plausible interventions in relevant patient populations.
Collapse
Affiliation(s)
- Aoyi Xiao
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Feng
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Yu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Xu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghai Chen
- Department of Hand Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tingting Wang
| | - Weimin Xiao
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weimin Xiao
| |
Collapse
|
3
|
Gao Y, Zhan W, Jin Y, Chen X, Cai J, Zhou X, Huang X, Zhao Q, Wang W, Sun J. KCC2 receptor upregulation potentiates antinociceptive effect of GABAAR agonist on remifentanil-induced hyperalgesia. Mol Pain 2022; 18:17448069221082880. [PMID: 35352582 PMCID: PMC8972932 DOI: 10.1177/17448069221082880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
GABAergic system disinhibition played an important role in the pathogenesis of remifentanil-induced hyperalgesia (RIH). K+-Cl--cotransporter-2 (KCC2) has the potential to enhance the strength of GABAergic signaling function. However, few reports have focused on the additive analgesic effect of KCC2 enhancer and GABAA receptor agonist on the spinal dorsal horn. Therefore, we evaluated the role of GABA type A receptor (GABAAR) agonist (muscimol), KCC2 enhancer (CLP257) in remifentanil-induced hyperalgesia, as well as GABA and KCC2 receptors responses in the dorsal spinal horn. Remifentanil started to reduce paw withdrawal mechanical thresholds at postoperative 4 h and lasted to 72 h. The RIH associated decreases in spinal GABA release was transient. The amount of spinal GABA transmitter by microdialysis was observed to be decreased at the beginning and reached bottom at 150 min, then returned to the baseline level at 330 min. The synthesis and transportation of GABA transmitter were inhibited, characterized as spinal GAD67 and GAT1 downregulation after the establishment of RIH model. The effect of RIH on GABA receptor downregulation was linked to the reduced expression of spinal KCC2 receptor. This decrease in KCC2 expression has coincided with an early loss of GABA inhibition. KCC2 enhancer, which is reported to lead to a reduction in intracellular Cl−, can enhance GABA-mediated inhibitory function. Both muscimol and CLP257 could dose-dependently inhibit mechanical hypersensitivity caused by remifentanil-induced downregulation of GABAAα2R and KCC2, respectively. Compared with muscimol acting alone, the joint action of CLP257 and muscimol showed a higher pain threshold and less c-fos expression via upregulation of KCC2 and GABAAα2R. Taken together, these findings suggested that the RIH was initiated by decreased GABA release. Downregulation of GABAAα2R and KCC2 receptor contributed to spinally mediated hyperalgesia in RIH. KCC2 enhancer was proved to potentiate antinociceptive effect of GABAAR agonist in RIH.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenqiang Zhan
- Department of Anesthesiology, 159388Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yushi Jin
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodan Chen
- Department of Operating Room Nursing, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, China
| | - Jinxia Cai
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotian Zhou
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Huang
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qimin Zhao
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Wang
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiehao Sun
- Department of Anesthesiology, First Affiliated Hospital, 89657Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Li X, Saiyin H, Zhou JH, Yu Q, Liang WM. HDAC6 is critical for ketamine-induced impairment of dendritic and spine growth in GABAergic projection neurons. Acta Pharmacol Sin 2021; 42:861-870. [PMID: 32939037 PMCID: PMC8149677 DOI: 10.1038/s41401-020-00521-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022] Open
Abstract
Ketamine is widely used in infants and children for anesthesia; both anesthetic and sub-anesthetic doses of ketamine have been reported to preferentially inhibit the GABAergic neurons. Medium spiny neurons (MSNs), the GABAergic projection neurons in the striatum, are vulnerable to anesthetic exposure in the newborn brain. Growth of dendrites requires a deacetylase to remove acetyl from tubulin in the growth cone to destabilize the tubulin. Histone deacetylase 6 (HDAC6) affects microtubule dynamics, which are involved in neurite elongation. In this study we used a human induced pluripotent stem cells (iPSCs)-derived striatal GABA neuron system to investigate the effects of ketamine on HDAC6 and the morphological development of MSNs. We showed that exposure to ketamine (1-500 μM) decreased dendritic growth, dendrite branches, and dendritic spine density in MSNs in a time- and concentration-dependent manner. We revealed that ketamine treatment concentration-dependently inhibited the expression of HDAC6 or aberrantly translocated HDAC6 into the nucleus. Ketamine inhibition on HDAC6 resulted in α-tubulin hyperacetylation, consequently increasing the stability of microtubules and delaying the dendritic growth of MSNs. Finally, we showed that the effects of a single-dose exposure on MSNs were reversible and lasted for at least 10 days. This study reveals a novel role of HDAC6 as a regulator for ketamine-induced deficits in the morphological development of MSNs and provides an innovative method for prevention and treatment with respect to ketamine clinical applications.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jian-Hua Zhou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Wei-Min Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 2021; 226:2001-2017. [PMID: 34061250 PMCID: PMC8166894 DOI: 10.1007/s00429-021-02308-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
Collapse
|
6
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Soriano SG, McCann ME. Is Anesthesia Bad for the Brain? Current Knowledge on the Impact of Anesthetics on the Developing Brain. Anesthesiol Clin 2020; 38:477-492. [PMID: 32792178 DOI: 10.1016/j.anclin.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are compelling preclinical data that common general anesthetics cause increased neuroapoptosis in juvenile animals. Retrospective studies demonstrate that young children exposed to anesthesia have school difficulties, which could be caused by anesthetic neurotoxicity, perioperative hemodynamic and homeostatic instability, underlying morbidity, or the neuroinflammatory effects of surgical trauma. Unnecessary procedures should be avoided. Baseline measures of blood pressure are important in determining perioperative blood pressure goals. Inadvertent hypocapnia or moderate hypercapnia and hyperoxia or hypoxia should be avoided. Pediatric patients should be maintained in a normothermic, euglycemic state with neutral positioning. Improving outcomes of infants and children requires the collaboration of anesthesiologists, surgeons, pediatricians and neonatologists.
Collapse
Affiliation(s)
- Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary Ellen McCann
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Zions M, Meehan EF, Kress ME, Thevalingam D, Jenkins EC, Kaila K, Puskarjov M, McCloskey DP. Nest Carbon Dioxide Masks GABA-Dependent Seizure Susceptibility in the Naked Mole-Rat. Curr Biol 2020; 30:2068-2077.e4. [PMID: 32359429 DOI: 10.1016/j.cub.2020.03.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/29/2023]
Abstract
African naked mole-rats were likely the first mammals to evolve eusociality, and thus required adaptations to conserve energy and tolerate the low oxygen (O2) and high carbon dioxide (CO2) of a densely populated fossorial nest. As hypercapnia is known to suppress neuronal activity, we studied whether naked mole-rats might demonstrate energy savings in GABAergic inhibition. Using whole-colony behavioral monitoring of captive naked mole-rats, we found a durable nest, characterized by high CO2 levels, where all colony members spent the majority of their time. Analysis of the naked mole-rat genome revealed, uniquely among mammals, a histidine point variation in the neuronal potassium-chloride cotransporter 2 (KCC2). A histidine missense substitution mutation at this locus in the human ortholog of KCC2, found previously in patients with febrile seizures and epilepsy, has been demonstrated to diminish neuronal Cl- extrusion capacity, and thus impairs GABAergic inhibition. Seizures were observed, without pharmacological intervention, in adult naked mole-rats exposed to a simulated hyperthermic surface environment, causing systemic hypocapnic alkalosis. Consistent with the diminished function of KCC2, adult naked mole-rats demonstrate a reduced efficacy of inhibition that manifests as triggering of seizures at room temperature by the GABAA receptor (GABAAR) positive allosteric modulator diazepam. These seizures are blocked in the presence of nest-like levels of CO2 and likely to be mediated through GABAAR activity, based on in vitro recordings. Thus, altered GABAergic inhibition adds to a growing list of adaptations in the naked mole-rat and provides a plausible proximate mechanism for nesting behavior, where a return to the colony nest restores GABA-mediated inhibition.
Collapse
Affiliation(s)
- Michael Zions
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY 10016, USA; Center for Developmental Neuroscience, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA
| | - Edward F Meehan
- Department of Psychology, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA; Department of Computer Science, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA
| | - Michael E Kress
- Department of Computer Science, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA; PhD Program in Computer Science, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Donald Thevalingam
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY 10016, USA; Center for Developmental Neuroscience, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA
| | - Edmund C Jenkins
- Center for Developmental Neuroscience, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA
| | - Kai Kaila
- Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Martin Puskarjov
- Center for Developmental Neuroscience, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA; Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Dan P McCloskey
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY 10016, USA; Center for Developmental Neuroscience, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA; Department of Psychology, College of Staten Island in the City University of New York, Staten Island, NY 10314, USA.
| |
Collapse
|
9
|
Salmon CK, Pribiag H, Gizowski C, Farmer WT, Cameron S, Jones EV, Mahadevan V, Bourque CW, Stellwagen D, Woodin MA, Murai KK. Depolarizing GABA Transmission Restrains Activity-Dependent Glutamatergic Synapse Formation in the Developing Hippocampal Circuit. Front Cell Neurosci 2020; 14:36. [PMID: 32161521 PMCID: PMC7053538 DOI: 10.3389/fncel.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+−Cl− co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Horia Pribiag
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Claire Gizowski
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Scott Cameron
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - David Stellwagen
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Melanie A Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
10
|
Mavrovic M, Uvarov P, Delpire E, Vutskits L, Kaila K, Puskarjov M. Loss of non-canonical KCC2 functions promotes developmental apoptosis of cortical projection neurons. EMBO Rep 2020; 21:e48880. [PMID: 32064760 DOI: 10.15252/embr.201948880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
KCC2, encoded in humans by the SLC12A5 gene, is a multifunctional neuron-specific protein initially identified as the chloride (Cl- ) extruder critical for hyperpolarizing GABAA receptor currents. Independently of its canonical function as a K-Cl cotransporter, KCC2 regulates the actin cytoskeleton via molecular interactions mediated through its large intracellular C-terminal domain (CTD). Contrary to the common assumption that embryonic neocortical projection neurons express KCC2 at non-significant levels, here we show that loss of KCC2 enhances apoptosis of late-born upper-layer cortical projection neurons in the embryonic brain. In utero electroporation of plasmids encoding truncated, transport-dead KCC2 constructs retaining the CTD was as efficient as of that encoding full-length KCC2 in preventing elimination of migrating projection neurons upon conditional deletion of KCC2. This was in contrast to the effect of a full-length KCC2 construct bearing a CTD missense mutation (KCC2R952H ), which disrupts cytoskeletal interactions and has been found in patients with neurological and psychiatric disorders, notably seizures and epilepsy. Together, our findings indicate ion transport-independent, CTD-mediated regulation of developmental apoptosis by KCC2 in migrating cortical projection neurons.
Collapse
Affiliation(s)
- Martina Mavrovic
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva 4, Switzerland
| | - Kai Kaila
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Martin Puskarjov
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Cabrera OH, Gulvezan T, Symmes B, Quillinan N, Jevtovic-Todorovic V. Sex differences in neurodevelopmental abnormalities caused by early-life anaesthesia exposure: a narrative review. Br J Anaesth 2020; 124:e81-e91. [PMID: 31980157 DOI: 10.1016/j.bja.2019.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 01/12/2023] Open
Abstract
Exposure to anaesthetic drugs during the fetal or neonatal period induces widespread neuronal apoptosis in the brains of rodents and non-human primates. Hundreds of published preclinical studies and nearly 20 clinical studies have documented cognitive and behavioural deficits many months or years later, raising the spectre that early life anaesthesia exposure is a long-term, perhaps permanent, insult that might affect the quality of life of millions of humans. Although the phenomenon of anaesthesia-induced developmental neurotoxicity is well characterised, there are important and lingering questions pertaining to sex differences and neurodevelopmental sequelae that might occur differentially in females and males. We review the relevant literature on sex differences in the field of anaesthesia-induced developmental neurotoxicity, and present an emerging pattern of potential sex-dependent neurodevelopmental abnormalities in rodent models of human infant anaesthesia exposure.
Collapse
Affiliation(s)
- Omar H Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Thomas Gulvezan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Breanna Symmes
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
12
|
Luo A, Tang X, Zhao Y, Zhou Z, Yan J, Li S. General Anesthetic-Induced Neurotoxicity in the Immature Brain: Reevaluating the Confounding Factors in the Preclinical Studies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7380172. [PMID: 31998797 PMCID: PMC6970503 DOI: 10.1155/2020/7380172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/17/2019] [Indexed: 01/30/2023]
Abstract
General anesthetic (GA) is used clinically to millions of young children each year to facilitate surgical procedures, relieve perioperative stress, and provide analgesia and amnesia. During recent years, there is a growing concern regarding a causal association between early life GA exposure and subsequently long-term neurocognitive abnormalities. To address the increasing concern, mounting preclinical studies and clinical trials have been undergoing. Until now, nearly all of the preclinical findings show that neonatal exposure to GA causally leads to acute neural cell injury and delayed cognitive impairment. Unexpectedly, several influential clinical findings suggest that early life GA exposure, especially brief and single exposure, does not cause adverse neurodevelopmental outcome, which is not fully in line with the experimental findings and data from several previous cohort trials. As the clinical data have been critically discussed in previous reviews, in the present review, we try to analyze the potential factors of the experimental studies that may overestimate the adverse effect of GA on the developing brain. Meanwhile, we briefly summarized the advance in experimental research. Generally, our purpose is to provide some useful suggestions for forthcoming preclinical studies and strengthen the powerfulness of preclinical data.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| |
Collapse
|
13
|
Isoflurane Modulates Hippocampal Cornu Ammonis Pyramidal Neuron Excitability by Inhibition of Both Transient and Persistent Sodium Currents in Mice. Anesthesiology 2020; 131:94-104. [PMID: 31166240 DOI: 10.1097/aln.0000000000002753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Volatile anesthetics inhibit presynaptic voltage-gated sodium channels to reduce neurotransmitter release, but their effects on excitatory neuron excitability by sodium current inhibition are unclear. The authors hypothesized that inhibition of transient and persistent neuronal sodium currents by the volatile anesthetic isoflurane contributes to reduced hippocampal pyramidal neuron excitability. METHODS Whole-cell patch-clamp recordings of sodium currents of hippocampal cornu ammonis pyramidal neurons were performed in acute mouse brain slices. The actions of isoflurane on both transient and persistent sodium currents were analyzed at clinically relevant concentrations of isoflurane. RESULTS The median inhibitory concentration of isoflurane for inhibition of transient sodium currents was 1.0 ± 0.3 mM (~3.7 minimum alveolar concentration [MAC]) from a physiologic holding potential of -70 mV. Currents from a hyperpolarized holding potential of -120 mV were minimally inhibited (median inhibitory concentration = 3.6 ± 0.7 mM, ~13.3 MAC). Isoflurane (0.55 mM; ~2 MAC) shifted the voltage-dependence of steady-state inactivation by -6.5 ± 1.0 mV (n = 11, P < 0.0001), but did not affect the voltage-dependence of activation. Isoflurane increased the time constant for sodium channel recovery from 7.5 ± 0.6 to 12.7 ± 1.3 ms (n = 13, P < 0.001). Isoflurane also reduced persistent sodium current density (median inhibitory concentration = 0.4 ± 0.1 mM, ~1.5 MAC) and resurgent currents. Isoflurane (0.55 mM; ~2 MAC) reduced action potential amplitude, and hyperpolarized resting membrane potential from -54.6 ± 2.3 to -58.7 ± 2.1 mV (n = 16, P = 0.001). CONCLUSIONS Isoflurane at clinically relevant concentrations inhibits both transient and persistent sodium currents in hippocampal cornu ammonis pyramidal neurons. These mechanisms may contribute to reductions in both hippocampal neuron excitability and synaptic neurotransmission.
Collapse
|
14
|
Kalisvaart ACJ, Prokop BJ, Colbourne F. Hypothermia: Impact on plasticity following brain injury. Brain Circ 2019; 5:169-178. [PMID: 31950092 PMCID: PMC6950515 DOI: 10.4103/bc.bc_21_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is a potent neuroprotectant against multiple forms of brain injury, but in some cases, prolonged cooling is needed. Such cooling protocols raise the risk that TH will directly or indirectly impact neuroplasticity, such as after global and focal cerebral ischemia or traumatic brain injury. TH, depending on the depth and duration, has the potential to broadly affect brain plasticity, especially given the spatial, temporal, and mechanistic overlap with the injury processes that cooling is used to treat. Here, we review the current experimental and clinical evidence to evaluate whether application of TH has any adverse or positive effects on postinjury plasticity. The limited available data suggest that mild TH does not appear to have any deleterious effect on neuroplasticity; however, we emphasize the need for additional high-quality preclinical and clinical work in this area.
Collapse
|
15
|
Spoljaric I, Spoljaric A, Mavrovic M, Seja P, Puskarjov M, Kaila K. KCC2-Mediated Cl - Extrusion Modulates Spontaneous Hippocampal Network Events in Perinatal Rats and Mice. Cell Rep 2019; 26:1073-1081.e3. [PMID: 30699338 PMCID: PMC6352714 DOI: 10.1016/j.celrep.2019.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 01/22/2023] Open
Abstract
It is generally thought that hippocampal neurons of perinatal rats and mice lack transport-functional K-Cl cotransporter KCC2, and that Cl- regulation is dominated by Cl- uptake via the Na-K-2Cl cotransporter NKCC1. Here, we demonstrate a robust enhancement of spontaneous hippocampal network events (giant depolarizing potentials [GDPs]) by the KCC2 inhibitor VU0463271 in neonatal rats and late-gestation, wild-type mouse embryos, but not in their KCC2-null littermates. VU0463271 increased the depolarizing GABAergic synaptic drive onto neonatal CA3 pyramidal neurons, increasing their spiking probability and synchrony during the rising phase of a GDP. Our data indicate that Cl- extrusion by KCC2 is involved in modulation of GDPs already at their developmental onset during the perinatal period in mice and rats.
Collapse
Affiliation(s)
- Inkeri Spoljaric
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Albert Spoljaric
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Patricia Seja
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Martin Puskarjov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
16
|
Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, Ikeda A, Dudek FE, Galanopoulou AS. Methodologic recommendations and possible interpretations of video-EEG recordings in immature rodents used as experimental controls: A TASK1-WG2 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:437-459. [PMID: 30525114 PMCID: PMC6276777 DOI: 10.1002/epi4.12262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 01/30/2023] Open
Abstract
The use of immature rodents to study physiologic aspects of cortical development requires high-quality recordings electroencephalography (EEG) with simultaneous video recording (vEEG) of behavior. Normative developmental vEEG data in control animals are fundamental for the study of abnormal background activity in animal models of seizures or other neurologic disorders. Electrical recordings from immature, freely behaving rodents can be particularly difficult because of the small size of immature rodents, their thin and soft skull, interference with the recording apparatus by the dam, and other technical challenges. In this report of the TASK1 Working Group 2 (WG2) of the International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force, we provide suggestions that aim to optimize future vEEG recordings from immature rodents, as well as their interpretation. We focus on recordings from immature rodents younger than 30 days old used as experimental controls, because the quality and correct interpretation of such recordings is important when interpreting the vEEG results of animals serving as models of neurologic disorders. We discuss the technical aspects of such recordings and compare tethered versus wireless approaches. We also summarize the appearance of common artifacts and various patterns of electrical activity seen in young rodents used as controls as a function of behavioral state, age, and (where known) sex and strain. The information herein will hopefully help improve the methodology of vEEG recordings from immature rodents and may lead to results and interpretations that are more consistent across studies from different laboratories.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of PhysiologyFaculty of MedicineIstanbul Bilim UniversityIstanbulTurkey
| | - Yogendra H. Raol
- Division of NeurologyDepartment of PediatricsSchool of MedicineTranslational Epilepsy Research ProgramUniversity of ColoradoAuroraColoradoU.S.A
| | - Stéphane Auvin
- PROTECT, INSERM UMR1141APHPUniversity Paris DiderotSorbonne Paris CitéParisFrance
- University Hospital Robert‐DebréService of Pediatric NeurologyParisFrance
| | - Miguel A. Cortez
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
- Program of Neurosciences and Mental HealthPeter Gilgan Center for Research and LearningSickKids Research InstituteTorontoOntarioCanada
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Hana Kubova
- Department of Developmental EpileptologyInstitute of the Czech Academy of SciencesCzech Academy of SciencesPragueCzech Republic
| | - Marco de Curtis
- Epilepsy UnitCarlo Besta Neurological Institute FoundationMilanItaly
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and PhysiologyKyoto University Graduate School of MedicineKyotoJapan
| | - F. Edward Dudek
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtahU.S.A
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineEinstein/Montefiore Epilepsy CenterMontefiore Medical CenterBronxNew YorkU.S.A
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Adverse long-term impact of general anesthesia on the developing brain is a widely discussed and controversial issue with potential public health relevance. The goal of this article is to give insights into the most recent experimental and clinical observations aimed to advance our understanding in this field. RECENT FINDINGS Recent investigations demonstrate long-term behavioral consequences of early-life anesthesia exposure in nonhuman primates under experimental conditions that are translationally relevant to human clinical practice. Converging evidence from rodent experiments strongly suggest that anesthetics exert developmental stage-dependent and context-dependent impact on developing neuronal circuitry and, therefore, may induce lasting changes in neuronal plasticity. Although three recent population-based human studies found a strong evidence for small increase in risk, the two most robust studies (General Anaesthesia compared to Spinal anaesthesia trial and Pediatric Anesthesia Neurodevelopment Assessment) did not find an association between brief anesthesia exposure and poor neurodevelopmental outcome. SUMMARY Experimental data with reasonable translational relevance suggest that early-life exposure to general anesthetics can induce lasting behavioral and cognitive deficits. In contrast, human studies provide, at best, mixed evidence about developmental anesthesia neurotoxicity. Future research, both experimental and human, is needed to clarify this important issue.
Collapse
|
18
|
Virtanen MA, Lacoh CM, Fiumelli H, Kosel M, Tyagarajan S, de Roo M, Vutskits L. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex. Brain Struct Funct 2018; 223:1999-2012. [PMID: 29322238 DOI: 10.1007/s00429-017-1602-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/28/2017] [Indexed: 02/03/2023]
Abstract
Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.
Collapse
Affiliation(s)
- Mari A Virtanen
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claudia Marvine Lacoh
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Markus Kosel
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland
| | - Shiva Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Mathias de Roo
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 4, rue Gabrielle-Perret-Gentil, 1211, Geneva 4, Switzerland
| | - Laszlo Vutskits
- Department of Basic Neuroscience, University of Geneva Medical School, Geneva, Switzerland. .,Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 4, rue Gabrielle-Perret-Gentil, 1211, Geneva 4, Switzerland.
| |
Collapse
|