1
|
Li Y, Zou X, Ma Y, Cheng J, Yu X, Shao W, Zheng F, Guo Z, Yu G, Wu S, Li H, Hu H. Lactic acid contributes to the emergence of depression-like behaviors triggered by blue light exposure during sleep. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117643. [PMID: 39756180 DOI: 10.1016/j.ecoenv.2024.117643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
The threat posed by light pollution to human health is increasing remarkably. As demand for high-efficiency and bright lighting increases, so does the blue light content from artificial sources. Although animal studies suggested blue light induced depression-like behaviors, human evidence remained limited, and the mechanisms by which blue light affects depression remained elusive. This study aimed to investigate the association between blue light exposure and depression in humans, and explored the underlying mechanisms that driving depression-like behaviors induced by blue light. Our population findings showed that the high-blue-light exposure at night was positively associated with depressive symptoms. Lactic acid was relevant to depression with Mendelian randomization analysis. Moreover, animal studies demonstrated that exposure to blue light during sleep (BLS) induced depression-like behaviors in the animals. Metabolomics and colorimetric analyses revealed elevated levels of lactic acid in the cerebrospinal fluid and lateral habenula (LHb) of rats with depression-like behaviors induced by BLS. The administration of a lactate inhibitor (Oxamate) alleviated these behaviors, along with changes in neuronal excitability, synaptic function, and morphology in the LHb. Overall, our study suggests that excessive exposure to high blue light-content artificial light at night links to increased depressive symptoms, revealing possible molecular mechanisms and prevention strategies, which are crucial for addressing environmentally related mental health issues.
Collapse
Affiliation(s)
- Yinhan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinhui Zou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ying Ma
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jiaqi Cheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiangmin Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Zheng HY, Chen YM, Xu Y, Cen C, Wang Y. Excitatory neurons in the lateral parabrachial nucleus mediate the interruptive effect of inflammatory pain on a sustained attention task. J Transl Med 2023; 21:896. [PMID: 38072957 PMCID: PMC10712130 DOI: 10.1186/s12967-023-04583-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Attentional deficits are among the most common pain-induced cognitive disorders. Pain disrupts attention and may excessively occupy attentional resources in pathological states, leading to daily function impairment and increased disability. However, the neural circuit mechanisms by which pain disrupts attention are incompletely understood. METHODS We used a three-choice serial reaction time task (3CSRTT) to construct a sustained-attention task model in male C57BL/6J mice. Formalin or complete Freund's adjuvant was injected into a paw to establish an inflammatory pain model. We measured changes in 3CSRTT performance in the two inflammatory pain models, and investigated the neural circuit mechanisms of pain-induced attentional deficits. RESULTS Acute inflammatory pain impaired 3CSRTT performance, while chronic inflammatory pain had no effect. Either inhibition of the ascending pain pathway by blockade of the conduction of nociceptive signals in the sciatic nerve using the local anesthetic lidocaine or chemogenetic inhibition of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) neurons in the lateral parabrachial nucleus (LPBN) attenuated the acute inflammatory pain-induced impairment of 3CSRTT performance, while chemogenetic activation of CaMKIIα neurons in the LPBN disrupted the 3CSRTT. Furthermore, the activity of CaMKIIα neurons in the LPBN was significantly lower on Day 2 after complete Freund's adjuvant injection than on the day of injection, which correlated with the recovery of 3CSRTT performance during chronic inflammatory pain. CONCLUSIONS Activation of excitatory neurons in the LPBN is a mechanism by which acute inflammatory pain disrupts sustained attention. This finding has implications for the treatment of pain and its cognitive comorbidities.
Collapse
Affiliation(s)
- Huan-Yu Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yu-Meng Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yao Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
KLOCKE B, MOORE C, OTT H, PITYCHOUTIS PM. Chronic pharmacological activation of SERCA with CDN1163 affects spatial cognitive flexibility but not attention and impulsivity in mice. Behav Pharmacol 2023; 34:477-487. [PMID: 37917567 PMCID: PMC10624114 DOI: 10.1097/fbp.0000000000000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Intracellular calcium (Ca2+) homeostasis is critical for many neural processes, including learning, memory and synaptic plasticity. The sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) is among the key regulators that preserve Ca2+ homeostasis in neurons. SERCAs comprise a set of ubiquitously expressed Ca2+ pumps that primarily function to sequester cytosolic Ca2+ into endoplasmic reticular stores. As SERCA has been implicated in the neurobiology of several neuropsychiatric and neurodegenerative diseases, pharmacological harnessing of its function is critical in understanding SERCA's role in brain physiology and pathophysiology. In the current study, we employed the Morris water maze and 5-choice serial reaction time task (5-CSRTT) to investigate the effects of chronic pharmacological activation of SERCA, using the small allosteric SERCA activator CDN1163, on spatial learning and memory, and executive functioning in naive C57BL/6J mice. Our data show that chronic pharmacological SERCA activation with CDN1163 (20 mg/kg) selectively impairs spatial cognitive flexibility and reversal learning in the Morris water maze while leaving executive functions such as attention and impulsivity intact. Present findings contribute to the growing field of the role of SERCA function in the brain and behavior and expand current knowledge on the use of the small allosteric activator CDN1163 as an investigational tool to study the role of SERCA in regulating neurobehavioral processes and as a potential therapeutic candidate for debilitating brain disorders.
Collapse
Affiliation(s)
- Benjamin KLOCKE
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | - Carter MOORE
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | - Hayden OTT
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | | |
Collapse
|
4
|
Tappe-Theodor A, Negus SS, Martin TJ. Editorial: Preclinical Animal Models and Measures of Pain: Improving Predictive Validity for Analgesic Drug Development. FRONTIERS IN PAIN RESEARCH 2022; 3:867786. [PMID: 35399151 PMCID: PMC8985925 DOI: 10.3389/fpain.2022.867786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anke Tappe-Theodor
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Thomas J. Martin
- Pain Mechanisms Laboratory, Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Thomas J. Martin
| |
Collapse
|
5
|
Nazarian A, Negus SS, Martin TJ. Factors mediating pain-related risk for opioid use disorder. Neuropharmacology 2021; 186:108476. [PMID: 33524407 PMCID: PMC7954943 DOI: 10.1016/j.neuropharm.2021.108476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Pain is a complex experience with far-reaching organismal influences ranging from biological factors to those that are psychological and social. Such influences can serve as pain-related risk factors that represent susceptibilities to opioid use disorder. This review evaluates various pain-related risk factors to form a consensus on those that facilitate opioid abuse. Epidemiological findings represent a high degree of co-occurrence between chronic pain and opioid use disorder that is, in part, driven by an increase in the availability of opioid analgesics and the diversion of their use in a non-medical context. Brain imaging studies in individuals with chronic pain that use/abuse opioids suggest abuse-related mechanisms that are rooted within mesocorticolimbic processing. Preclinical studies suggest that pain states have a limited impact on increasing the rewarding effects of opioids. Indeed, many findings indicate a reduction in the rewarding and reinforcing effects of opioids during pain states. An increase in opioid use may be facilitated by an increase in the availability of opioids and a decrease in access to non-opioid reinforcers that require mobility or social interaction. Moreover, chronic pain and substance abuse conditions are known to impair cognitive function, resulting in deficits in attention and decision making that may promote opioid abuse. A better understanding of pain-related risk factors can improve our knowledge in the development of OUD in persons with pain conditions and can help identify appropriate treatment strategies. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Comparison of chemotherapy effects on mechanical sensitivity and food-maintained operant responding in male and female rats. Behav Pharmacol 2021; 31:477-490. [PMID: 31833969 DOI: 10.1097/fbp.0000000000000527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemotherapies of varying classes often cause neuropathy and debilitating chemotherapy-induced neuropathic pain sufficient to limit treatment and reduce quality of life for many patients battling cancer. There are currently no effective preventive or alleviative treatments for chemotherapy-induced neuropathic pain. Preclinical models have been developed to test candidate chemotherapy-induced neuropathic pain treatments; however, studies using these models rarely provide direct comparisons of effects of different chemotherapies or assess the degree to which chemotherapies produce clinically relevant signs of pain-depressed behavior. Male and female Sprague-Dawley rats received four injections of vehicle, paclitaxel, oxaliplatin, vincristine, or bortezomib on alternate days. Mechanical hypersensitivity, body weight, and food-maintained operant responding were evaluated before, during, and for up to 42 days after initiation of treatment. Morphine potency and effectiveness to reverse chemotherapy-induced effects were also evaluated. All four chemotherapies produced dose-dependent and sustained mechanical hypersensitivity in all rats. Vincristine and oxaliplatin produced transient weight loss and decreases in food-maintained operant responding in all rats, whereas paclitaxel and bortezomib produced lesser or no effect. At 4 weeks after treatment, operant responding was depressed only in paclitaxel-treated males. Morphine reversed mechanical hypersensitivity in all rats but failed to reverse paclitaxel-induced depression of operant responding in males. We conclude that chemotherapy treatments sufficient to produce sustained mechanical hypersensitivity failed to produce sustained or morphine-reversible behavioral depression in rats. Insofar as pain-related behavioral depression is a cardinal sign of chemotherapy-induced neuropathic pain in humans, these results challenge the presumption that these chemotherapy-dosing regimens are sufficient to model clinically relevant chemotherapy-induced neuropathic pain in rats.
Collapse
|
7
|
Tajerian M, Alvarado SG, Clark JD. Differential olfactory bulb methylation and hydroxymethylation are linked to odor location memory bias in injured mice. Mol Pain 2020; 15:1744806919873475. [PMID: 31407613 PMCID: PMC6712758 DOI: 10.1177/1744806919873475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is often linked to comorbidities such as anxiety and cognitive dysfunction, alterations that are reflected in brain plasticity in regions such as the prefrontal cortex and the limbic area. Despite the growing interest in pain-related cognitive deficits, little is known about the relationship between the emotional valence of the stimulus and the salience of its memory following painful injuries. We used the tibia fracture model of chronic pain in mice to determine whether pleasant and unpleasant odor location memories differ in their salience seven weeks following the onset of the painful injury. Our results indicate that injured mice show a bias toward recalling unpleasant memories, thereby propagating the vicious cycle of chronic pain and negative affect. Next, we linked these behavioral differences to mechanisms of molecular plasticity by measuring the levels of global methylation and hydroxymethylation in the olfactory bulb. Compared to controls, global methylation levels were shown to be increased, while hydroxymethylation levels were decreased in the olfactory bulb of injured mice, indicative of overall changes in DNA regulation machinery and the subsequent alterations in sensory systems.
Collapse
Affiliation(s)
- Maral Tajerian
- 1 Department of Biology, Queens College, City University of New York, Queens, NY, USA
| | - Sebastian G Alvarado
- 1 Department of Biology, Queens College, City University of New York, Queens, NY, USA
| | - J David Clark
- 2 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,3 Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA.,4 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
8
|
Boada MD, Ririe DG, Martin CW, Martin SJ, Kim SA, Eisenach JC, Martin TJ. Nociceptive input after peripheral nerve injury results in cognitive impairment and alterations in primary afferent physiology in rats. Pain 2020; 161:960-969. [PMID: 32040075 PMCID: PMC7166154 DOI: 10.1097/j.pain.0000000000001782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pain alters cognitive performance through centrally mediated effects in the brain. In this study, we hypothesized that persistent activation of peripheral nociceptors after injury would lead to the development of a chronic pain state that impairs attention-related behavior and results in changes in peripheral neuron phenotypes. Attentional performance was measured in rats using the 5-choice serial reaction time titration variant to determine the initial impact of partial L5 spinal nerve ligation and the effect of persistent nociceptor activation on the resolution of injury. The changes in peripheral neuronal sensibilities and phenotypes were determined in sensory afferents using electrophysiologic signatures and receptive field properties from dorsal root ganglion recordings. Partial spinal nerve injury impaired attentional performance, and this was further impaired in a graded fashion by nociceptive input through an engineered surface. Impairment in attention persisted for only up to 4 days initially, followed by a second phase 7 to 10 weeks after injury in animals exposed to nociceptive input. In animals with prolonged impairment in behavior, the mechanonociceptors displayed a persistent hypersensitivity marked by decreased threshold, increased activity to a given stimulus, and spontaneous activity. Nerve injury disrupts attentional performance acutely and is worsened with peripheral mechanonociceptor activation. Acute impairment resolves, but persistent nociceptive activation produces re-emergence of impairment in the attention-related task associated with electrophysiological abnormalities in peripheral nociceptors. This is consistent with the development of a chronic pain state marked by cognitive impairment and related to persistently abnormal peripheral input.
Collapse
Affiliation(s)
- M Danilo Boada
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Ririe DG, Boada MD, MacGregor MK, Martin SJ, Strassburg TJ, Kim SA, Eisenach JC, Martin TJ. Incisional Nociceptive Input Impairs Attention-related Behavior and Is Associated with Reduced Neuronal Activity in the Prefrontal Cortex in Rats. Anesthesiology 2019; 129:778-790. [PMID: 29952818 DOI: 10.1097/aln.0000000000002325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Cognitive capacity may be reduced from inflammation, surgery, anesthesia, and pain. In this study, we hypothesized that incision-induced nociceptive input impairs attentional performance and alters neuronal activity in the prefrontal cortex. METHODS Attentional performance was measured in rats by using the titration variant of the 5-choice serial reaction time to determine the effect of surgical incision and anesthesia in a visual attention task. Neuronal activity (single spike and local field potentials) was measured in the medial prefrontal cortex in animals during the task. RESULTS Incision significantly impaired attention postoperatively (area under curve of median cue duration-time 97.2 ± 56.8 [n = 9] vs. anesthesia control 25.5 ± 14.5 s-days [n = 9], P = 0.002; effect size, η = 0.456). Morphine (1 mg/kg) reduced impairment after incision (area under curve of median cue duration-time 31.6 ± 36.7 [n = 11] vs. saline 110 ± 64.7 s-days [n = 10], P < 0.001; η = 0.378). Incision also decreased cell activity (n = 24; 1.48 ± 0.58 vs. control, 2.93 ± 2.02 bursts/min; P = 0.002; η = 0.098) and local field potentials (n = 28; η = 0.111) in the medial prefrontal cortex. CONCLUSIONS These results show that acute postoperative nociceptive input from incision reduces attention-related task performance and decreases neuronal activity in the medial prefrontal cortex. Decreased neuronal activity suggests nociceptive input is more than just a distraction because neuronal activity increases during audiovisual distraction with similar behavioral impairment. This suggests that nociceptive input and the medial prefrontal cortex may contribute to attentional impairment and mild cognitive dysfunction postoperatively. In this regard, pain may affect postoperative recovery and return to normal activities through attentional impairment by contributing to lapses in concentration for routine and complex tasks.
Collapse
Affiliation(s)
- Douglas G Ririe
- From the Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|