1
|
Barra W, Queiroz B, Perez A, Romero T, Ferreira R, Duarte I. Study on peripheral antinociception induced by hydrogen peroxide (H 2O 2): characterization and mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7927-7938. [PMID: 38753048 DOI: 10.1007/s00210-024-03087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
The present study aimed to evaluate the possible peripheral H2O2-induced antinociception and determine the involvement of opioidergic, cannabinoidergic and nitrergic systems, besides potassium channels in its antinociceptive effect. Prostaglandin E2 was used to induce hyperalgesia in male Swiss mice using the mechanical paw pressure test. H2O2 (0.1, 0.2, 0.3 µg/paw) promoted a dose-dependent antinociceptive effect that was not observed in contralateral paw. Female mice also showed antinociception in the model. The partial H2O2-induced antinociception was potentiated by the inhibitor of catalase enzyme, aminotriazole (40, 60, 80 µg/paw). The antinociception was not reversed by opioid and cannabinoid receptor antagonists naloxone, AM 251 and AM 630. The involvement of nitric oxide (NO) was observed by the reversal of H2O2-induced antinociception using the non-selective inhibitor of nitric oxide synthases L-NOarg and by inhibition of iNOS (L-NIL), eNOS (L-NIO) and nNOS (L-NPA). ODQ, a cGMP-forming enzyme selective inhibitor, also reversed the antinociception. The blockers of potassium channels voltage-gated (TEA), ATP-sensitive (glibenclamide), large (paxillin) and small (dequalinium) conductance calcium-activated were able to revert H2O2 antinociception. Our data suggest that H2O2 induced a peripheral antinociception in mice and the NO pathway and potassium channels (voltage-gated, ATP-sensitive, calcium-activated) are involved in this mechanism. However, the role of the opioid and cannabinoid systems was not evidenced.
Collapse
Affiliation(s)
- Walace Barra
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, City Belo Horizonte, Brazil
| | - Bárbara Queiroz
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, City Belo Horizonte, Brazil
| | - Andrea Perez
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, City Belo Horizonte, Brazil
| | - Thiago Romero
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, City Belo Horizonte, Brazil
| | - Renata Ferreira
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, City Belo Horizonte, Brazil
| | - Igor Duarte
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, City Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Kudsi SQ, Viero FT, Pereira LG, Trevisan G. Involvement of the Transient Receptor Channels in Preclinical Models of Musculoskeletal Pain. Curr Neuropharmacol 2024; 22:72-87. [PMID: 37694792 PMCID: PMC10716882 DOI: 10.2174/1570159x21666230908094159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation. OBJECTIVE In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models. METHODS This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles. RESULTS The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice. CONCLUSION Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Fernanda Tibolla Viero
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Leonardo Gomes Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 97105-900 Santa Maria (RS), Brazil
| |
Collapse
|
3
|
Kudsi SQ, de David Antoniazzi CT, Camponogara C, Meira GM, de Amorim Ferreira M, da Silva AM, Dalenogare DP, Zaccaron R, Dos Santos Stein C, Silveira PCL, Moresco RN, Oliveira SM, Ferreira J, Trevisan G. Topical application of a TRPA1 antagonist reduced nociception and inflammation in a model of traumatic muscle injury in rats. Inflammopharmacology 2023; 31:3153-3166. [PMID: 37752305 DOI: 10.1007/s10787-023-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Musculoskeletal pain is a widely experienced public healthcare issue, especially after traumatic muscle injury. Besides, it is a common cause of disability, but this pain remains poorly managed. However, the pathophysiology of traumatic muscle injury-associated pain and inflammation has not been fully elucidated. In this regard, the transient receptor potential ankyrin 1 (TRPA1) has been studied in inflammatory and painful conditions. Thus, this study aimed to evaluate the antinociceptive and anti-inflammatory effect of the topical application of a TRPA1 antagonist in a model of traumatic muscle injury in rats. The mechanical trauma model was developed by a single blunt trauma impact on the right gastrocnemius muscle of Wistar male rats (250-350 g). The animals were divided into four groups (Sham/Vehicle; Sham/HC-030031 0.05%; Injury/Vehicle, and Injury/HC-030031 0.05%) and topically treated with a Lanette® N cream base containing a TRPA1 antagonist (HC-030031, 0.05%; 200 mg/muscle) or vehicle (Lanette® N cream base; 200 mg/muscle), which was applied at 2, 6, 12, 24, and 46 h after muscle injury. Furthermore, we evaluated the contribution of the TRPA1 channel on nociceptive, inflammatory, and oxidative parameters. The topical application of TRPA1 antagonist reduced biomarkers of muscle injury (lactate/glucose ratio), spontaneous nociception (rat grimace scale), inflammatory (inflammatory cell infiltration, cytokine levels, myeloperoxidase, and N-acetyl-β-D-glucosaminidase activities) and oxidative (nitrite levels and dichlorofluorescein fluorescence) parameters, and mRNA Trpa1 levels in the muscle tissue. Thus, these results demonstrate that TRPA1 may be a promising anti-inflammatory and antinociceptive target in treating muscle pain after traumatic muscle injury.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Graziela Moro Meira
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Marcella de Amorim Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brazil
| | - Ana Merian da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brazil
| | - Diéssica Padilha Dalenogare
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Rubya Zaccaron
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Carolina Dos Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Paulo Cesar Lock Silveira
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Wang H, Zhao M, Liu J, Liu L, Liu H, Ding N, Wen J, Wang S, Ge N, Zhang X. H 2O 2 enhances the spontaneous phasic contractions of isolated human-bladder strips via activation of TRPA1 channels on sensory nerves and the release of substance P and PGE2. Free Radic Biol Med 2023; 209:1-8. [PMID: 37802373 DOI: 10.1016/j.freeradbiomed.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Several studies have indicated that reactive oxygen species (ROS) can lead to detrusor overactivity (DO), but the underlying mechanisms are not known. Hydrogen dioxide (H2O2) is used commonly to investigate the effects of ROS. In present study, we investigated the effects of H2O2 on phasic spontaneous bladder contractions (SBCs) of isolated human-bladder strips (iHBSs) and the underlying mechanisms. Samples of bladder tissue were obtained from 26 patients undergoing cystectomy owing to bladder cancer. SBCs of iHBSs were recorded in organ-bath experiments. H2O2 (1μM-10mM) concentration-dependently increased the SBCs of iHBSs. These enhancing effects could be mimicked by an agonist of transient receptor potential (TRP)A1 channels (allyl isothiocyanate) and blocked with an antagonist of TRPA1 channels (HC030031; 10 μM). H2O2 induced enhancing effects also could be attenuated by desensitizing sensory afferents with capsaicin (10 μM), blocking nerve firing with TTX (1 μM), blocking neurokinin effects with NK2 receptor antagonist (SR48968, 10 μM), and blocking PGE2 synthesis with indomethacin (10 μM), respectively. Our study: (i) suggests activation of TRPA1 channels on bladder sensory afferents, and then release of substance P or PGE2 from sensory nerve terminals, contribute to the H2O2-induced enhancing effects on SBCs of iHBSs; (ii) provides insights for the mechanisms underlying ROS leading to DO; (iii) indicates that targeting TRPA1 channels might be the promising strategy against overactive bladder in conditions associated with excessive production of ROS.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Mengmeng Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Nan Ge
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Zhou H, Xiang W, Huang M. Inactivation of Zona Incerta Blocks Social Conditioned Place Aversion and Modulates Post-traumatic Stress Disorder-Like Behaviors in Mice. Front Behav Neurosci 2021; 15:743484. [PMID: 34744654 PMCID: PMC8568071 DOI: 10.3389/fnbeh.2021.743484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Zona incerta (ZI), a largely inhibitory subthalamic region connected with many brain areas, has been suggested to serve as an integrative node for modulation of behaviors and physiological states, such as fear memory conditioning and aversion responses. It is, however, unclear whether ZI regulated the repeated social defeat stress (RSDS)-induced social conditioned place aversion (CPA) and post-traumatic stress disorder (PTSD)-like behaviors. In this study, the function of ZI was silenced via bilateral injection of tetanus toxin light chain (Tet-tox), a neurotoxin that completely blocks the evoked synaptic transmissions, expressing adeno-associated viruses (AAVs). We found ZI silencing: (1) significantly blocked the expression of RSDS-induced social CPA with no effect on the innate preference; (2) significantly enhanced the anxiety level in mice experienced RSDS with no effect on the locomotion activity; (3) altered the PTSD-associated behaviors, including the promotion of spatial cognitive impairment and the preventions of PPI deficit and social avoidance behavior. These effects were not observed on non-stressed mice. In summary, our results suggest the important role of ZI in modulating RSDS-induced social CPA and PTSD-like behaviors.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengbing Huang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen C, Huang X, Zhu W, Ding C, Huang P, Li R. H2O2 gel bleaching induces cytotoxicity and pain conduction in dental pulp stem cells via intracellular reactive oxygen species on enamel/dentin disc. PLoS One 2021; 16:e0257221. [PMID: 34506603 PMCID: PMC8432789 DOI: 10.1371/journal.pone.0257221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Background Bleaching is widely accepted for improving the appearance of discolored teeth; however, patient compliance is affected by bleaching-related complications, especially bleaching sensitivity. This study aimed to investigate the role of reactive oxygen species (ROS) in cytotoxicity and pain conduction activated by experimental tooth bleaching. Methods Dental pulp stem cells with or without N-acetyl-L-cysteine (NAC), an ROS scavenger, were cultured on the dentin side of the enamel/dentin disc. Subsequently, 15% (90 min) and 40% (30 min) bleaching gels were painted on the enamel surface. Cell viability, intracellular ROS, Ca2+, adenosine triphosphate (ATP), and extracellular ATP levels were evaluated using the Cell Counting Kit-8 assay, 2’,7’-dichlorodihydrofluorescein diacetate, CellROX, fura-3AM fluorescence assay, and ATP measurement kit. The rat incisor model was used to evaluate in vivo effects after 0, 1, 3, 7, and 30 days of bleaching. Changes in gene and protein expression of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNFα), transient receptor potential ankyrin 1 (TRPA1), and Pannexin1 (PANX1) in dental pulp stem cells and pulp tissue were detected through RT-PCR, western blotting, and immunofluorescence. Results The bleaching gel suppressed dental pulp stem cell viability and extracellular ATP levels and increased intracellular ROS, Ca2+, and intracellular ATP levels. The mRNA and protein expression of IL-6, TNFα, TRPA1, and PANX1 were up-regulated in vitro and in vivo. Furthermore, the 40% gel had a stronger effect than the 15% gel, and NAC ameliorated the gel effects. Conclusions Our findings suggest that bleaching gels induce cytotoxicity and pain conduction in dental pulp stem cells via intracellular ROS, which may provide a potential therapeutic target for alleviating tooth bleaching nociception.
Collapse
Affiliation(s)
- Chang Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiansheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenqiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Ding
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Piaopiao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
7
|
TRPA1 triggers hyperalgesia and inflammation after tooth bleaching. Sci Rep 2021; 11:17418. [PMID: 34465829 PMCID: PMC8408176 DOI: 10.1038/s41598-021-97040-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/19/2021] [Indexed: 01/26/2023] Open
Abstract
Hyperalgesia has become a major problem restricting the clinical application of tooth bleaching. We hypothesized that transient receptor potential ankyrin 1 (TRPA1), a pain conduction tunnel, plays a role in tooth hyperalgesia and inflammation after bleaching. Dental pulp stem cells were seeded on the dentin side of the disc, which was cut from the premolar buccal tissue, with 15% (90 min) or 40% (3 × 15 min) bleaching gel applied on the enamel side, and treated with or without a TRPA1 inhibitor. The bleaching gel stimulated intracellular reactive oxygen species, Ca2+, ATP, and extracellular ATP in a dose-dependent manner, and increased the mRNA and protein levels of hyperalgesia (TRPA1 and PANX1) and inflammation (TNFα and IL6) factors. This increment was adversely affected by TRPA1 inhibitor. In animal study, the protein levels of TRPA1 (P = 0.0006), PANX1 (P < 0.0001), and proliferation factors [PCNA (P < 0.0001) and Caspase 3 (P = 0.0066)] increased significantly after treated rat incisors with 15% and 40% bleaching gels as detected by immunohistochemistry. These results show that TRPA1 plays a critical role in sensitivity and inflammation after tooth bleaching, providing a solid foundation for further research on reducing the complications of tooth bleaching.
Collapse
|
8
|
Bussulo SKD, Ferraz CR, Carvalho TT, Verri WA, Borghi SM. Redox interactions of immune cells and muscle in the regulation of exercise-induced pain and analgesia: implications on the modulation of muscle nociceptor sensory neurons. Free Radic Res 2021; 55:757-775. [PMID: 34238089 DOI: 10.1080/10715762.2021.1953696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.
Collapse
Affiliation(s)
- Sylvia K D Bussulo
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil.,Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Chung MK, Ro JY. Peripheral glutamate receptor and transient receptor potential channel mechanisms of craniofacial muscle pain. Mol Pain 2021; 16:1744806920914204. [PMID: 32189565 PMCID: PMC7153498 DOI: 10.1177/1744806920914204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temporomandibular joint disorder is a common chronic craniofacial pain condition,
often involving persistent, widespread craniofacial muscle pain. Although the
etiology of chronic muscle pain is not well known, sufficient clinical and
preclinical information supports a contribution of trigeminal nociceptors to
craniofacial muscle pain processing under various experimental and pathological
conditions. Here, we review cellular and molecular mechanisms underlying
sensitization of muscle nociceptive afferents. In particular, we summarize
findings on pronociceptive roles of peripheral glutamate in humans, and we
discuss mechanistic contributions of glutamate receptors, including
N-methyl-D-aspartate receptors and metabotropic glutamate receptors, which have
considerably increased our understanding of peripheral mechanisms of
craniofacial muscle pain. Several members of the transient receptor potential
(TRP) family, such as transient receptor potential vanilloid 1 (TRPV1) and
transient receptor potential ankyrin 1, also play essential roles in the
development of spontaneous pain and mechanical hypersensitivity in craniofacial
muscles. Furthermore, glutamate receptors and TRP channels functionally and
bi-directionally interact to modulate trigeminal nociceptors. Activation of
glutamate receptors invokes protein kinase C, which leads to the phosphorylation
of TRPV1. Sensitization of TRPV1 by inflammatory mediators and glutamate
receptors in combination with endogenous ligands contributes to masseter
hyperalgesia. The distinct intracellular signaling pathways through which both
receptor systems engage and specific molecular regions of TRPV1 are offered as
novel targets for the development of mechanism-based treatment strategies for
myogenous craniofacial pain conditions.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| |
Collapse
|
10
|
Liu M, Ding H, Wang H, Wang M, Wu X, Gan L, Cheng L, Li X. Moringa oleifera leaf extracts protect BMSC osteogenic induction following peroxidative damage by activating the PI3K/Akt/Foxo1 pathway. J Orthop Surg Res 2021; 16:150. [PMID: 33610167 PMCID: PMC7896384 DOI: 10.1186/s13018-021-02284-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Objective We aimed to investigate the therapeutic effects of Moringa oleifera leaf extracts on osteogenic induction of rat bone marrow mesenchymal stem cells (BMSCs) following peroxidative damage and to explore the underlying mechanisms. Methods Conditioned medium was used to induce osteogenic differentiation of BMSCs, which were treated with H2O2, Moringa oleifera leaf extracts-containing serum, or the phosphatidyl inositol-3 kinase (PI3K) inhibitor wortmannin, alone or in combination. Cell viability was measured using the MTT assay. Cell cycle was assayed using flow cytometry. Expression levels of Akt, phosphorylated (p)Akt, Foxo1, and cleaved caspase-3 were analyzed using western blot analysis. The mRNA levels of osteogenesis-associated genes, including alkaline phosphatase (ALP), collagen І, osteopontin (OPN), and Runx2, were detected using qRT-PCR. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and ALP activity were detected using commercially available kits. Osteogenic differentiation capability was determined using alizarin red staining. Results During osteogenic induction of rat BMSCs, H2O2 reduced cell viability and proliferation, inhibited osteogenesis, increased ROS and MDA levels, and decreased SOD and GSH-PX activity. H2O2 significantly reduced pAkt and Foxo1 expression, and increased cleaved caspase-3 levels in BMSCs. Additional treatments with Moringa oleifera leaf extracts partially reversed the H2O2-induced changes. Wortmannin partially attenuated the effects of Moringa oleifera leaf extracts on protein expression of Foxo1, pAkt, and cleaved caspase-3, as well as mRNA levels of osteogenesis-associated genes. Conclusion Moringa oleifera leaf extracts ameliorate peroxidative damage and enhance osteogenic induction of rat BMSCs by activating the PI3K/Akt/Foxo1 pathway.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Haifeng Ding
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Hongzhi Wang
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Manfeng Wang
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiaowei Wu
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Lu Gan
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Luyang Cheng
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xianglu Li
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| |
Collapse
|
11
|
Liu M, Li X, Zhou C, Wang M, Wang H, Ding H, Cheng L, Gan L, Wu X, Du Z. Thioredoxin mitigates H 2 O 2 -induced inhibition of myogenic differentiation of rat bone marrow mesenchymal stem cells by enhancing AKT activation. FEBS Open Bio 2020; 10:835-846. [PMID: 32160414 PMCID: PMC7193161 DOI: 10.1002/2211-5463.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 11/20/2022] Open
Abstract
Thioredoxin (Trx) is a hydrogen acceptor of ribonucleotide reductase and a regulator of some enzymes and receptors. It has been previously shown that significantly elevated levels of Trx expression are associated with the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but it is not clear how Trx regulates the effects of hydrogen peroxide (H2O2) on myogenic differentiation of BMSCs. Here, we report that rat BMSCs treated with a high dose (150 µm) of H2O2 exhibited a significant reduction in viability, cell cycling, and superoxide dismutase and glutathione peroxidase levels, and an increase in reactive oxygen species and malondialdehyde levels, which was accompanied by reductions in protein kinase B activation and forkhead Box O1, myogenic differentiation 1 and myogenin expression during myogenic differentiation. Furthermore, treatment with recombinant human Trx significantly mitigated the effects of H2O2 on the myogenic differentiation of BMSCs, and this was abrogated by cotreatment with wortmannin [a specific phosphatidylinositol 3‐kinase inhibitor]. In summary, our results suggest that treatment with recombinant human Trx mitigates H2O2‐induced oxidative stress and may promote myogenic differentiation of rat BMSCs by enhancing phosphatidylinositol 3‐kinase/protein kinase B/forkhead Box O1 signaling.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Xianglu Li
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Changlin Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Manfeng Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Hongzhi Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Haifeng Ding
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Luyang Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Lu Gan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Xiaowei Wu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Harbin, China
| |
Collapse
|
12
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
13
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Advances in assessment of pain behaviors and mechanisms of post-operative pain models. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Wang S, Brigoli B, Lim J, Karley A, Chung MK. Roles of TRPV1 and TRPA1 in Spontaneous Pain from Inflamed Masseter Muscle. Neuroscience 2018; 384:290-299. [PMID: 29890293 DOI: 10.1016/j.neuroscience.2018.05.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023]
Abstract
Craniofacial muscle pain, such as spontaneous pain and bite-evoked pain, are major symptoms in patients with temporomandibular disorders and infection. However, the underlying mechanisms of muscle pain, especially mechanisms of highly prevalent spontaneous pain, are poorly understood. Recently, we reported that transient receptor potential vanilloid 1 (TRPV1) contributes to spontaneous pain but only marginally contributes to bite-evoked pain during masseter inflammation. Here, we investigated the role of transient receptor potential ankyrin 1 (TRPA1) in spontaneous and bite-evoked pain during masseter inflammation, and dissected the relative contributions of TRPA1 and TRPV1. Masseter inflammation increased mouse grimace scale (MGS) scores and face wiping behaviors. Pharmacological or genetic inhibition of TRPA1 significantly attenuated MGS but not face wiping behaviors. MGS scores were also attenuated by scavenging putative endogenous ligands for TRPV1 or TRPA1. Simultaneous inhibition of TRPA1 by AP18 and TRPV1 by AMG9810 in masseter muscle resulted in robust inhibition of both MGS and face wiping behaviors. Administration of AP18 or AMG9810 to masseter muscle induced conditioned place preference (CPP). The extent of CPP following simultaneous administration of AP18 and AMG9810 was greater than that induced by the individual antagonists. In contrast, inflammation-induced reduction of bite force was not affected by the inhibition of TRPA1 alone or in combination with TRPV1. These results suggest that simultaneous inhibition of TRPV1 and TRPA1 produces additive relief of spontaneous pain, but does not ameliorate bite-evoked pain during masseter inflammation. Our results provide further evidence that distinct mechanisms underlie spontaneous and bite-evoked pain from inflamed masseter muscle.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Benjamin Brigoli
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Jongseuk Lim
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Alisha Karley
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Queme LF, Ross JL, Jankowski MP. Peripheral Mechanisms of Ischemic Myalgia. Front Cell Neurosci 2017; 11:419. [PMID: 29311839 PMCID: PMC5743676 DOI: 10.3389/fncel.2017.00419] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal pain due to ischemia is present in a variety of clinical conditions including peripheral vascular disease (PVD), sickle cell disease (SCD), complex regional pain syndrome (CRPS), and even fibromyalgia (FM). The clinical features associated with deep tissue ischemia are unique because although the subjective description of pain is common to other forms of myalgia, patients with ischemic muscle pain often respond poorly to conventional analgesic therapies. Moreover, these patients also display increased cardiovascular responses to muscle contraction, which often leads to exercise intolerance or exacerbation of underlying cardiovascular conditions. This suggests that the mechanisms of myalgia development and the role of altered cardiovascular function under conditions of ischemia may be distinct compared to other injuries/diseases of the muscles. It is widely accepted that group III and IV muscle afferents play an important role in the development of pain due to ischemia. These same muscle afferents also form the sensory component of the exercise pressor reflex (EPR), which is the increase in heart rate and blood pressure (BP) experienced after muscle contraction. Studies suggest that afferent sensitization after ischemia depends on interactions between purinergic (P2X and P2Y) receptors, transient receptor potential (TRP) channels, and acid sensing ion channels (ASICs) in individual populations of peripheral sensory neurons. Specific alterations in primary afferent function through these receptor mechanisms correlate with increased pain related behaviors and altered EPRs. Recent evidence suggests that factors within the muscles during ischemic conditions including upregulation of growth factors and cytokines, and microvascular changes may be linked to the overexpression of these different receptor molecules in the dorsal root ganglia (DRG) that in turn modulate pain and sympathetic reflexes. In this review article, we will discuss the peripheral mechanisms involved in the development of ischemic myalgia and the role that primary sensory neurons play in EPR modulation.
Collapse
Affiliation(s)
- Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jessica L Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Pharmacological validation of voluntary gait and mechanical sensitivity assays associated with inflammatory and neuropathic pain in mice. Neuropharmacology 2017; 130:18-29. [PMID: 29191755 DOI: 10.1016/j.neuropharm.2017.11.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
The urgent need for more effective analgesic treatment options has prompted a re-evaluation of the behavioral tests used to assess pain in pre-clinical research, with an emphasis on inclusion of more voluntary, un-evoked behavioral assessments of pain. In order to validate voluntary gait analysis and a voluntary mechanical conflict-avoidance assay, we tested mouse models of neuropathy (spared nerve injury) and inflammation (complete Freund's adjuvant) alongside reflexive measures of mechanical and thermal hypersensitivity. To establish whether the observed changes in behavioral responses were pain-related, known analgesics (buprenorphine, gabapentin, carprofen) were also administered. Spared nerve injury persistently altered several gait indices, whereas complete Freund's adjuvant caused only transient changes. Furthermore, known analgesics could not reverse these gait changes, despite demonstrating their previously established efficacy in reflexive measures of mechanical and thermal hypersensitivity. In contrast, the mechanical conflict-avoidance assay demonstrated aversion in mice with neuropathy and inflammation-induced hypersensitivity, which could both be reversed by analgesics. We conclude that voluntary gait changes in rodent neuropathic and inflammatory pain models are not necessarily indicative of pain-related adaptations. On the other hand, mechanical conflict-avoidance represents a valid operant assay for quantifying pain-related behaviors in mice that can be reversed by known analgesics.
Collapse
|