1
|
Lai CY, Hsieh MC, Yeh CM, Lin TB, Chou D, Wang HH, Lin KH, Cheng JK, Yang PS, Peng HY. CtBP1 is essential for epigenetic silencing of μ-opioid receptor genes in the dorsal root ganglion in spinal nerve ligation-induced neuropathic pain. Neurotherapeutics 2024; 22:e00493. [PMID: 39580324 DOI: 10.1016/j.neurot.2024.e00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Neuropathic pain poses a significant public health challenge, greatly impacting patients' quality of life. Emerging evidence underscores the involvement of epigenetics in dorsal root ganglion (DRG) neurons relevant to pain modulation. C-terminal binding protein 1 (CtBP1) has emerged as a crucial epigenetic transcriptional coregulator. However, the underlying molecular mechanisms of CtBP1-mediated epigenetic regulation in DRG neurons in neuropathic pain remain poorly elucidated. Here, we employed a Sprague‒Dawley rat model of spinal nerve ligation (SNL) to establish a neuropathic pain model. CtBP1 expression in the ipsilateral DRG gradually increased over a three-week period post-SNL. Immunohistochemistry revealed a significant elevation in CtBP1 levels specifically in NeuN-positive neuronal cells in the ipsilateral DRG following SNL. Further characterization demonstrated CtBP1 expression across various subtypes of DRG neurons in SNL rats. Silencing CtBP1 expression with siRNA reversed tactile allodynia in SNL rats and restored both CtBP1 and μ-opioid receptor expression in the DRG in SNL rats. Moreover, Foxp1 was identified to recruit CtBP1 for mediating μ-opioid receptor gene silencing in the DRG in SNL rats. Subsequent investigation unveiled that Foxp1 recruits CtBP1 and associates with HDAC2 to regulate H3K9Ac binding to μ-opioid receptor chromatin regions in the DRG in SNL rats, implicating epigenetic mechanisms in neuropathic pain. Targeting the Foxp1/CtBP1/HDAC2/μ-opioid receptor signaling pathway in the DRG holds promise as a potential therapeutic strategy for managing neuropathic pain.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan; Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Tzer-Bin Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
2
|
Lai CY, Hsieh MC, Chou D, Lin KH, Wang HH, Yang PS, Lin TB, Peng HY. The Transcription Factor Tbx5-Dependent Epigenetic Modification Contributes to Neuropathic Allodynia by Activating TRPV1 Expression in the Dorsal Horn. J Neurosci 2024; 44:e0497242024. [PMID: 39174351 PMCID: PMC11426380 DOI: 10.1523/jneurosci.0497-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Nerve injury can induce aberrant changes in the spine; these changes are due to, or at least partly governed by, transcription factors that contribute to the genesis of neuropathic allodynia. Here, we showed that spinal nerve ligation (SNL, a clinical neuropathic allodynia model) increased the expression of the transcription factor Tbx5 in the injured dorsal horn in male Sprague Dawley rats. In contrast, blocking this upregulation alleviated SNL-induced mechanical allodynia, and there was no apparent effect on locomotor function. Moreover, SNL-induced Tbx5 upregulation promoted the recruitment and interaction of GATA4 and Brd4 by enhancing its binding activity to H3K9Ac, which was enriched at the Trpv1 promotor, leading to an increase in TRPV1 transcription and the development of neuropathic allodynia. In addition, nerve injury-induced expression of Fbxo3, which abates Fbxl2-dependent Tbx5 ubiquitination, promoted the subsequent Tbx5-dependent epigenetic modification of TRPV1 expression during SNL-induced neuropathic allodynia. Collectively, our findings indicated that spinal Tbx5-dependent TRPV1 transcription signaling contributes to the development of neuropathic allodynia via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic allodynia by targeting Tbx5.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, New Taipei City, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Tzer-Bin Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsien-Yu Peng
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
3
|
Yeh CM, Lai CY, Peng HY, Lin TB, Chou D, Wang HH, Yang PS, Cheng JK, Peng YC, Hsieh MC. Protein Arginine Methyltransferase 5 Contributes to Paclitaxel-Induced Neuropathic Pain by Activating Transient Receptor Potential Vanilloid 1 Epigenetic Modification in Dorsal Root Ganglion. Anesth Analg 2024; 138:1107-1119. [PMID: 37390022 DOI: 10.1213/ane.0000000000006595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
BACKGROUND Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P < .001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 ( Trpv1 ) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P < .001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P < .001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.
Collapse
Affiliation(s)
- Chou-Ming Yeh
- From the Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | | - Hsien-Yu Peng
- Institute of Biomedical Sciences
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yun-Chih Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
4
|
Hua T, Kong E, Zhang H, Lu J, Huang K, Ding R, Wang H, Li J, Han C, Yuan H. PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain Behav Immun 2024; 118:101-114. [PMID: 38402915 DOI: 10.1016/j.bbi.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
Microglia induced chronic inflammation is the critical pathology of Neuropathic pain (NP). Metabolic reprogramming of macrophage has been intensively reported in various chronic inflammation diseases. However, the metabolic reprogramming of microglia in chronic pain remains to be elusive. Here, we reported that immuno-metabolic markers (HIF-1α, PKM2, GLUT1 and lactate) were related with increased expression of PRMT6 in the ipsilateral spinal cord dorsal horn of the chronic construction injury (CCI) mice. PRMT6 deficiency or prophylactic and therapeutic intrathecal administration of PRMT6 inhibitor (EPZ020411) ameliorated CCI-induced NP, inflammation and glycolysis in the ipsilateral spinal cord dorsal horn. PRMT6 knockout or knockdown inhibited LPS-induced inflammation, proliferation and glycolysis in microglia cells. While PRMT6 overexpression exacerbated LPS-induced inflammation, proliferation and glycolysis in BV2 cells. Recent research revealed that PRMT6 could interact with and methylate HIF-1α, which increased HIF-1α protein stability. In sum, increased expression of PRMT6 exacerbates NP progress by increasing glycolysis and neuroinflammation through interacting with and stabilizing HIF-1α in a methyltransferase manner, which outlines novel pathological mechanism and drug target for NP.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Anesthesiology, The No. 988 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinfang Lu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kesheng Huang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chaofeng Han
- Department of Histology and Embryology, and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Jia X, Ju J, Li Z, Peng X, Wang J, Gao F. Inhibition of spinal BRD4 alleviates pyroptosis and M1 microglia polarization via STING-IRF3 pathway in morphine-tolerant rats. Eur J Pharmacol 2024; 969:176428. [PMID: 38432572 DOI: 10.1016/j.ejphar.2024.176428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain. However, whether BRD4 is involved in morphine tolerance and the underlying mechanisms remain unknown. METHODS The morphine-tolerant rat model was established by intrathecal administration of morphine twice daily for 7 days. Behavior test was assessed by a tail-flick latency test. The roles of BRD4, pyroptosis, microglia polarization and related signaling pathways in morphine tolerance were elucidated by Western blot, real-time quantitative polymerase chain reaction, and immunofluorescence. RESULTS Repeated morphine administration upregulated BRD4 level, induced pyroptosis, and promoted microglia M1-polarization in spinal cord, accompanied by the release of proinflammatory cytokines, such as TNF-α and IL-1β. JQ-1, a BRD4 antagonist, alleviated the development of morphine tolerance, diminished pyroptosis and induced the switch of microglia from M1 to M2 phenotype. Mechanistically, stimulator of interferon gene (STING)- interferon regulatory factor 3 (IRF3) pathway was activated and the protective effect of JQ-1 against morphine tolerance was at least partially mediated by inhibition of STING-IRF3 pathway. CONCLUSION This study demonstrated for the first time that spinal BRD4 contributes to pyroptosis and switch of microglia polarization via STING-IRF3 signaling pathway during the development of morphine tolerance, which extend the understanding of the neuroinflammation mechanism of morphine tolerance and provide an alternative strategy for the precaution against of this medical condition.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Serafini RA, Ramakrishnan A, Shen L, Zachariou V. Desipramine induces anti-inflammatory dorsal root ganglion transcriptional signatures in the murine spared nerve injury model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100153. [PMID: 38549875 PMCID: PMC10973649 DOI: 10.1016/j.ynpai.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/09/2024]
Abstract
Monoamine-targeting antidepressants serve as frontline medications for chronic pain and associated comorbidities. While persistent anti-allodynic properties of antidepressants generally require weeks of treatment, several groups have demonstrated acute analgesic effects within hours of administration, suggesting a role in non-mesocorticolimbic pain processing regions such as the peripheral nervous system. To further explore this possibility, after four weeks of spared nerve injury or sham surgeries, we systemically administered desipramine or saline for an additional three weeks and performed whole transcriptome RNA sequencing on L3-6 dorsal root ganglia. Along with alterations in molecular pathways associated with neuronal activity, we observed a robust immunomodulatory transcriptional signature in the desipramine treated group. Cell subtype deconvolution predicted that these changes were associated with A- and C-fibers. Of note, differentially expressed genes from the dorsal root ganglia of DMI-treated, injured mice were largely unique compared to those from the nucleus accumbens of the same animals. These observations suggest that, under peripheral nerve injury conditions, desipramine induces specific gene expression changes across various regions of the nociceptive circuitry.
Collapse
Affiliation(s)
- Randal A. Serafini
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Pharmacology, Physiology & Biophysics, Avedisian and Chobanian School of Medicine at Boston University, Boston, MA 02118, United States
| |
Collapse
|
7
|
Hsieh MC, Lai CY, Cho WL, Lin LT, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain. Anesth Analg 2023; 137:1289-1301. [PMID: 36753440 DOI: 10.1213/ane.0000000000006397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Long Cho
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
8
|
Sun J, Wang XH, Song FH, Li DY, Gao SJ, Zhang LQ, Wu JY, Liu DQ, Wang LW, Zhou YQ, Mei W. Inhibition of Brd4 alleviates osteoarthritis pain via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Br J Pharmacol 2023; 180:3194-3214. [PMID: 37485568 DOI: 10.1111/bph.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) pain remains a major clinical problem. It is urgent to identify novel therapeutic approaches for OA pain states. Bromodomain and extra-terminal (BET) protein inhibitors have robust anti-inflammatory effects in several pain models. However, the underlying mechanisms of these inhibitors in OA pain have not been determined. We, therefore, investigated the effects and the underlying mechanism(s) of BET inhibition on pain-related behaviours in a rat model of OA. EXPERIMENTAL APPROACH The OA model was established by intra-articular injection of monosodium iodoacetate (MIA) in rat knees. Pain behaviours were assessed in rats by hindlimb weight-bearing asymmetry, mechanical allodynia and thermal hyperalgesia. Possible mechanisms underlying BET inhibition were explored in the MIA-induced OA pain model in the spinal cord and dorsal root ganglia (DRG). KEY RESULTS Inhibiting bromodomain-containing protein 4 (Brd4) with either JQ1 or MS417, or using AAV2/9-shRNA-Brd4-EGFP-mediated knockdown of Brd4 genes, significantly attenuated MIA-induced pain behaviours. Brd4 inhibition suppressed NF-κB and NF-κB-mediated inflammatory cytokines in both the spinal cord and DRG in rats with MIA-induced OA pain. Brd4 inhibition also attenuated the oxidative stress and promoted nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent antioxidant genes in both the spinal cord and DRG in our odel of MIA-induced OA pain. CONCLUSIONS AND IMPLICATIONS In conclusion, Brd4 inhibition alleviated MIA-induced OA pain in rats, via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Although our model does not perfectly represent how OA develops in humans, inhibition of Brd4 may provide novel insights into possible treatments for OA pain.
Collapse
Affiliation(s)
- Jia Sun
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-He Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Luo H, Zhang Y, Zhang J, Shao J, Ren X, Zang W, Cao J, Xu B. Glucocorticoid Receptor Contributes to Electroacupuncture-Induced Analgesia by Inhibiting Nav1.7 Expression in Rats With Inflammatory Pain Induced by Complete Freund's Adjuvant. Neuromodulation 2022; 25:1393-1402. [PMID: 34337820 DOI: 10.1111/ner.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND While electroacupuncture (EA) has been used traditionally for the treatment of chronic pain, its analgesic mechanisms have not been fully clarified. We observed in an earlier study that EA could reverse inflammatory pain and suppress high Nav1.7 expression. However, the molecular mechanism underlying Nav1.7 expression regulation is unclear. In this study, we studied the relationship between the glucocorticoid receptor (GR) and Nav1.7 and the role of these molecules in EA analgesia. MATERIALS AND METHODS In this study, we established an inflammatory pain model by intraplantar injection of complete Freund's adjuvant (CFA) in rats. EA stimulation was applied to the ipsilateral "Huantiao" (GB30) and "Zusanli" (ST36) acupoints in the rat model. Western blotting, real-time polymerase chain reaction, immunostaining, intrathecal injection, and chromatin immunoprecipitation (ChIP) assay were performed to determine whether the sodium channel protein Nav1.7 plays a role in CFA-induced pain and whether GR regulates Nav1.7 expression during analgesia following EA stimulation. RESULTS EA application significantly decreased the paw withdrawal threshold thresholds and thermal paw withdrawal latency and suppressed GR and Nav1.7 expression in the dorsal root ganglion. Moreover, treatment with a GR sense oligonucleotide (OND) markedly reversed these alterations. In contrast, treatment with a GR antisense OND along with EA application exerted a better analgesic effect, which was accompanied by the suppression of Nav1.7 and GR protein expression. The ChIP assay showed that the binding activity of GR to the Nav1.7 promoter was enhanced in CFA injected rats and suppressed in EA-treated rats. CONCLUSIONS The present study demonstrated that EA exerted anti-hyperalgesic effects by inhibiting GR expression, which led to Nav1.7 expression modulation in the rat model of CFA-induced inflammatory pain.
Collapse
Affiliation(s)
- Huiying Luo
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Jinping Shao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.
| |
Collapse
|
10
|
Maach S, Chiaramonte N, Borgonetti V, Sarno F, Pierucci F, Dei S, Teodori E, Altucci L, Meacci E, Galeotti N, Romanelli MN. Dual HDAC–BRD4 inhibitors endowed with antitumor and antihyperalgesic activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractHistone deacetylases (HDAC) are enzymes that regulate the concentration of acetylated histones which, in turns, interact with the bromodomain (BRD) of BET (Bromodomain and Extracellular domain) proteins to affect transcriptional activity. Simultaneous blockade of both epigenetic players has shown synergistic effects in a variety of cancer cell lines. In this paper we report the design, synthesis and activity of new dual inhibitors, obtained by adding a methyltriazole moiety to some HDAC inhibitors carrying a benzodiazepine core, which were previously developed by us. An Alphascreen FRET assay showed that the compounds were able to interact with BRD4-1 and BRD4-2 proteins, with some selectivity for the latter, while the HDAC inhibiting properties were measured by means of an immunoprecipitation assay. The antiproliferative activity was tested on C26 adenocarcinoma, SSMC2 melanoma and SHSY5Y neuroblastoma cells. Interestingly, both compounds were endowed with antihyperalgesic activity in the mouse Spared Nerve Injury (SNI) model.
Collapse
|
11
|
Lai CY, Hsieh MC, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. MicroRNA-489-3p attenuates neuropathic allodynia by regulating oncoprotein DEK/TET1-dependent epigenetic modification in the dorsal horn. Neuropharmacology 2022; 210:109028. [PMID: 35304174 DOI: 10.1016/j.neuropharm.2022.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Originally characterized as an oncoprotein overexpressed in many forms of cancer that participates in numerous cellular pathways, DEK has since been well described regarding the regulation of epigenetic markers and transcription factors in neurons. However, its role in neuropathic allodynia processes remain elusive and intriguingly complex. Here, we show that DEK, which is induced in spinal dorsal horn neurons after spinal nerve ligation (SNL), is regulated by miR-489-3p. Moreover, SNL-induced decrease in miR-489-3p expression increased the expression of DEK, which recruited TET1 to the promoter fragments of the Bdnf, Grm5, and Stat3 genes, thereby enhancing their transcription in the dorsal horn. Remarkably, these effects were also induced by intrathecally administering naïve animals with miR-489-3p inhibitor, which could be inhibited by knockdown of TET1 siRNA or DEK siRNA. Conversely, delivery of intrathecal miR-489-3p-mimic into SNL rats attenuated allodynia behavior and reversed protein expression coupled to the promoter segments in the dorsal horn. Thus, a spinal miR-489-3p/DEK/TET1 transcriptional axis may contribute to neuropathic allodynia. These results may provide a new target for treating neuropathic allodynia.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
12
|
Hua T, Wang H, Fan X, An N, Li J, Song H, Kong E, Li Y, Yuan H. BRD4 Inhibition Attenuates Inflammatory Pain by Ameliorating NLRP3 Inflammasome-Induced Pyroptosis. Front Immunol 2022; 13:837977. [PMID: 35154163 PMCID: PMC8826720 DOI: 10.3389/fimmu.2022.837977] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic pain, such as persistent inflammatory pain, remains a public health problem that has no effective treatment at present. Bromodomain-containing protein 4 (BRD4) inhibition, induced by JQ1 injection or BRD4 knockdown, has been used to attenuate inflammatory pain; However, it remains elusive whether BRD4 aggravates inflammatory pain by regulating inflammasome. Western blot and immunofluorescence staining showed that BRD4 expression increased after administration of complete Freund’s adjuvant (CFA) and reached its peak on day 3. Immunofluorescence staining showed that BRD4 was mainly colocalized with NeuN-positive neurons in the spinal cord, which was accompanied by upregulation of inflammasome component proteins, such as NLRP3, gasdermin D, and caspase-1. JQ1 was intrathecally injected into mice 1 h before CFA administration, and the mechanical and thermal hyperalgesia levels were measured on days 1, 3, and 7 after CFA administration. CFA-induced inflammatory pain, paw inflammation, and swelling were attenuated by pre-treatment with JQ1. To our knowledge, this study was the first to prove that NLRP3 inflammasome-induced neuronal pyroptosis participates in inflammatory pain. BRD4 inhibition decreased the expression of pyroptosis-related proteins by inhibiting the activation of NF-κB signaling pathway, both in vivo and in vitro. Taken together, BRD4 inhibition exerted analgesic and anti-inflammatory effects against inflammatory pain by inhibiting NF-κB and inflammasome activation, which protected neural cells from pyroptosis.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoyi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Ni An
- Chinese People's Liberation Army, Liao Yang, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
13
|
Palomés-Borrajo G, Badia J, Navarro X, Penas C. Nerve Excitability and Neuropathic Pain is Reduced by BET Protein Inhibition After Spared Nerve Injury. THE JOURNAL OF PAIN 2021; 22:1617-1630. [PMID: 34157407 DOI: 10.1016/j.jpain.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022]
Abstract
Neuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The pathophysiological changes that underlie the generation and maintenance of neuropathic pain require modifications of transcriptional programs. In particular, there is an induction of pro-inflammatory neuromodulators levels, and changes in the expression of ion channels and other factors intervening in the determination of the membrane potential in neuronal cells. We have previously found that inhibition of the BET proteins epigenetic readers reduced neuroinflammation after spinal cord injury. Within the present study we aimed to determine if BET protein inhibition may also affect neuroinflammation after a peripheral nerve injury, and if this would beneficially alter neuronal excitability and neuropathic pain. For this purpose, C57BL/6 female mice underwent spared nerve injury (SNI), and were treated with the BET inhibitor JQ1, or vehicle. Electrophysiological and algesimetry tests were performed on these mice. We also determined the effects of JQ1 treatment after injury on neuroinflammation, and the expression of neuronal components important for the maintenance of axon membrane potential. We found that treatment with JQ1 affected neuronal excitability and mechanical hyperalgesia after SNI in mice. BET protein inhibition regulated cytokine expression and reduced microglial reactivity after injury. In addition, JQ1 treatment altered the expression of SCN3A, SCN9A, KCNA1, KCNQ2, KCNQ3, HCN1 and HCN2 ion channels, as well as the expression of the Na+/K+ ATPase pump subunits. In conclusion, both, alteration of inflammation, and neuronal transcription, could be the responsible epigenetic mechanisms for the reduction of excitability and hyperalgesia observed after BET inhibition. Inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury.
Collapse
Affiliation(s)
- Georgina Palomés-Borrajo
- Institute of Neurosciences, Dept. Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Badia
- Institute of Neurosciences, Dept. Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Dept. Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Clara Penas
- Institute of Neurosciences, Dept. Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
14
|
Hsieh MC, Ho YC, Lai CY, Wang HH, Yang PS, Cheng JK, Chen GD, Ng SC, Lee AS, Tseng KW, Lin TB, Peng HY. Blocking the Spinal Fbxo3/CARM1/K + Channel Epigenetic Silencing Pathway as a Strategy for Neuropathic Pain Relief. Neurotherapeutics 2021; 18:1295-1315. [PMID: 33415686 PMCID: PMC8423947 DOI: 10.1007/s13311-020-00977-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11689, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan.
| |
Collapse
|
15
|
Transcription Repressor Hes1 Contributes to Neuropathic Pain Development by Modifying CDK9/RNAPII-Dependent Spinal mGluR5 Transcription. Int J Mol Sci 2019; 20:ijms20174177. [PMID: 31454988 PMCID: PMC6747068 DOI: 10.3390/ijms20174177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 11/18/2022] Open
Abstract
Diverse transcriptional controls in the dorsal horn have been observed in pain hypersensitivity. However, the understanding of the exact causes and mechanisms of neuropathic pain development is still fragmentary. Here, the results demonstrated nerve injury decreased the expression of spinal hairy and enhancer of split 1 (Hes1), a transcriptional repressor, and enhanced metabotropic glutamate receptor subtype 5 (mGluR5) transcription/expression, which was accompanied with behavioral allodynia. Moreover, nerve injury decreased Hes1 levels and reciprocally increased cyclin dependent kinase-9 (CDK9) levels and recruited CDK9 to phosphorylate RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. These effects were also induced by intrathecally administering naïve rats with Hes1 small interfering RNA (siRNA). Conversely, Hes1 overexpression using intrathecal lentiviral vectors in nerve injury rats produced reversal of pain behavior and reversed protein expressions, phosphorylation, and coupling to the promoter segments in the dorsal horn. Collectively, the results in this study indicated nerve injury diminishes spinal Hes1-dependent suppression of CDK9-dependent RNAPII phosphorylation on the mGluR5 promoter that possibly enhances mGluR5 transcription/expression for neuropathic pain development.
Collapse
|
16
|
Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis. Nat Commun 2019; 10:3028. [PMID: 31292434 PMCID: PMC6620341 DOI: 10.1038/s41467-019-10799-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications. The mechanisms controlling irreversible cell cycle exit in cerebellar granule progenitors (GCPs) have not been fully elucidated. Here, the authors performed RNA-sequencing of GCPs exiting the cell cycle to identify downregulation of Brd4 activity as an early event during cell cycle exit which subsequently regulates Shh activity and is needed for proper cerebellar development
Collapse
|
17
|
Rudman MD, Choi JS, Lee HE, Tan SK, Ayad NG, Lee JK. Bromodomain and extraterminal domain-containing protein inhibition attenuates acute inflammation after spinal cord injury. Exp Neurol 2018; 309:181-192. [DOI: 10.1016/j.expneurol.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
|
18
|
Spinal RNF20-Mediated Histone H2B Monoubiquitylation Regulates mGluR5 Transcription for Neuropathic Allodynia. J Neurosci 2018; 38:9160-9174. [PMID: 30201771 DOI: 10.1523/jneurosci.1069-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.
Collapse
|
19
|
GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription. Neuropharmacology 2018; 135:536-546. [DOI: 10.1016/j.neuropharm.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
|
20
|
Sun J, Li N, Duan G, Liu Y, Guo S, Wang C, Zhu C, Zhang X. Increased Na v1.7 expression in the dorsal root ganglion contributes to pain hypersensitivity after plantar incision in rats. Mol Pain 2018; 14:1744806918782323. [PMID: 29790813 PMCID: PMC6050993 DOI: 10.1177/1744806918782323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022] Open
Abstract
Postoperative pain remains a complex problem that is difficult to manage in the clinical context, seriously affecting rehabilitation and the quality of life of patients after surgery. Nociceptors, of which the cell bodies are located in the dorsal root ganglion, are crucial for initiating and conducting the pain signal. The peripheral voltage-gated sodium channels, including Nav1.7, which is mainly expressed in the dorsal root ganglion, are key to understanding the mechanism underlying postoperative pain. Nav1.7, in particular, of which mutations in the encoding gene ( SCN9A) can determine whether pain occurs, has aroused most attention. Previous studies have shown that Nav1.7 in dorsal root ganglion is critical for the development of inflammatory pain and some neuropathic pain. However, the expression of Nav1.7 in the dorsal root ganglion after surgery and its role in postoperative pain hypersensitivity remain unclear. Therefore, in this study, in order to gain a better understanding of the role of dorsal root ganglion Nav1.7 in pain hypersensitivity following operation, we dynamically examined the pain-related behavior and expression of Nav1.7 in L4-L6 dorsal root ganglion before and after plantar incision in rats (an acute postoperative pain model). After plantar incision, the mechanical and thermal pain threshold decreased significantly, the cumulative pain score was increased significantly, meanwhile quantitative polymerase chain reaction and Western blotting results showed that expression of Nav1.7 in L4-L6 dorsal root ganglion was enhanced significantly. After pretreatment using SCN9A-RNAi-LV delivered via an intrathecal tube, immunohistochemistry showed that increased expression of Nav1.7 in L4-L6 dorsal root ganglion after plantar incision was inhibited, as also confirmed by quantitative polymerase chain reaction and Western blotting. Moreover, pain hypersensitivity was alleviated. These results suggested that Nav1.7 of L4-L6 dorsal root ganglion plays an important role in the development of pain hypersensitivity after plantar incision.
Collapse
Affiliation(s)
- Jiaoli Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Guangyou Duan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Shanna Guo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Cong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Changmao Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s
Republic of China
| |
Collapse
|