1
|
Wei G, Tian X, Yang H, Luo Y, Liu G, Sun S, Wang X, Wen H. Adjunct Methods for Alzheimer's Disease Detection: A Review of Auditory Evoked Potentials. J Alzheimers Dis 2024; 97:1503-1517. [PMID: 38277292 DOI: 10.3233/jad-230822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The auditory afferent pathway as a clinical marker of Alzheimer's disease (AD) has sparked interest in investigating the relationship between age-related hearing loss (ARHL) and AD. Given the earlier onset of ARHL compared to cognitive impairment caused by AD, there is a growing emphasis on early diagnosis and intervention to postpone or prevent the progression from ARHL to AD. In this context, auditory evoked potentials (AEPs) have emerged as a widely used objective auditory electrophysiological technique for both the clinical diagnosis and animal experimentation in ARHL due to their non-invasive and repeatable nature. This review focuses on the application of AEPs in AD detection and the auditory nerve system corresponding to different latencies of AEPs. Our objective was to establish AEPs as a systematic and non-invasive adjunct method for enhancing the diagnostic accuracy of AD. The success of AEPs in the early detection and prediction of AD in research settings underscores the need for further clinical application and study.
Collapse
Affiliation(s)
- Guoliang Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yinpei Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guisong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuqing Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, School of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
3
|
Getzmann S, Schneider D, Wascher E. Selective spatial attention in lateralized multi-talker speech perception: EEG correlates and the role of age. Neurobiol Aging 2023; 126:1-13. [PMID: 36881943 DOI: 10.1016/j.neurobiolaging.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Speech comprehension under dynamic cocktail party conditions requires auditory search for relevant speech content and focusing spatial attention on the target talker. Here, we investigated the development of these cognitive processes in a population of 329 participants aged 20-70 years. We used a multi-talker speech detection and perception task in which pairs of words (each consisting of a cue and a target word) were simultaneously presented from lateralized positions. Participants attended to predefined cue words and responded to the corresponding target. Task difficulty was varied by presenting cue and target stimuli at different intensity levels. Decline in performance was observed only in the oldest group (age range 53-70 years) and only in the most difficult condition. The EEG analysis of neurocognitive correlates of lateralized auditory attention and stimulus evaluation (N2ac, LPCpc, alpha power lateralization) revealed age-associated changes in focussing on and processing of task-relevant information, while no such deficits were found on early auditory search and target segregation. Irrespective of age, more challenging listening conditions were associated with an increased allocation of attentional resources.
Collapse
Affiliation(s)
- Stephan Getzmann
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany.
| | - Daniel Schneider
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
4
|
Burleson AM, Souza PE. Cognitive and linguistic abilities and perceptual restoration of missing speech: Evidence from online assessment. Front Psychol 2022; 13:1059192. [PMID: 36571056 PMCID: PMC9773209 DOI: 10.3389/fpsyg.2022.1059192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
When speech is clear, speech understanding is a relatively simple and automatic process. However, when the acoustic signal is degraded, top-down cognitive and linguistic abilities, such as working memory capacity, lexical knowledge (i.e., vocabulary), inhibitory control, and processing speed can often support speech understanding. This study examined whether listeners aged 22-63 (mean age 42 years) with better cognitive and linguistic abilities would be better able to perceptually restore missing speech information than those with poorer scores. Additionally, the role of context and everyday speech was investigated using high-context, low-context, and realistic speech corpi to explore these effects. Sixty-three adult participants with self-reported normal hearing completed a short cognitive and linguistic battery before listening to sentences interrupted by silent gaps or noise bursts. Results indicated that working memory was the most reliable predictor of perceptual restoration ability, followed by lexical knowledge, and inhibitory control and processing speed. Generally, silent gap conditions were related to and predicted by a broader range of cognitive abilities, whereas noise burst conditions were related to working memory capacity and inhibitory control. These findings suggest that higher-order cognitive and linguistic abilities facilitate the top-down restoration of missing speech information and contribute to individual variability in perceptual restoration.
Collapse
|