1
|
Imperlini E, Corbo C. Unveiling the protein signature of the human osteosarcoma 3AB-OS cancer stem cell line. Biochem Biophys Res Commun 2023; 676:36-41. [PMID: 37481941 DOI: 10.1016/j.bbrc.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
In cancer research today, one of the major challenges is the eradication of cancer stem cells (CSCs) within the tumor mass. These cells play a crucial role in initiating, growing, and maintaining the tumor. Evidence has demonstrated the presence and significance of CSCs in the development and progression of osteosarcoma (OS). However, our understanding of the specific markers for OS stem cells remains limited. In this study, we aim to identify distinct biomarkers for this cell population by conducting a proteomic analysis comparing OS stem cells to their non-stem counterparts. Our investigation focuses on a particular cell line called 3AB-OS, which exhibits stem-like characteristics, and its differentiated parental cell line, MG63. Through this research, we discovered 63 proteins exclusively expressed in 3AB-OS cells. Applying an in silico bioinformatics approach, we determined that the majority of these proteins are associated with RNA metabolism. Additionally, we identified a potential correlation between the insulin-like growth factor-binding proteins (IGF2BPs) signaling pathway and the tumorigenic and stemness features observed in 3AB-OS cells.
Collapse
Affiliation(s)
- Esther Imperlini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Claudia Corbo
- School of Medicine and Surgery Nanomedicine Center, University of Milano-Bicocca, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
2
|
The Role of Tumor Microenvironment in Regulating the Plasticity of Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232416155. [PMID: 36555795 PMCID: PMC9788144 DOI: 10.3390/ijms232416155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.
Collapse
|
3
|
In vitro effects of ascorbic acid on viability and metabolism of patients' osteosarcoma stem cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:599-613. [PMID: 36651364 DOI: 10.2478/acph-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
Stagnation in novelties of osteosarcoma (OS) treatment indicates the need for new therapeutic methods. OS cancer stem cells (OS-CSC) are taught to have the ability to self-renew and develop mechanisms of anticancer drug resistance, and this is why it is difficult to eradicate them. Their metabolism has been recognized as a potential target of therapeutic action. Ascorbic acid (AA) is considered to act pro-oxidative against OS-CSC in vitro by oxidative effect and by inhibition of glycolysis. This study examined an in vitro impact of AA on OS-CSC metabolism isolated from patients' biopsies, with the aim of better understanding of OS-CSC metabolism and the action of AA on OS-CSC. OS-CSC were isolated using a sphere culture system and identified as stem cells using Hoechst 33342 exclusion assay. Determination of the dominant type of metabolism of OS-CSC, parental OS cells, human mesenchymal stem cells (hMSC) and U2OS OS lineage before and after AA treatment was done by Seahorse XF (Agilent). Cytotoxicity of high-dose AA was confirmed by the MTT test and was proven for all the examined cell types as well as HEK293. Seahorse technology showed that OS-CSC can potentially use both glycolysis and oxidative phosphorylation (OXPHOS), and can turn to glycolysis and slow metabolic potential in unfavorable conditions such as incubation in AA.
Collapse
|
4
|
EID3 Promotes Cancer Stem Cell-Like Phenotypes in Osteosarcoma through the Activation of PI3K-AKT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5941562. [PMID: 36071872 PMCID: PMC9441394 DOI: 10.1155/2022/5941562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/04/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study is to elucidate molecular mechanism by which E1A-like inhibitor of differentiation 3 (EID3) promotes cancer stem cell-like phenotypes in osteosarcoma. Overexpression of EID3 in osteosarcoma cells generated more spherical clones, enhanced the expression of stemness-associated genes, and promoted chemoresistance, invasion, and metastasis. Furthermore, osteosarcoma cells overexpressing EID3 had increased ability to grow in suspension as osteospheres with high expression of Sox2 and stem cell marker CD133. In addition, knockdown of EID3 reduced sphere formation and inhibited osteosarcoma cell migration and invasion. RNA sequencing and bioinformatics analysis revealed that PI3K-Akt signaling pathway and MAPK pathwayrelated genes were enriched in osteosarcoma cells with high expression of EID3. Taken together, EID3 promotes osteosarcoma, and EID3–PI3K-Akt axis is a potential therapeutic target for osteosarcoma treatment.
Collapse
|
5
|
Crenn V, Amiaud J, Gomez-Brouchet A, Potiron V, Gouin F, Rosset P, Nail LRL, Vidal L, Bertin H, Brion R, Tran G, Verrecchia F, Corre I, Redini F. Signature of the vascular tumor microenvironment as a marker of the therapeutic response to doxorubicin in a preclinical model of osteosarcoma. Am J Cancer Res 2022; 12:1843-1854. [PMID: 35530297 PMCID: PMC9077066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023] Open
Abstract
Predicting a response of osteosarcoma patients to chemotherapy, such as doxorubicin or high-dose methotrexate cocktail, remains a challenge in the clinic. Moreover, the prognostic value of currently used necrosis analysis is debatable. New markers of the therapeutic response or the prognostic response are urgently needed. The microenvironment plays a key role in the vascularization of highly heterogeneous tumors. Using the syngeneic MOS-J mouse model of osteosarcoma, we focused our study on the immunohistochemistry of tumor vascularization in order to identify new vessel markers, and to search for potential markers of the therapeutic response. Endomucin+, CD31+, and α-SMA+-positive elements were quantified in control (n=6) and doxorubicin-treated (n=6) mice in three different intra-tumor locations. We also used co-labeling to assess CD31+/Endomucin+ and CD31+/α-SMA+ co-expression. We identified a central tumor zone with a low vascularization profile for all of these markers. We identified two distinct types of vessels: CD31+/Endomucin+ vessels with a sprouting, neo-angiogenic, interlaced appearance, and CD31+/α-SMA+ vessel with a well-defined, mature structure. Doxorubicin appeared to reduce CD31+ expression in the tumor invasion front. In the doxorubicin-sensitive model, there were four times more CD31+/α-SMA+ elements than in the poorly responsive model. Therefore, we propose a methodology based on immunohistochemistry and multiplexed immunofluorescence to use endomucin as a promising new vascular marker in the osteosarcoma model. Moreover, our results suggest that CD31+/α-SMA+ vessels could be considered to be indicators of vasculature normalization and they may be used as specific markers of a good therapeutic response.
Collapse
Affiliation(s)
- Vincent Crenn
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
- Department of Orthopedics, University Hospital Center Hôtel DieuNantes, France
| | - Jérôme Amiaud
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
| | - Anne Gomez-Brouchet
- Department of Anatomical Pathology, University Hospital Center of PurpanToulouse, France
| | - Vincent Potiron
- CRCINA, INSERM, University of Angers, University of NantesNantes, France
- Institut de Cancérologie de l’OuestSaint-Herblain, France
| | | | - Philippe Rosset
- Department of Orthopedics, Trousseau University Hospital CenterTours, France
| | - Louis-Romée Le Nail
- Department of Orthopedics, Trousseau University Hospital CenterTours, France
| | - Luciano Vidal
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Ecole Centrale Nantes, Rapid Manufacturing Platform, GEM UMR 6183 CNRS LaboratoryNantes, France
| | - Helios Bertin
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
- Department of Maxillofacial Surgery, University Hospital Center Hôtel DieuNantes, France
| | - Régis Brion
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
| | - Guillaume Tran
- Department of Orthopedics, University Hospital Center Hôtel DieuNantes, France
| | - Franck Verrecchia
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
| | - Isabelle Corre
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
| | - Françoise Redini
- Nantes UniversityINSERM UMR 1238, Nantes, France
- Faculty of Medicine, University of NantesNantes, France
| |
Collapse
|
6
|
Zhang W, Wei L, Weng J, Yu F, Qin H, Wang D, Zeng H. Advances in the Research of Osteosarcoma Stem Cells and its Related Genes. Cell Biol Int 2021; 46:336-343. [PMID: 34941001 DOI: 10.1002/cbin.11752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is a malignant tumor that often occurs in adolescents. There is an urgent need of new treatment options for osteosarcoma due to its poor prognosis after metastasis. Cancer stem cell theory states that cancer stem cells represent a small proportion of cancer cells. These cancer stem cells have self-renewal ability and are closely associated with cancer growth and metastasis as well as chemotherapy resistance. Similarly, osteosarcoma stem cells (OSCs) play an important role in the growth, metastasis, and chemotherapy resistance of osteosarcoma cells. Targeting OSCs may represent a future treatment of osteosarcoma. Furthermore, some genes have shown to regulate the growth, metastasis, and chemotherapy resistance of osteosarcoma cells by altering the stemness of OSCs. Targeting these genes may help in the treatment of osteosarcoma. This review mainly discusses recent advances in the research of OSCs and its related genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Liangchen Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| |
Collapse
|
7
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Agarwal P, Gammon EA, Sandey M, Lindley SS, Koehler JW, Matz BM, Smith AN, Kashentseva EA, Dmitriev IP, Curiel DT, Smith BF. Evaluation of tumor immunity after administration of conditionally replicative adenoviral vector in canine osteosarcoma patients. Heliyon 2021; 7:e06210. [PMID: 33615011 PMCID: PMC7881234 DOI: 10.1016/j.heliyon.2021.e06210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/09/2020] [Accepted: 02/03/2021] [Indexed: 10/26/2022] Open
Abstract
Osteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells. We proposed that OC-CAVE1 (CAV2 with the E1A promoter replaced with the osteocalcin promotor) may also enhance existing immunity against tumors by overcoming immune tolerance via exposure of new epitopes and cytokine signaling. Eleven client-owned dogs with spontaneously occurring osteosarcomas were enrolled in a pilot study. All dogs were injected with OC-CAVE1 following amputation of the affected limb or limb-sparing surgery. Dogs were monitored for viremia and viral shedding. There was minimal virus shedding in urine and feces by the 6th day and no virus was present in blood after 4 weeks. CAV-2 antibody-titers increased in all of the patients, post-CRAd injection. Immunological assays were performed to monitor 1) humoral response against tumors, 2) levels of circulatory CD11c + cells, 3) levels of regulatory T cells, and 4) cytotoxic activity of tumor specific T cells against autologous tumor cells between pre-CRAd administration and 4 weeks post-CRAd administration samples. Administration of the CRAd OC-CAVE1 resulted in alteration of some immune response parameters but did not appear to result in increased survival duration. However, 2 dogs in the study achieved survival times in excess of 1 year. Weak replication of OC-CAVE1 in metastatic cells and delay of chemotherapy following CRAd treatment may contribute to the lack of immune response and improvement in survival time of the clinical patients.
Collapse
Affiliation(s)
- Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, USA
| | - Elizabeth A Gammon
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, USA
| | - Stephanie S Lindley
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, USA
| | - Jey W Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, USA
| | - Brad M Matz
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, USA
| | - Annette N Smith
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, USA
| |
Collapse
|
9
|
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH. Wnt Signaling in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:125-139. [PMID: 32767238 DOI: 10.1007/978-3-030-43085-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt molecules are a class of cysteine-rich secreted glycoproteins that participate in various developmental events during embryogenesis and adult tissue homeostasis. Since its discovery in 1982, the roles of Wnt signaling have been established in various key regulatory systems in biology. Wnt signals exert pleiotropic effects, including mitogenic stimulation, cell fate specification, and differentiation. The Wnt signaling pathway in humans has been shown to be involved in a wide variety of disorders including colon cancer, sarcoma, coronary artery disease, tetra-amelia, Mullerian duct regression, eye vascular defects, and abnormal bone mass. The canonical Wnt pathway functions by regulating the function of the transcriptional coactivator β-catenin, whereas noncanonical pathways function independent of β-catenin. Although the role of Wnt signaling is well established in epithelial malignancies, its role in mesenchymal tumors is more controversial. Some studies have suggested that Wnt signaling plays a pro-oncogenic role in various sarcomas by driving cell proliferation and motility; however, others have reported that Wnt signaling acts as a tumor suppressor by committing tumor cells to differentiate into a mature lineage. Wnt signaling pathway also plays an important role in regulating cancer stem cell function. In this review, we will discuss Wnt signaling pathway and its role in osteosarcoma.
Collapse
Affiliation(s)
- Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, Lecanda F, Hartmann C, Sibilia M, Wagner EF. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res 2020; 30:885-901. [PMID: 32686768 PMCID: PMC7608146 DOI: 10.1038/s41422-020-0370-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumor in urgent need of better therapies. Using genetically modified mouse models (GEMMs), we demonstrate that Wnt signaling promotes c-Fos-induced OS formation via the actions of the collagen-modifying enzyme Loxl2. c-Fos/AP-1 directly regulates the expression of the Wnt ligands Wnt7b and Wnt9a in OS cells through promoter binding, and Wnt7b and Wnt9a in turn promote Loxl2 expression in murine and human OS cells through the transcription factors Zeb1 and Zeb2. Concordantly, inhibition of Wnt ligand secretion by inactivating the Wnt-less (Wls) gene in osteoblasts in c-Fos GEMMs either early or in a therapeutic setting reduces Loxl2 expression and progression of OS. Wls-deficient osteosarcomas proliferate less, are less mineralized and are enriched in fibroblastic cells surrounded by collagen fibers. Importantly, Loxl2 inhibition using either the pan-Lox inhibitor BAPN or a specific inducible shRNA reduces OS cell proliferation in vitro and decreases tumor growth and lung colonization in murine and human orthotopic OS transplantation models. Finally, OS development is delayed in c-Fos GEMMs treated with BAPN or with specific Loxl2 blocking antibodies. Congruently, a strong correlation between c-FOS, LOXL2 and WNT7B/WNT9A expression is observed in human OS samples, and c-FOS/LOXL2 co-expression correlates with OS aggressiveness and decreased patient survival. Therefore, therapeutic targeting of Wnt and/or Loxl2 should be considered to potentiate the inadequate current treatments for pediatric, recurrent, and metastatic OS.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lena I Wolff
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Markus Linder
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | | | - Ana Patiño-García
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Department of Pediatrics, University Clinic of Navarra, Pamplona, 31008, Spain
| | - Fernando Lecanda
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, 31008, Spain
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Maria Sibilia
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria.
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria.
| |
Collapse
|
11
|
Wang F, Zhang Z, Li Q, Yu T, Ma C. Untargeted LC-MS/MS analysis reveals metabolomics feature of osteosarcoma stem cell response to methotrexate. Cancer Cell Int 2020; 20:269. [PMID: 32587477 PMCID: PMC7313215 DOI: 10.1186/s12935-020-01356-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cancer stem cell (CSC) is identified in osteosarcoma (OS) and considered resistant to chemotherapeutic agents. However, the mechanism of osteosarcoma stem cell (OSC) resistant to chemotherapy remains debatable and vague, and the metabolomics feature of OSC is not clarified. Materials and methods OSC was isolated by using sphere forming assay and identified. Untargeted LC-MS/MS analysis was performed to reveal the metabolomics feature of OSC and underlying mechanisms of OSC resistant to methotrexate (MTX). Results OSC was efficiently isolated and identified from human OS 143B and MG63 cell lines with enhanced chemo-resistance to MTX. The untargeted LC-MS analysis revealed that OSC showed differential metabolites and perturbed signaling pathways, mainly involved in metabolisms of fatty acid, amino acid, carbohydrate metabolism and nucleic acid. After treated with MTX, metabolomics feature of OSC was mainly involved metabolisms of amino acid, fatty acid, energy and nucleic acid. Moreover, compared with their parental OS cells response to MTX, the differential metabolites and perturbed signaling pathways were mainly involved in metabolism of amino acid, fatty acid and nucleic acid. What's more, Rap1 signaling pathway and Ras signaling pathway were involved in OS cells and their SCs response to MTX. Conclusion Sphere-forming assay was able to efficiently isolate OSC from human OS cell lines and the untargeted LC-MS/MS analysis was suggested a sufficient methodology to investigate metabolomics features of OS cells and OSCs. Moreover, the metabolomics features of OSCs response to MTX might reveal a further understanding of chemotherapeutic resistance in OS.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Qin Li
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Tao Yu
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| | - Chengbin Ma
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Chongshan Road, Shenyang, 110032 Liaoning People's Republic of China
| |
Collapse
|
12
|
Zhao Z, Wu M, Zhang X, Jin Q, Wang Y, Zou C, Huang G, Yin J, Xie X, Shen J. CB-5083, an inhibitor of P97, suppresses osteosarcoma growth and stem cell properties by altering protein homeostasis. Am J Transl Res 2020; 12:2956-2967. [PMID: 32655822 PMCID: PMC7344079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents, and its treatment still needs to be improved. Here, we assessed the antitumor ability of CB-5083, an oral inhibitor of P97, in osteosarcoma. MTT, colony formation, sphere formation, cell cycle and apoptosis assays and animal studies showed that CB-5083 significantly inhibited osteosarcoma cell growth in vitro and in vivo. The inhibition of P97 also led to suppression of endoplasmic reticulum-associated degradation (ERAD), thereby resulted in activation of the apoptosis function of the unfolded protein response (UPR), and ultimately induced the death of osteosarcoma cells. Furthermore, an analysis of clinical patient samples confirmed that P97 can predict the outcomes of patients with osteosarcoma. Our studies showed that CB-5083 inhibited the growth and stem cell abilities of osteosarcoma cells both in vitro and in vivo and might be a promising drug for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Mansi Wu
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan UniversityGuangzhou, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Qinglin Jin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Yongqian Wang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
13
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
14
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. J Cell Physiol 2019; 235:4167-4182. [PMID: 31709547 DOI: 10.1002/jcp.29344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Bisadi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Feng J, Lan R, Cai G, Lin J. TREX1 suppression imparts cancer-stem-cell-like characteristics to CD133 - osteosarcoma cells through the activation of E2F4 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1134-1153. [PMID: 31933929 PMCID: PMC6947077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 06/10/2023]
Abstract
There is ongoing debate whether cancer stem cells (CSCs) could arise from the transformation of non-CSCs under specific conditions. In the present study, the role of the three prime repair exonuclease 1 (TREX1) in regulating CSC generation form human osteosarcoma cells was investigated. High, intermediate and low levels of TREX1 expression were respectively observed in low-grade, high-grade and metastatic human osteosarcoma samples, while the opposite tendency was observed for E2F4, a transcription factor associated with G2 arrest. Luciferase assay proved that TREX1 had a negative impact on the activity of E2F4 promoter. TREX1 was highly expressed in CD133- HOS cells (non-CSC osteosarcoma cells) compared to CD133+ ones; whereas TREX1 knockdown endowed the CD133- non-CSCs with CSC-like characteristics in vitro relying on E2F4 activation, as demonstrated by enlarged proportion of the subset expressing CSC markers in flow cytometry analysis, enhanced self-renewal ability in osteosphere formation assay, increased metastasis capacity in migration and invasion assays, together with improved chemoresistance to cisplatin. Furthermore, TREX1 knockdown and subsequent E2F4 activation could promote the tumorigenicity of CD133- non-CSCs in vivo. With respect to underlying mechanisms, it was found that in CD133- HOS cells, TREX1 suppression would allow the activation of β-catenin signaling in the dependence of E2F4, thus possibly leading to the up-regulation of the transcription factor OCT4. These findings suggested that TREX1 was probably a negative regulator of CSC formation and hence worth to be further studied for developing new treatments in cancer therapies targeting CSCs.
Collapse
Affiliation(s)
- Jinyi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen UniversityXiamen, China
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| | - Ruilong Lan
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| | - Guanxiong Cai
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| | - Jianhua Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| |
Collapse
|
16
|
Dai G, Deng S, Guo W, Yu L, Yang J, Zhou S, Gao T. Notch pathway inhibition using DAPT, a γ-secretase inhibitor (GSI), enhances the antitumor effect of cisplatin in resistant osteosarcoma. Mol Carcinog 2018; 58:3-18. [PMID: 29964327 DOI: 10.1002/mc.22873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022]
Abstract
Overcoming platinum drug resistance represents a major clinical challenge in osteosarcoma (OS) treatment. The high rates and patterns of therapeutic failure seen in patients are consistent with a steady accumulation of drug-resistant cancer stem cells (CSCs). Notch signaling is implicated in regulating CSCs and tumor resistance to platinum. Thus, we attempt to investigate whether inhibiting of Notch pathway could sensitize cisplatin (CDDP) to CDDP-resistant OS cells and the underlying molecular mechanisms. OS cell lines resistant to CDDP were treated with DAPT, CDDP or combination, we present evidences that DAPT enhances the cytotoxic effect of CDDP in resistant OS by inhibiting proliferation, resulting in G0/G1 cell-cycle arrest, inducing apoptosis, and reducing motility. In addition, DAPT targeting depletes OS stem cells (OSCs), thus increasing tumor sensitivity to platinum, which indicating that a dual combination targeting both OSCs and the bulk of tumor cells are needed for tumor eradication. We also found that the combination of CDDP and DAPT exhibit additive suppression on phosphorylated AKT and ERK, contributing to the anti-cancer effects. In animal model, this combination therapy inhibits the growth and metastasis of CDDP resistant tumor xenografts in nude mice to a greater extent than treatment with either reagent alone. Based on these results, we conclude that CDDP plus DAPT was able to sensitize CDDP-resistant human OS cells to CDDP by downregulation of Notch signaling. CDDP and DAPT combination treatment may be effective and promising for advanced OS.
Collapse
Affiliation(s)
- Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Sheng Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Tian Gao
- Department of Orthopedic Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| |
Collapse
|
17
|
Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. PLoS One 2018; 13:e0205918. [PMID: 30356255 PMCID: PMC6200233 DOI: 10.1371/journal.pone.0205918] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Resveratrol shows potent anti-tumor therapeutic properties in various tumors. However, the exact effect of resveratrol on osteosarcoma cells, especially cancer stem cells, remains unclear. In this study, we examined the effect of resveratrol on osteosarcoma stem cells and explored the underlying molecular mechanisms. Resveratrol inhibited cell viability, self-renewal ability and tumorigenesis of osteosarcoma cells, whereas showed no significant inhibition effects to normal osteoblast cells. Mechanically, resveratrol treatment decreased cytokines synthesis and inhibited JAK2/STAT3 signaling, which was consistent with the decline of cancer stem cells marker, CD133. Exogenous STAT3 activation attenuated the cancer stem cell elimination effects of resveratrol treatment. Our results demonstrated that resveratrol inhibited osteosarcoma cell proliferation and tumorigenesis ability, which was correlated with cytokines inhibition related JAK2/STAT3 signaling blockage. Resveratrol may be a promising therapeutic agent for osteosarcoma management.
Collapse
|
18
|
Liu F, Li L, Li Y, Ma X, Bian X, Liu X, Wang G, Zhang D. Overexpression of SENP1 reduces the stemness capacity of osteosarcoma stem cells and increases their sensitivity to HSVtk/GCV. Int J Oncol 2018; 53:2010-2020. [PMID: 30226577 PMCID: PMC6192779 DOI: 10.3892/ijo.2018.4537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma stem cells are able to escape treatment with conventional chemotherapeutic drugs, as the majority of them are in a quiescent state. Recent reports have suggested that small ubiquitin-like modifiers (SUMOs) serve important roles in the maintenance of cancer stem cell stemness. Therefore, a potential strategy to increase the effectiveness of chemotherapeutic agents is to interfere with SUMO modification of proteins associated with the maintenance of stemness in osteosarcoma stem cells. The present study revealed a significant decrease in the expression of SUMO1 specific peptidase 1 (SENP1) in osteosarcoma tissues and osteosarcoma cell lines, and SENP1 expression was much lower in osteosarcoma stem cells than in non-cancer stem cells. Further experiments indicated that the low levels of SENP1 were essential for maintenance of stemness in osteosarcoma stem cells. Overexpression of SENP1 resulted in a marked decrease in the maintenance of stemness, but only slightly induced apoptosis of osteosarcoma cells, which is crucial to reduce the side effects of drugs on normal precursor cells. Finally, SENP1 overexpression led to a significant increase in the sensitivity of osteosarcoma stem cells to the herpes simplex virus 1 thymidine kinase gene in combination with ganciclovir in vitro and in vivo. In conclusion, the present study described a novel method to increase the sensitivity of osteosarcoma stem cells to chemotherapeutic drugs. Notably, this approach may significantly reduce the required dose of conventional chemotherapeutic drugs and reduce side effects.
Collapse
Affiliation(s)
- Fengting Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dianying Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
19
|
Koka P, Mundre RS, Rangarajan R, Chandramohan Y, Subramanian RK, Dhanasekaran A. Uncoupling Warburg effect and stemness in CD133 +ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Mol Biol Rep 2018; 45:1653-1662. [PMID: 30128626 DOI: 10.1007/s11033-018-4309-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) which are known to be residing deep inside the core of the tumor in its hypoxia niche is responsible for relapse of cancers. Owing to this hypoxic niche, the residing CSCs simultaneously fuel their stemness, cancerous and drug resistance properties. Attributes of CSCs are still not properly understood in its hypoxia niche. Addressing this, we sorted CSCs from Saos-2 (osteosarcoma) cell line using CD133 antibody. The CD133+ve CSCs exhibited quiescent cell proliferation in DNA doubling, Ca2+ signaling and cell cycle analysis. CD133+ve CSCs exhibited increased production of ATP and lactate dehydrogenase (LDH) activity under hypoxia. CD133+ve cells exhibited decreased glucose uptake compared to ATP levels under hypoxia. Moreover, there was only negligible LDH activity in CD133+ve cells under normoxia which do not rely on Warburg effect. Stemness markers (such as c-Myc, SOX2, Oct4 and TERT), metastasis marker (CD44) and drug resistance marker (ABCG2) were highly expressed in CD133+ve cells. In summary, both CD133+ve/-ve cells of Saos-2 (osteosarcoma) cell line did not exhibit Warburg effect under normoxic condition. Moreover, this significantly indicates an uncoupling between stemness and Warburg effect in CD133+ve. This work provides a novel insight into the metabolic and functional features of CSCs in a hypoxic environment which could open new avenues for therapeutic strategies aimed to target CSCs.
Collapse
Affiliation(s)
- Pavani Koka
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | - Rohini Rangarajan
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yamini Chandramohan
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | | |
Collapse
|
20
|
Crenn V, Biteau K, Amiaud J, Dumars C, Guiho R, Vidal L, Nail LRL, Heymann D, Moreau A, Gouin F, Redini F. Bone microenvironment has an influence on the histological response of osteosarcoma to chemotherapy: retrospective analysis and preclinical modeling. Am J Cancer Res 2017; 7:2333-2349. [PMID: 29218254 PMCID: PMC5714759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023] Open
Abstract
Osteosarcoma, the most common malignant primary bone tumor, is currently treated with chemotherapy and surgery. The effectiveness of chemotherapy is evaluated by means of histological analysis of tumor necrosis, known as "the Huvos score". However, 25% of the patients initially considered good responders will relapse. In our practice, strong tissue heterogeneity around the residual viable cells of the osteosarcoma is observed, but this is not taken into account by the Huvos score, as it is only an average. The objective is to determine whether heterogeneity in the osteosarcoma's microenvironment can play a role in the histological response to chemotherapy. Two complementary approaches have been developed: (i) the therapeutic response to several monotherapies (ifosfamide, cisplatin, doxorubicin) has been compared to tumor growth and the necrosis levels in different preclinical syngeneic osteosarcoma models, mimicking various microenvironments by injecting the tumor cells into subcutaneous, intra-muscular paratibial, or intra-osseous sites; (ii) a retrospective analysis was performed on patients' osteoblastic osteosarcoma biopsies. Tissue localization mapping of residual live tumor cell colonies was evaluated for potential correlation with overall survival. The results of the preclinical studies showed a difference in tumor growth depending on the osteosarcoma model, with a higher rate in bone sites compared to subcutaneous tumors. For the therapeutic response, a higher response to doxorubicin was observed in the intra-osseous model compared to the intra-muscular model for tumor growth (P = 0.013) and necrosis (P = 0.007). These data strongly suggest that the microenvironment plays a role in how osteosarcoma responds to chemotherapy. The retrospective analysis showed no significant survival difference between residual cell sites, although the soft tissues may be seen as a potential negative factor.
Collapse
Affiliation(s)
- Vincent Crenn
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
- Department of Orthopedic, CHU Hôtel DIEUNantes, France
| | - Kevin Biteau
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
| | - Jérôme Amiaud
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
| | | | - Romain Guiho
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
| | - Luciano Vidal
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
| | - Louis-Romée Le Nail
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
- Department of Orthopedic, CHU TrousseauTours, France
| | - Dominique Heymann
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
| | - Anne Moreau
- Department of Pathology, CHU Hôtel DIEUNantes, France
| | - François Gouin
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
- Department of Orthopedic, CHU Hôtel DIEUNantes, France
| | - Françoise Redini
- Inserm UMR 1238Nantes, France
- Université de Nantes, Bone Sarcomas and Remodeling of Calcified Tissues, Faculté de MédecineNantes, France
| |
Collapse
|
21
|
Yan GN, Tang XF, Zhang XC, He T, Huang YS, Zhang X, Meng G, Guo DY, Lv YF, Guo QN. TSSC3 represses self-renewal of osteosarcoma stem cells and Nanog expression by inhibiting the Src/Akt pathway. Oncotarget 2017; 8:85628-85641. [PMID: 29156746 PMCID: PMC5689636 DOI: 10.18632/oncotarget.20429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/10/2017] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common type of bone cancer, and the second leading cause of cancer-related death in children and young adults. Osteosarcoma stem cells are essential for osteosarcoma initiation, metastasis, chemoresistance and recurrence. In the present study, we report that: 1) higher TSSC3 expression indicates a better prognosis for osteosarcoma patients, and; 2) overexpression of TSSC3 significantly decreases sphere-forming capacity, tumor initiation, stemness-related surface markers and Nanog expression in osteosarcoma cells. We also discovered that higher Nanog expression correlates to a worse prognosis for osteosarcoma patients, and overexpression of Nanog increases the stem-related phenotype in osteosarcoma cells. Knockdown of Nanog suppresses these phenotypes. Inhibition of Nanog expression and self-renewal of osteosarcoma cells by TSSC3 overexpression appears to be mediated through inactivation of the Src/Akt pathway. In the clinical setting, expression of TSSC3, p-Src and Nanog is associated with recurrence, metastasis and surgical intervention. Lower TSSC3 expression, higher Nanog expression or higher p-Src expression indicate a poor prognosis for osteosarcoma patients. Overall, our study demonstrates that TSSC3 inhibits the stem-like phenotype and Nanog expression by inactivation of the Src/Akt pathway; this emphasizes the importance of Nanog in osteosarcoma stem cells.
Collapse
Affiliation(s)
- Guang-Ning Yan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xue-Feng Tang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-Chao Zhang
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Ting He
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yu-Sheng Huang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xi Zhang
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Gang Meng
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - De-Yu Guo
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
22
|
Yan GN, Lv YF, Guo QN. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets. Cancer Lett 2016; 370:268-74. [DOI: 10.1016/j.canlet.2015.11.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/15/2022]
|
23
|
Mei H, Yu L, Ji P, Yang J, Fang S, Guo W, Liu Y, Chen X. Doxorubicin activates the Notch signaling pathway in osteosarcoma. Oncol Lett 2015; 9:2905-2909. [PMID: 26137168 DOI: 10.3892/ol.2015.3135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Notch signaling is critical in various biological processes, including cell proliferation, differentiation and apoptosis. Furthermore, accumulating evidence indicated that aberrant Notch signaling has a tumor-promoting function in osteosarcoma. However, the effect of the conventional chemotherapeutic agent, doxorubicin, on Notch signaling remains unclear. In the present study, osteosarcoma cells were treated with various concentrations of doxorubicin and the effect on Notch signaling was analyzed. A cytostatic dose of doxorubicin (<0.5 µM) was identified to significantly activate the Notch signaling pathway in a dose-dependent manner (P<0.01), as demonstrated by the elevated expression levels of Notch target genes. However, a toxic dose of doxorubicin (≥0.5 µM) significantly inhibited the Notch signaling pathway (P<0.01). These results indicated a significant correlation between doxorubicin administration and the Notch signaling pathway. Therefore, the present study supports further investigation into Notch and osteosarcoma chemoresistance.
Collapse
Affiliation(s)
- Hongjun Mei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ling Yu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Peng Ji
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian Yang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shuo Fang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weichun Guo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Liu
- Department of Orthopaedics, Fifth Hospital of Wuhan, Hubei 430050, P.R. China
| | - Xuanyin Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun 2015; 6:6411. [PMID: 25832504 DOI: 10.1038/ncomms7411] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/27/2015] [Indexed: 12/12/2022] Open
Abstract
The repressive Hippo pathway has a profound tumour suppressive role in cancer by restraining the growth-promoting function of the transcriptional coactivator, YAP. We previously showed that the stem cell transcription factor Sox2 maintains cancer stem cells (CSCs) in osteosarcomas. We now report that in these tumours, Sox2 antagonizes the Hippo pathway by direct repression of two Hippo activators, Nf2 (Merlin) and WWC1 (Kibra), leading to exaggerated YAP function. Repression of Nf2, WWC1 and high YAP expression marks the CSC fraction of the tumor population, while the more differentiated fraction has high Nf2, high WWC1 and reduced YAP expression. YAP depletion sharply reduces CSCs and tumorigenicity of osteosarcomas. Thus, Sox2 interferes with the tumour-suppressive Hippo pathway to maintain CSCs in osteosarcomas. This Sox2-Hippo axis is conserved in other Sox2-dependent cancers such as glioblastomas. Disruption of YAP transcriptional activity could be a therapeutic strategy for Sox2-dependent tumours.
Collapse
|
25
|
|
26
|
Mutsaers AJ, Walkley CR. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone 2014; 62:56-63. [PMID: 24530473 DOI: 10.1016/j.bone.2014.02.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
Osteosarcoma is a disease with many complex genetic abnormalities but few well defined genetic drivers of tumor initiation and evolution. The disease is diagnosed and defined through the observation of malignant osteoblastic cells that produce osteoid, however the exact cell of origin for this cancer remains to be definitively defined. Evidence exists to support a mesenchymal stem cell as well as committed osteoblast precursors as the cell of origin. Increasing numbers of experimental models have begun to shed light on to the likely cell population that gives rise to OS in vivo with the weight of evidence favoring an osteoblastic population as the cell of origin. As more information is gathered regarding osteosarcoma initiating cells and how they may relate to the cell of origin we will derive a better understanding of the development of this disease which may ultimately lead to clinical improvements through more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Carl R Walkley
- Stem Cell Regulation Unit and ACRF Rational Drug Discovery Centre, St. Vincent's Institute, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
27
|
Choong PF, Teh HX, Teoh HK, Ong HK, Choo KB, Sugii S, Cheong SK, Kamarul T. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming. Int J Med Sci 2014; 11:1154-60. [PMID: 25170299 PMCID: PMC4147642 DOI: 10.7150/ijms.8281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.
Collapse
Affiliation(s)
- Pei Feng Choong
- 1. MAKNA Cancer Research Institute, Kuala Lumpur, Malaysia; ; 2. Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman (UTAR), Selangor, Malaysia
| | - Hui Xin Teh
- 2. Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman (UTAR), Selangor, Malaysia
| | - Hoon Koon Teoh
- 1. MAKNA Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Han Kiat Ong
- 2. Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman (UTAR), Selangor, Malaysia
| | - Kong Bung Choo
- 2. Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman (UTAR), Selangor, Malaysia
| | - Shigeki Sugii
- 3. Fat Metabolism and Stem Cell Group, Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, ASTAR, 138667, Singapore; ; 4. Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Soon Keng Cheong
- 1. MAKNA Cancer Research Institute, Kuala Lumpur, Malaysia; ; 2. Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman (UTAR), Selangor, Malaysia
| | - Tunku Kamarul
- 5. Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
McManus MM, Weiss KR, Hughes DPM. Understanding the role of Notch in osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:67-92. [PMID: 24924169 DOI: 10.1007/978-3-319-04843-7_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Notch pathway has been described as an oncogene in osteosarcoma, but the myriad functions of all the members of this complex signaling pathway, both in malignant cells and nonmalignant components of tumors, make it more difficult to define Notch as simply an oncogene or a tumor suppressor. The cell-autonomous behaviors caused by Notch pathway manipulation may vary between cell lines but can include changes in proliferation, migration, invasiveness, oxidative stress resistance, and expression of markers associated with stemness or tumor-initiating cells. Beyond these roles, Notch signaling also plays a vital role in regulating tumor angiogenesis and vasculogenesis, which are vital aspects of osteosarcoma growth and behavior in vivo. Further, osteosarcoma cells themselves express relatively low levels of Notch ligand, making it likely that nonmalignant cells, especially endothelial cells and pericytes, are the major source of Notch activation in osteosarcoma tumors in vivo and in patients. As a result, Notch pathway expression is not expected to be uniform across a tumor but likely to be highest in those areas immediately adjacent to blood vessels. Therapeutic targeting of the Notch pathway is likewise expected to be complicated. Most pharmacologic approaches thus far have focused on inhibition of gamma secretase, a protease of the presenilin complex. This enzyme, however, has numerous other target proteins that would be expected to affect osteosarcoma behavior, including CD44, the WNT/β-catenin pathway, and Her-4. In addition, Notch plays a vital role in tissue and organ homeostasis in numerous systems, and toxicities, especially GI intolerance, have limited the effectiveness of gamma secretase inhibitors. New approaches are in development, and the downstream targets of Notch pathway signaling also may turn out to be good targets for therapy. In summary, a full understanding of the complex functions of Notch in osteosarcoma is only now unfolding, and this deeper knowledge will help position the field to better utilize novel therapies as they are developed.
Collapse
Affiliation(s)
- Madonna M McManus
- The Children's Cancer Hospital at MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
29
|
Yu L, Liu S, Guo W, Zhang C, Zhang B, Yan H, Wu Z. hTERT promoter activity identifies osteosarcoma cells with increased EMT characteristics. Oncol Lett 2013; 7:239-244. [PMID: 24348856 PMCID: PMC3861599 DOI: 10.3892/ol.2013.1692] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/14/2013] [Indexed: 01/03/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical step in order for epithelial-derived malignancies to metastasize, however, its role in mesenchymal-derived tumors, i.e., osteosarcoma, remains unclear. Cancer stem cells (CSCs) are enriched with cells that undergo EMT. The activity of telomerase is maintained in normal stem cells and a number of malignant tumors. The current study observed the heterogeneity of telomerase activity among individual osteosarcoma cells. We hypothesized that telomerase-positive (TELpos) cells are enriched for stem cell-like and EMT properties. A human telomerase reverse transcriptase (hTERT) promoter-reporter was applied to assess the telomerase activity of individual MG63 osteosarcoma cells and sort them into TELpos and telomerase-negative (TELneg) subpopulations. It was found that the TELpos cells exhibited an enhanced ability to form sarcospheres in vitro. In addition, TELpos cells exhibited a higher expression of vimentin, accompanied by an increased long/short axis ratio. A panel of EMT-related genes was evaluated by quantitative PCR and western blot analysis, and were found to be significantly upregulated in TELpos cells. Next, the in vitro migration capacity was examined by Transwell assay, which confirmed that TELpos cells are more prone to migration (2.6 fold). The results of the present study support the concept that EMT also applies to mesenchymal-derived osteosarcoma and draws a connection between telomerase and EMT characteristics.
Collapse
Affiliation(s)
- Ling Yu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiqing Liu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chun Zhang
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Zhang
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huichao Yan
- Opening Laboratory for Oversea Scientists, Wuhan University School of Basic Medical Science, Wuhan, Hubei 430072, P.R. China
| | - Zheng Wu
- Department of Radiation Oncology, Tumor Hospital Xiangya School of Medicine of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Mu X, Isaac C, Greco N, Huard J, Weiss K. Notch Signaling is Associated with ALDH Activity and an Aggressive Metastatic Phenotype in Murine Osteosarcoma Cells. Front Oncol 2013; 3:143. [PMID: 23805413 PMCID: PMC3678113 DOI: 10.3389/fonc.2013.00143] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4) are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH) activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.
Collapse
Affiliation(s)
- Xiaodong Mu
- Stem Cell Research Laboratory, University of Pittsburgh Medical Center , Pittsburgh, PA , USA
| | | | | | | | | |
Collapse
|
31
|
Salerno M, Avnet S, Bonuccelli G, Eramo A, De Maria R, Gambarotti M, Gamberi G, Baldini N. Sphere-forming cell subsets with cancer stem cell properties in human musculoskeletal sarcomas. Int J Oncol 2013; 43:95-102. [PMID: 23636271 DOI: 10.3892/ijo.2013.1927] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/04/2013] [Indexed: 11/05/2022] Open
Abstract
Musculoskeletal sarcomas are aggressive malignancies often characterized by an adverse prognosis despite the use of intense multiagent chemotherapy or molecular targeted therapy in combination to surgery and radiotherapy. Stem-like cells identified within solid tumors have been recently implicated in drug resistance, metastasis and local relapse. Here, we report the identification of putative cancer stem cells (CSCs) in sarcomas using a sphere culture system. These sarcospheres, able to grow in anchorage-independent and serum-starved conditions, express the pluripotent embryonic stem cell marker genes OCT3/4, Nanog and SOX2. Expression levels of these genes were greater in sarcospheres than in the parental tumor cultures. Importantly, the isolated tumor spheres transplanted into mice were tumorigenic and capable of recapitulating the human disease. Finally, we demonstrated that low (1%) O2 conditions, reproducing those found within the tumor microenvironment, significantly increase the number and the size of sarcospheres. The sphere formation assay is, therefore, a valuable method for the isolation of putative CSCs from human sarcomas and its efficiency is improved by controlling oxygen availability. This method provides a reliable preclinical model that can be used for future studies aimed at investigating crucial aspects of sarcoma biology, such as resistance to treatments and relapse.
Collapse
Affiliation(s)
- Manuela Salerno
- Department of Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rapamycin Inhibits ALDH Activity, Resistance to Oxidative Stress, and Metastatic Potential in Murine Osteosarcoma Cells. Sarcoma 2013; 2013:480713. [PMID: 23476113 PMCID: PMC3586506 DOI: 10.1155/2013/480713] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/04/2012] [Accepted: 12/22/2012] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone. Mortality is determined by the presence of metastatic disease, but little is known regarding the biochemical events that drive metastases. Two murine OS cell lines, K7M2 and K12, are related but differ significantly in their metastatic potentials: K7M2 is highly metastatic whereas K12 displays much less metastatic potential. Using this experimental system, the mammalian target of rapamycin (mTOR) pathway has been implicated in OS metastasis. We also discovered that aldehyde dehydrogenase (ALDH, a stem cell marker) activity is higher in K7M2 cells than K12 cells. Rapamycin treatment reduces the expression and enzymatic activity of ALDH in K7M2 cells. ALDH inhibition renders these cells more susceptible to apoptotic death when exposed to oxidative stress. Furthermore, rapamycin treatment reduces bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) gene expression and inhibits K7M2 proliferation, migration, and invasion in vitro. Inhibition of ALDH with disulfiram correlated with decreased mTOR expression and activity. In conclusion, we provide evidence for interaction between mTOR activity, ALDH activity, and metastatic potential in murine OS cells. Our work suggests that mTOR and ALDH are therapeutic targets for the treatment and prevention of OS metastasis.
Collapse
|
33
|
Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett 2012; 338:158-67. [PMID: 22659734 DOI: 10.1016/j.canlet.2012.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Upal Basu-Roy
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|
34
|
Zeng W, Wan R, Zheng Y, Singh SR, Wei Y. Hypoxia, stem cells and bone tumor. Cancer Lett 2011; 313:129-36. [PMID: 21999934 PMCID: PMC3215823 DOI: 10.1016/j.canlet.2011.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/26/2022]
Abstract
Normal oxygen level is critical for niches that together with other components of the niche play vital role in regulating stem or tumor cells behavior. Hypoxia plays an important role in normal development and disease progression, including the growth of solid tumors. The hypoxia inducible factors (HIFs) are the key mediators of the cellular response to hypoxia. In this review, we focused on the role of HIFs on bone tumor formation. Further, we also emphasized how hypoxia, stem cells, and its niches regulate the bone tumorigenesis.
Collapse
Affiliation(s)
- Wen Zeng
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Shanghai First People’s Hospital, Shanghai Jiaotong University, 200080, People’s Republic of China
| | - Rong Wan
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Yuehuan Zheng
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, Maryland, 21702, USA
| | - Yiyong Wei
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|