1
|
Ataollahi F, Amirheidari B, Ahmadinejad M, Khoshnam Z, Shakibaie M, Forootanfar H, Nooshadokht M, Shabani M, Ramezani Nejad M, Khodabakhshi A, Amirheidari Z. Bedsore Healing Using Selenium-Enriched Lactobacillus brevis LSe: A Randomized, Double-Blind, Controlled Clinical Trial. Biol Trace Elem Res 2025; 203:766-774. [PMID: 38773035 DOI: 10.1007/s12011-024-04233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Bedsores impose an important challenge to the healthcare system. Se-baring probiotics are considered effective agents in wound healing and inflammation reduction via several pathways. The present study focused on the administration of a Se-enriched probiotic, originally obtained from a traditional dairy product for bedsore healing. Daily doses of the probiotic were administered to 20 ICU patients for 14 days and the wound healing criteria were compared with those of the same group of ICU patients as control, both groups suffering from stages I and II bedsore (a randomized, double-blind, controlled clinical trial). The administered Se-enriched probiotic decreased the bedsore healing period significantly (on average by 2.4 days, P-value: 0.039), as well as bedsore size (on average by 7 mm2, nonsignificant) and bedsore grade (10%, nonsignificant) in the treatment group more efficiently than the control group. Some key laboratory parameters associated with inflammation were also improved in patients receiving the Se-supplemented probiotic. The limitations of this study include the low number of patients meeting inclusion criteria within the timeframe of the study, and the impossibility of following up patients after discharge from the ICU. In summary, this study revealed the effectiveness of the Se-enriched probiotic in bedsore improvement, suggesting consideration of the enriched probiotic as an auxiliary agent in bedsore management.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran.
- Department of Pharmaceutical; Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Ahmadinejad
- Department of Anesthesiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Khoshnam
- Department of Anesthesiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical; Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical; Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nooshadokht
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Ramezani Nejad
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Adeleh Khodabakhshi
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Badie MA, Teaima MH, El-Nabarawi MA, Badawi NM. Formulation and optimization of surfactant-modified chitosan nanoparticles loaded with cefdinir for novel topical drug delivery: Elevating wound healing efficacy with enhanced antibacterial properties. Int J Pharm 2024; 666:124763. [PMID: 39332464 DOI: 10.1016/j.ijpharm.2024.124763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Burn wounds remain a significant global health concern, frequently exacerbated by bacterial infections that hinder healing and raise morbidity rates. Cefdinir, a third-generation cephalosporin antibiotic, is used to treat various conditions, but it has limitations such as low water solubility, limited bioavailability, and a short biological half-life. This study aimed to fabricate and optimize novel surfactant-based Cefdinir-loaded chitosan nanoparticles (CFD-CSNPs) for enhancing topical CFD delivery and efficacy in burn healing. Box-Behnken Design (BBD) was employed to develop optimized CFD-CSNPs using Design Expert® software, where the independent factors were chitosan concentration, chitosan: sodium tripolyphosphate ratio, pH, and surfactant type. Particle size PS, zeta potential ZP, Polydispersity index PDI, and entrapment efficiency EE% were evaluated as dependent factors. CFD-CSNPs were produced using the ionic gelation method. The optimized formula was determined and then examined for further in vitro and in vivo assessments. The optimized CFD-CSNPs exhibited acceptable PS, PDI, and ZP values. The EE% of CFD from CSNPs reached 57.89 % ± 1.66. TEM analysis revealed spherical morphology. In vitro release studies demonstrated a biphasic release profile up to (75.5 % ± 3.8) over 48 hrs. The optimized CFD-CSNPs showed improved antimicrobial efficacy against the tested microorganisms, exhibiting superior performance for both biofilm prevention and eradication. Enhanced wound healing activity was achieved by the optimized CFD-CSNPs in both in vitro and in vivo studies as confirmed by scratch wound assay and skin burn mice model. The current study advocates the efficacy of the innovative topical application of CFD-CSNPs for wound healing purposes and treatment of wound infections.
Collapse
Affiliation(s)
- Merna A Badie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.
| |
Collapse
|
3
|
Madaan T, Doan K, Hartman A, Gherardini D, Ventrola A, Zhang Y, Kotagiri N. Advances in Microbiome-Based Therapeutics for Dermatological Disorders: Current Insights and Future Directions. Exp Dermatol 2024; 33:e70019. [PMID: 39641544 PMCID: PMC11663288 DOI: 10.1111/exd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
The human skin hosts an estimated 1000 bacterial species that are essential for maintaining skin health. Extensive clinical and preclinical studies have established the significant role of the skin microbiome in dermatological disorders such as atopic dermatitis, psoriasis, diabetic foot ulcers, hidradenitis suppurativa and skin cancers. In these conditions, the skin microbiome is not only altered but, in some cases, implicated in disease pathophysiology. Microbiome-based therapies (MBTs) represent an emerging category of live biotherapeutic products with tremendous potential as a novel intervention platform for skin diseases. Beyond using established wild-type strains native to the skin, these therapies can be enhanced to express targeted therapeutic molecules, offering more tailored treatment approaches. This review explores the role of the skin microbiome in various common skin disorders, with a particular focus on the development and therapeutic potential of MBTs for treating these conditions.
Collapse
Affiliation(s)
- Tushar Madaan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Kyla Doan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alexandra Hartman
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Dominick Gherardini
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alec Ventrola
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Yuhang Zhang
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
4
|
Abdi A, Oroojzadeh P, Valivand N, Sambrani R, Lotfi H. Immunological aspects of probiotics for improving skin diseases: Influence on the Gut-Brain-Skin Axis. Biochem Biophys Res Commun 2024; 702:149632. [PMID: 38340656 DOI: 10.1016/j.bbrc.2024.149632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The interplay between gut microbiota and human health, both mental and physical, is well-documented. This connection extends to the gut-brain-skin axis, linking gut microbiota to skin health. Recent studies have underscored the potential of probiotics and prebiotics to modulate gut microbiota, supported by in vivo and clinical investigations. In this comprehensive review, we explore the immunological implications of probiotics in influencing the gut-skin axis for the treatment and prevention of skin conditions, including psoriasis, acne, diabetic ulcers, atopic dermatitis, and skin cancer. Our analysis reveals that probiotics exert their effects by modulating cytokine production, whether administered orally or topically. Probiotics bolster skin defenses through the production of antimicrobial peptides and the induction of keratinocyte differentiation and regeneration. Yet, many questions surrounding probiotics remain unanswered, necessitating further exploration of their mechanisms of action in the context of skin diseases.
Collapse
Affiliation(s)
- Ali Abdi
- Medical Immunology, Aziz Sancar Institute of Experimental Medicine, İstanbul University, Istanbul, Turkey
| | - Parvin Oroojzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roshanak Sambrani
- Clinical Research Development Unit of Razi Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
5
|
Karlsson M, Östholm Balkhed Å, Steinvall I, Elmasry M. Wound infection among children with moderate burns - An explorative review of the association between reported frequency and diagnosis. Burns 2024; 50:742-753. [PMID: 38245392 DOI: 10.1016/j.burns.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/17/2023] [Indexed: 01/22/2024]
Abstract
INTRODUCTION The Linkoping burn centre in Sweden has, even though being a high income country, reported high burn wound infections (BWI) frequencies in scalded children compared to similar populations in other parts of the world. AIM The aim was to investigate possible explanations for differences in frequency of BWI among children with partial thickness burns treated at the Linköping burn centre in Sweden, and that reported in other studies. METHOD In order to investigate what BWI criteria that were used in similar studies a literature search on PubMed Central was done along with a retrospective analysis of children previously diagnosed as infected to confirm or reject the high infection frequency reported earlier. RESULT Of the 34 selected publications reporting on BWI frequency 16 (47%) did not define a criteria for the BWI diagnosis and almost a third did not report on wound culturing. Of those who did report the use a third do not mention any bacterial growth found is these cultures. The retrospective analysis on children at the centre did not show any decrease in infection frequency even with some disagreement on onset for the BWI. CONCLUSION The reporting of criteria and diagnosis of burn wound infection is highly variable making it difficult to interpret results and come to conclusions. The high frequency of BWI at the centre might be a result of close monitoring due to study participation, use of clean instead of sterile routine at dressing changes or low thresholds for the diagnosis in respect to changes in infection markers.
Collapse
Affiliation(s)
- Matilda Karlsson
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Åse Östholm Balkhed
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Infectious Diseases, Östergötland, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Maitz J, Merlino J, Rizzo S, McKew G, Maitz P. Burn wound infections microbiome and novel approaches using therapeutic microorganisms in burn wound infection control. Adv Drug Deliv Rev 2023; 196:114769. [PMID: 36921627 DOI: 10.1016/j.addr.2023.114769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Affiliation(s)
- J Maitz
- Department of Burns & Reconstructive Surgery, Concord Repatriation General Hospital, Australia; Burns & Reconstructive Surgery Research Group, ANZAC Research Institute, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia.
| | - J Merlino
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| | - S Rizzo
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia
| | - G McKew
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| | - P Maitz
- Department of Burns & Reconstructive Surgery, Concord Repatriation General Hospital, Australia; Burns & Reconstructive Surgery Research Group, ANZAC Research Institute, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| |
Collapse
|
7
|
The Antimicrobial Effect of Various Single-Strain and Multi-Strain Probiotics, Dietary Supplements or Other Beneficial Microbes against Common Clinical Wound Pathogens. Microorganisms 2022; 10:microorganisms10122518. [PMID: 36557771 PMCID: PMC9781324 DOI: 10.3390/microorganisms10122518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The skin is the largest organ in the human body and is colonized by a diverse microbiota that works in harmony to protect the skin. However, when skin damage occurs, the skin microbiota is also disrupted, and pathogens can invade the wound and cause infection. Probiotics or other beneficial microbes and their metabolites are one possible alternative treatment for combating skin pathogens via their antimicrobial effectiveness. The objective of our study was to evaluate the antimicrobial effect of seven multi-strain dietary supplements and eleven single-strain microbes that contain probiotics against 15 clinical wound pathogens using the agar spot assay, co-culturing assay, and agar well diffusion assay. We also conducted genera-specific and species-specific molecular methods to detect the DNA in the dietary supplements and single-strain beneficial microbes. We found that the multi-strain dietary supplements exhibited a statistically significant higher antagonistic effect against the challenge wound pathogens than the single-strain microbes and that lactobacilli-containing dietary supplements and single-strain microbes were significantly more efficient than the selected propionibacteria and bacilli. Differences in results between methods were also observed, possibly due to different mechanisms of action. Individual pathogens were susceptible to different dietary supplements or single-strain microbes. Perhaps an individual approach such as a 'probiogram' could be a possibility in the future as a method to find the most efficient targeted probiotic strains, cell-free supernatants, or neutralized cell-free supernatants that have the highest antagonistic effect against individual clinical wound pathogens.
Collapse
|
8
|
Probiotics in Critical Illness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit Care Med 2022; 50:1175-1186. [PMID: 35608319 DOI: 10.1097/ccm.0000000000005580] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the safety and efficacy of probiotics or synbiotics on morbidity and mortality in critically ill adults and children. DATA SOURCES We searched MEDLINE, EMBASE, CENTRAL, and unpublished sources from inception to May 4, 2021. STUDY SELECTION We performed a systematic search for randomized controlled trials (RCTs) that compared enteral probiotics or synbiotics to placebo or no treatment in critically ill patients. We screened studies independently and in duplicate. DATA EXTRACTION Independent reviewers extracted data in duplicate. A random-effects model was used to pool data. We assessed the overall certainty of evidence for each outcome using the Grading Recommendations Assessment, Development, and Evaluation approach. DATA SYNTHESIS Sixty-five RCTs enrolled 8,483 patients. Probiotics may reduce ventilator-associated pneumonia (VAP) (relative risk [RR], 0.72; 95% CI, 0.59 to 0.89 and risk difference [RD], 6.9% reduction; 95% CI, 2.7-10.2% fewer; low certainty), healthcare-associated pneumonia (HAP) (RR, 0.70; 95% CI, 0.55-0.89; RD, 5.5% reduction; 95% CI, 8.2-2.0% fewer; low certainty), ICU length of stay (LOS) (mean difference [MD], 1.38 days fewer; 95% CI, 0.57-2.19 d fewer; low certainty), hospital LOS (MD, 2.21 d fewer; 95% CI, 1.18-3.24 d fewer; low certainty), and duration of invasive mechanical ventilation (MD, 2.53 d fewer; 95% CI, 1.31-3.74 d fewer; low certainty). Probiotics probably have no effect on mortality (RR, 0.95; 95% CI, 0.87-1.04 and RD, 1.1% reduction; 95% CI, 2.8% reduction to 0.8% increase; moderate certainty). Post hoc sensitivity analyses without high risk of bias studies negated the effect of probiotics on VAP, HAP, and hospital LOS. CONCLUSIONS Low certainty RCT evidence suggests that probiotics or synbiotics during critical illness may reduce VAP, HAP, ICU and hospital LOS but probably have no effect on mortality.
Collapse
|
9
|
Pogačar MŠ, Mičetić-Turk D, Fijan S. Probiotics: current regulatory aspects of probiotics for use in different disease conditions. PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:465-499. [DOI: 10.1016/b978-0-12-823733-5.00021-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Does Probiotic Consumption Enhance Wound Healing? A Systematic Review. Nutrients 2021; 14:nu14010111. [PMID: 35010987 PMCID: PMC8746682 DOI: 10.3390/nu14010111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023] Open
Abstract
The use of probiotics is one of the emerging lines of treatment for wound healing. This systematic review aimed to summarize currently available evidence on the effect of oral or enteral probiotic therapy on skin or oral mucosal wound healing in humans. To verify the developments in this field and the level of available scientific evidence, we applied a broad search strategy with no restrictions on wound type, target population, probiotic strain, or intervention protocol used. This review included seven studies involving 348 individuals. Four studies reported positive outcomes for healing improvement after probiotic therapy, and none of the studies reported adverse effects or a marked increase in wound healing time. The positive or neutral results observed do not generate strong evidence regarding the effectiveness of probiotics for wound healing. However, they suggest a promising field for future clinical research where the probiotic strains used, type of wounds, and target population are controlled for.
Collapse
|
11
|
L M L, L P B, S G G, L O S, O M D, R V B, L M S, M Ya S. Assessment of the Safety of Lactobacillus casei IMV B-7280 Probiotic Strain on a Mouse Model. Probiotics Antimicrob Proteins 2021; 13:1644-1657. [PMID: 33876388 PMCID: PMC8055307 DOI: 10.1007/s12602-021-09789-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Probiotics, in particular Lactobacillus (lactic acid bacteria, LAB) strains, are widely used in clinical practice. Despite that these probiotics have GRAS (generally regarded as safe) and qualified presumption of safety (QPS) statuses, the safety of particular strains still needs to be thoroughly studied. The aim of the study was to evaluate the safety of Lact. casei IMV B-7280 strain by investigating toxicity and the effects on gut microbiota in experimental animal model. Male BALB/c mice (7-8 weeks, weight 20-24 g) were treated with amounts of Lact. casei IMV B-7280 strain: 5 × 106, 5 × 108, or 5 × 109 CFU/animal once per day during 7 days, or in the amount of 1 × 1010 CFU/animal once per day during 3 days (most of the proposed probiotic doses for humans-from 108 to 109 CFU) and monitored during 14 days. Blood tests and serum biochemistry were conducted; the cecal content from mice of the experimental and control groups were freshly collected and analyzed. At the end of the experiments (15th day), the presence of LAB in the heart, liver, kidney, and mesenteric lymph nodes and peripheral blood was determined; histology of the brain, liver, heart, fragments of the small and large intestine, and mesenteric lymph nodes was conducted. Survival rate of BALB/c mice treated with Lact. casei IMV B-7280 strain in different concentrations in toxicity experiments during 14 days was 100%. We observed no signs of toxicity as changes in gait, lethargy, sleep, somatomotor activity as well as changes in fur, eyes, skin and mucous membranes, tremors, behavior pattern, convulsions, salivation, diarrhea, and local injuries in mice from all experimental groups. After administration of probiotic strain, the number of opportunistic bacteria in cecal contents, such as Staphylococcus spp., Candida spp., Pseudomonas spp., and total aerobic and optionally anaerobic bacteria decreased compared to controls; the population of beneficial bacteria such as lactobacilli increased in cecal contents of these mice. LAB were not detected in the peripheral blood, heart, liver, kidneys, and mesenteric lymph nodes after administration of this strain to intact mice. Lact. casei IMV B-7280 strain is safe at dose up to 1010 CFU/animal during 3- and 7-day oral administration to mice and has a positive effect on the gut microbiota composition; it could be potentially considered as safe probiotic for humans.
Collapse
Affiliation(s)
- Lazarenko L M
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| | - Babenko L P
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| | - Gichka S G
- Bogomolets National Medical University, 13, T. Shevchenko blvd, Kyiv, 01601, Ukraine
| | - Sakhno L O
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 45, Vasylkivska str, Kyiv, 03022, Ukraine
| | - Demchenko O M
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| | - Bubnov R V
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine.
| | - Sichel L M
- Pure Research Products, LLC, 6107 Chelsea Manor Court, Boulder, Colorado, 80301, USA
| | - Spivak M Ya
- Zabolotny Institute of microbiology and virology, National Academy of Sciences of Ukraine, 154, Akad. Zabolotny str, Kyiv, 03143, Ukraine
| |
Collapse
|
12
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|
13
|
Sun L, Li L, Wang Y, Li M, Xu S, Zhang C. A collagen-based bi-layered composite dressing for accelerated wound healing. J Tissue Viability 2021; 31:180-189. [PMID: 34538555 DOI: 10.1016/j.jtv.2021.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
AIM OF THE STUDY The aim of the study was to fabricate collagen-based composite dressings, evaluate the efficiency for wound healing and reveal the mechanism of promoting wound healing. MATERIALS AND METHODS An innovative bi-layered composite wound dressing was developed using two marine biomacromolecules (collagen and chitosan). Full-thickness skin defect model was performed to evaluate the wound healing activity in vivo. The levels of inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin (IL-1, IL-6, IL-8) and growth factors like transforming growth factor beta (TGF-β), vascular epidermal growth factor (VEGF) and basic fibroblast growth factor (bFGF) were quantified by ELISA assays. The total amount of collagen was quantified by hydroxyproline content. The proliferation and viability of fibroblast cells cultured on collagen sponges were determined by CCK-8 assay. RESULTS The results of wound closure and histopathological analysis indicated that non-crosslinked collagen-based bi-layered composite dressing stimulated wound healing, accelerated re-epithelialization and accomplished wound healing within a time span of 28 days. The results of levels of inflammatory cytokines and growth factors showed that collagen-based composite dressings could reduce the inflammatory response and upregulate growth factors levels to accelerate the wound healing. The results of hydroxyproline content and CCK-8 assay indicated that collagen-based composite dressings could also promote collagen synthesis and fibroblasts viability and proliferation. CONCLUSION The non-crosslinked collagen-based bi-layered composite dressing could be applied for an efficient and ideal wound dressing. Therefore, the findings provided the essential theoretical basis for the potential of collagen-based composite dressing applied in wound healing fields.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510300, PR China.
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510300, PR China.
| | - Mingbo Li
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Shumin Xu
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Chengpeng Zhang
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| |
Collapse
|
14
|
Sun L, Li M, Gong T, Feng J. Preparation and evaluation of an innovative antibacterial bi-layered composite dressing for skin wound healing. J Tissue Viability 2021; 30:454-461. [PMID: 33962852 DOI: 10.1016/j.jtv.2021.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 02/01/2023]
Abstract
AIM OF THE STUDY The aim of the current study was to develop collagen-based bi-layered composite dressings with antibacterial property and evaluate the efficiency for wound healing. MATERIALS AND METHODS A bi-layered composite wound dressing was fabricated using two marine biomacromolecules (collagen and chitosan or carboxymethyl chitosan). Non-crosslinked and N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/N-Hydroxy succinimide (EDC/NHS) cross-linked collagen sponges fabricated by vacuum freeze-drying technology was used as the inner layer. The medical spun-laced nonwoven coated with chitosan and carboxymethyl chitosan was used as the outer layer. The antibacterial activities against E. coli and S. aureus were evaluated by the inhibition zone assay. Deep second-degree scald model was performed to evaluate the efficiency of bi-layered composite dressings for wound healing. RESULTS In view of comprehensive evaluation of appearance and in vitro antibacterial activity, medical spun-laced nonwoven coated with 3% of chitosan solution was chosen to be used as the optimized preparation conditions to produce the outer layer of composite dressing, which acted as a barrier against microorganisms and provided mechanical support. Furthermore, the results of wound closure and histopathological analysis indicated that EDC/NHS cross-linked collagen-based bi-layered composite dressing was superior to non-crosslinked and commercial products, which stimulated the wound healing process and accomplished deep second-degree scalded skin healing within a time span of 28 days. CONCLUSION The EDC/NHS cross-linked collagen-based bi-layered composite dressing had immense potential to be applied for an ideal wound dressing for more efficient and faster wound healing. Therefore, the findings provided the essential theoretical basis for great potential of collagen-based composite dressing used in wound healing applications.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China.
| | - Mingbo Li
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Tengfei Gong
- Weihai Food and Drug Inspection Testing Center, No.52, Xin Wei Road, Weihai, Shandong Province, 264200, PR China
| | - Jianling Feng
- Weihai Food and Drug Inspection Testing Center, No.52, Xin Wei Road, Weihai, Shandong Province, 264200, PR China
| |
Collapse
|
15
|
Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polym 2021; 259:117640. [PMID: 33673981 DOI: 10.1016/j.carbpol.2021.117640] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/20/2022]
Abstract
In this study, the electrospun poly(ε-caprolactone) (PCL)/Chitosan (CS)/curcumin (CUR) nanofiber was fabricated successfully with curcumin loaded chitosan nano-encapsulated particles (CURCSNPs). The morphology of the produced CURCSNPs, PCL, PCL/CS, PCL/CS/CUR, and PCL/CS/CUR electrosprayed with CURCSNPs were analyzed by scanning electron microscopy (SEM). The physicochemical properties and biological characteristics of fabricated nanofibers such as antibacterial, antioxidant, cell viability, and in vivo wound healing efficiency and histological assay were tested. The electrospraying of CURCSNPs on surface PCL/CS/CUR nanofiber resulted in the enhanced antibacterial, antioxidant, cell proliferation efficiencies and higher swelling and water vapor transition rates. In vivo examination and Histological analysis showed PCL/CS/CUR electrosprayed with CURCSNPs led to significant improvement of complete well-organized wound healing process in MRSA infected wounds. These results suggest that the application of PCL/CS/CUR electrosprayed with CURCSNPs as a wound dressing significantly facilitates wound healing with notable antibacterial, antioxidant, and cell proliferation properties.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Parastu Satei
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Department of Medical Laboratory Sciences, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Moslehi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran; Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
16
|
Davies A, Spickett-Jones F, Jenkins A, Young A. A systematic review of intervention studies demonstrates the need to develop a minimum set of indicators to report the presence of burn wound infection. Burns 2020; 46:1487-1497. [DOI: 10.1016/j.burns.2020.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/15/2019] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
|
17
|
Wilmink JM, Ladefoged S, Jongbloets A, Vernooij JCM. The evaluation of the effect of probiotics on the healing of equine distal limb wounds. PLoS One 2020; 15:e0236761. [PMID: 32726347 PMCID: PMC7390451 DOI: 10.1371/journal.pone.0236761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/11/2020] [Indexed: 12/03/2022] Open
Abstract
The effect of dressings saturated with either a standardized suspension of probiotic bacteria or saline on healing of traumatic distal limb wounds in horses was evaluated for 24 days, and the systemic inflammatory effect was assessed. The wounds were divided in two groups based on the phase of healing: wounds with an incomplete (ICGB) or a complete granulation bed (CGB). The wound area was expressed as percentage of the wound area at day 0 and defined as relative wound area. The mean relative wound area decreased faster in probiotic than saline treated wounds. The difference was most obvious in CGB and increased rapidly from day 0 until day 12 up to 30%, and stabilized around 25% thereafter until the end of the observation period, but it was not statistically significant because of the large variation within the treatment groups. The mean wound area of CGB decreased to 28.4% (range: 6.3 to 49.3) with probiotic and to 51.9% (range: 29.3 to 81.7) with saline treatment at day 24. Additionally, the rate to 50% healing in CGB was 3.4 faster with probiotic compared to saline treatment, whereas in ICGB this was 1.9 faster. Topical probiotics did not increase serum amyloid A and white blood cell counts. Although the mentioned differences were not statistically significant, the clinical relevance of the effect of treatment with probiotics in CGB wounds is clear, supported by the differences in mean wound area in course of time and the time required to reach 50% healing (day 12 for probiotic vs more than day 24 for saline treated wounds). Thus the probiotic treated wounds reached 50% reduction in wound area in half of the time of the saline treated wounds. The topical use of probiotics can be considered as safe as it did not cause a systemic effect.
Collapse
Affiliation(s)
| | | | | | - Johannes C M Vernooij
- Division Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Salyer CE, Bomholt C, Beckmann N, Bergmann CB, Plattner CA, Caldwell CC. Novel Therapeutics for the Treatment of Burn Infection. Surg Infect (Larchmt) 2020; 22:113-120. [PMID: 32429749 DOI: 10.1089/sur.2020.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Burn injury continues to be a significant cause of morbidity and death, with infectious complications being the primary cause of death. Patients are susceptible to overwhelming infection secondary to both the physical breakdown of the skin and mucosal barrier and the immune dysfunction that accompanies the inflammatory response to a major burn. With resistance to traditional antibiosis looming as a serious threat to patient outcome, advancement in the treatment of burn infections is imperative. Methods: Between February 15 and March 15, 2020, a search of Pubmed and clinicaltrials.gov was performed using search terms such as "burn immunotherapy," "therapeutic microorganisms in burn," "burn infection clinical trials," and applicable variations. Results: Topical antimicrobial drugs continue to be standard of care for burn wound injuries, but personalized and molecular treatments that rely on immune manipulation of the host show great promise. We discuss novel therapeutics for the treatment of burn infection: Probiotics and therapeutic microorganisms, immune modulators, tailored monoclonal antibodies, and extracellular vesicles and proteins. Conclusions: The treatment strategies discussed employ manipulation of structure and function in host immune cells and pathogen virulence for improved outcomes in burn infection.
Collapse
Affiliation(s)
- Christen E Salyer
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christina Bomholt
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nadine Beckmann
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christian B Bergmann
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Courtney A Plattner
- Urology Division, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles C Caldwell
- Division of Research and Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Research, Shriners Hospital for Children, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Hadian Y, Fregoso D, Nguyen C, Bagood MD, Dahle SE, Gareau MG, Isseroff RR. Microbiome-skin-brain axis: A novel paradigm for cutaneous wounds. Wound Repair Regen 2020; 28:282-292. [PMID: 32034844 DOI: 10.1111/wrr.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds cause a significant burden on society financially, medically, and psychologically. Unfortunately, patients with nonhealing wounds often suffer from comorbidities that further compound their disability. Given the high rate of depressive symptoms experienced by patients with chronic wounds, further studies are needed to investigate the potentially linked pathophysiological changes in wounds and depression in order to improve patient care. The English literature on wound healing, inflammatory and microbial changes in chronic wounds and depression, and antiinflammatory and probiotic therapy was reviewed on PubMed. Chronic wound conditions and depression were demonstrated to share common pathologic features of dysregulated inflammation and altered microbiome, indicating a possible relationship. Furthermore, alternative treatment strategies such as immune-targeted and probiotic therapy showed promising potential by addressing both pathophysiological pathways. However, many existing studies are limited to a small study population, a cross-sectional design that does not establish temporality, or a wide range of confounding variables in the context of a highly complex and multifactorial disease process. Therefore, additional preclinical studies in suitable wound models, as well as larger clinical cohort studies and trials are necessary to elucidate the relationship between wound microbiome, healing, and depression, and ultimately guide the most effective therapeutic and management plan for chronic wound patients.
Collapse
Affiliation(s)
- Yasmin Hadian
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| | - Daniel Fregoso
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Chuong Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Michelle D Bagood
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Sara E Dahle
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Podiatry Section, VA Northern California Health Care System, Mather, California
| | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| |
Collapse
|
20
|
Ho KM, Kalgudi S, Corbett JM, Litton E. Gut microbiota in surgical and critically ill patients. Anaesth Intensive Care 2020; 48:179-195. [PMID: 32131606 DOI: 10.1177/0310057x20903732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbiota-defined as a collection of microbial organisms colonising different parts of the human body-is now recognised as a pivotal element of human health, and explains a large part of the variance in the phenotypic expression of many diseases. A reduction in microbiota diversity, and replacement of normal microbes with non-commensal, pathogenic or more virulent microbes in the gastrointestinal tract-also known as gut dysbiosis-is now considered to play a causal role in the pathogenesis of many acute and chronic diseases. Results from animal and human studies suggest that dysbiosis is linked to cardiovascular and metabolic disease through changes to microbiota-derived metabolites, including trimethylamine-N-oxide and short-chain fatty acids. Dysbiosis can occur within hours of surgery or the onset of critical illness, even without the administration of antibiotics. These pathological changes in microbiota may contribute to important clinical outcomes, including surgical infection, bowel anastomotic leaks, acute kidney injury, respiratory failure and brain injury. As a strategy to reduce dysbiosis, the use of probiotics (live bacterial cultures that confer health benefits) or synbiotics (probiotic in combination with food that encourages the growth of gut commensal bacteria) in surgical and critically ill patients has been increasingly reported to confer important clinical benefits, including a reduction in ventilator-associated pneumonia, bacteraemia and length of hospital stay, in small randomised controlled trials. However, the best strategy to modulate dysbiosis or counteract its potential harms remains uncertain and requires investigation by a well-designed, adequately powered, randomised controlled trial.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.,Medical School, University of Western Australia, Perth, Australia
| | - Shankar Kalgudi
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia
| | - Jade-Marie Corbett
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia
| | - Edward Litton
- Medical School, University of Western Australia, Perth, Australia.,Department of Intensive Care Medicine, Fiona Stanley Hospital, Murdoch, Australia
| |
Collapse
|
21
|
Lazarenko L, Bubnov R, Babenko L, Melnykova O, Spivak M. Methodical approaches of estimation of probiotics` quality and rational principles of their usage in clinical practice. SCIENCERISE: BIOLOGICAL SCIENCE 2020. [DOI: 10.15587/2519-8025.2020.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7585486. [PMID: 31915703 PMCID: PMC6930797 DOI: 10.1155/2019/7585486] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The skin and its microbiota serve as physical barriers to prevent invasion of pathogens. Skin damage can be a consequence of illness, surgery, and burns. The most effective wound management strategy is to prevent infections, promote healing, and prevent excess scarring. It is well established that probiotics can aid in skin healing by stimulating the production of immune cells, and they also exhibit antagonistic effects against pathogens via competitive exclusion of pathogens. Our aim was to conduct a review of recent literature on the efficacy of using probiotics against pathogens that cause wound infections. In this integrative review, we searched through the literature published in the international following databases: PubMed, ScienceDirect, Web of Science, and Scopus using the search terms “probiotic” AND “wound infection.” During a comprehensive review and critique of the selected research, fourteen in vitro studies, 8 animal studies, and 19 clinical studies were found. Two of these in vitro studies also included animal studies, yielding a total of 39 articles for inclusion in the review. The most commonly used probiotics for all studies were well-known strains of the species Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus rhamnosus. All in vitro studies showed successful inhibition of chosen skin or wound pathogens by the selected probiotics. Within the animal studies on mice, rats, and rabbits, probiotics showed strong opportunities for counteracting wound infections. Most clinical studies showed slight or statistically significant lower incidence of surgical site infections, foot ulcer infection, or burn infections for patients using probiotics. Several of these studies also indicated a statistically significant wound healing effect for the probiotic groups. This review indicates that exogenous and oral application of probiotics has shown reduction in wound infections, especially when used as an adjuvant to antibiotic therapy, and therefore the potential use of probiotics in this field remains worthy of further studies, perhaps focused more on typical skin inhabitants as next-generation probiotics with high potential.
Collapse
|
23
|
Knackstedt R, Gatherwright J. The role of thermal injury on intestinal bacterial translocation and the mitigating role of probiotics: A review of animal and human studies. Burns 2019; 46:1005-1012. [PMID: 31351819 DOI: 10.1016/j.burns.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Burn patients represent a combination of nutritionally deplete and calorically demanding individuals who are susceptible to morbidity and mortality. A source of sepsis in thermal injury patients is the gastrointestinal tract with its interaction of normal and potentially pathogenic bacteria. The normal flora of the intestines maintains the equilibrium of the gut and prevents bacterial translocation (BT) through numerous mechanisms, all of which are disrupted as a consequence of thermal injury. Probiotic supplements with varying strains of bacteria have the potential to stabilize the integrity of the gut lining and decrease the incidence of BT after thermal injury. METHODS A literature review was conducted for animal and human studies in English addressing probiotic therapy in thermal injury. Keywords, "probiotics," "thermal injury" and "burn" were utilized. Reference lists for each analyzed article were also examined to ensure completeness of literature search. Each article was reviewed for methodology, results and conclusions. RESULTS Eleven and six unique articles were identified addressing probiotics in thermal injury in animal and human studies, respectively. Heterogeneity between studies and limited demographic and outcome reporting prevented meta-analysis and comprehensive recommendations to be formalized. CONCLUSION While heterogeneity did not allow for meta-analysis, the results overall suggest a preventative, if not therapeutic, potential for probiotics in patients after thermal injury. Despite initial concern that probiotic therapy could lead to systemic infection in immune compromised individuals, this was not observed in the analyzed studies. Numerous unanswered questions exist in regards to optimizing probiotic therapy in patients after thermal injury.
Collapse
Affiliation(s)
- Rebecca Knackstedt
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, United States.
| | | |
Collapse
|
24
|
Fleming D, Jiang Y, Opoku K, Alhaj Saleh A, Larumbe-Zabala E, Kesey JE, Griswold JA, Dissanaike S. Prophylactic Probiotics in Burn Patients: Risk versus Reward. J Burn Care Res 2019; 40:953-960. [DOI: 10.1093/jbcr/irz132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Probiotics are often used in critically ill patients to prevent antibiotic-associated complications, including Clostridium difficile colitis. However, clinical evidence of their efficacy is lacking. The objective of this study is to assess the impact of prophylactic probiotic administration on bowel function, gut microbial diversity, and nutritional markers in adult burn patients. A retrospective cohort study was done on 108 burn patients aged 18 to 89. Patients were given >1 million colony-forming units per day of Lactobacillus acidophilus and Lactobacillus rhamnosus. Testing for C. difficile was used as a surrogate marker for the presence of diarrhea. Serum C-reactive protein and prealbumin values were measured. Additionally, the gut microbial diversity of eight patients was tracked via 16S quantitative PCR before and throughout the course of a standard probiotic regimen. Patients receiving oral probiotics had more reported diarrhea in the first and second weeks of treatment. In the second week, C-reactive protein levels were increased, while serum prealbumin levels were lower in patients receiving probiotics, suggesting potential malabsorption. Additionally, there was no difference in C. difficile infection, sepsis rates, emesis, or gastric residuals, indicating an absence of therapeutic benefit for probiotic administration in burn patients. Furthermore, it was determined that no discernible benefit to gut microbial diversity was conferred by probiotic therapy. Prophylactic probiotics in burn patients are not associated with improvements in patient outcomes and may in fact be associated with an increased incidence of diarrhea and malabsorption. Additional research is needed before routine use in burn patients.
Collapse
Affiliation(s)
- Derek Fleming
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Yuli Jiang
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Kwaku Opoku
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Adel Alhaj Saleh
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Eneko Larumbe-Zabala
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jennifer E Kesey
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX
| | - John A Griswold
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Sharmila Dissanaike
- Department of General Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
25
|
Young AE, Davies A, Bland S, Brookes S, Blazeby JM. Systematic review of clinical outcome reporting in randomised controlled trials of burn care. BMJ Open 2019; 9:e025135. [PMID: 30772859 PMCID: PMC6398699 DOI: 10.1136/bmjopen-2018-025135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Systematic reviews collate trial data to provide evidence to support clinical decision-making. For effective synthesis, there must be consistency in outcome reporting. There is no agreed set of outcomes for reporting the effect of burn care interventions. Issues with outcome reporting have been identified, although not systematically investigated. This study gathers empirical evidence on any variation in outcome reporting and assesses the need for a core outcome set for burn care research. METHODS Electronic searches of four search engines were undertaken from January 2012 to December 2016 for randomised controlled trials (RCTs), using medical subject headings and free text terms including 'burn', 'scald' 'thermal injury' and 'RCT'. Two authors independently screened papers, extracted outcomes verbatim and recorded the timing of outcome measurement. Duplicate outcomes (exact wording ± different spelling), similar outcomes (albumin in blood, serum albumin) and identical outcomes measured at different times were removed. Variation in outcome reporting was determined by assessing the number of unique outcomes reported across all included trials. Outcomes were classified into domains. Bias was reduced using five researchers and a patient working independently and together. RESULTS 147 trials were included, of which 127 (86.4%) were RCTs, 13 (8.8%) pilot studies and 7 (4.8%) RCT protocols. 1494 verbatim clinical outcomes were reported; 955 were unique. 76.8% of outcomes were measured within 6 months of injury. Commonly reported outcomes were defined differently. Numbers of unique outcomes per trial varied from one to 37 (median 9; IQR 5,13). No single outcome was reported across all studies demonstrating inconsistency of reporting. Outcomes were classified into 54 domains. Numbers of outcomes per domain ranged from 1 to 166 (median 11; IQR 3,24). CONCLUSIONS This review has demonstrated heterogeneity in outcome reporting in burn care research which will hinder amalgamation of study data. We recommend the development of a Core Outcome Set. PROSPERO REGISTRATION NUMBER CRD42017060908.
Collapse
Affiliation(s)
- Amber E Young
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anna Davies
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Sara Brookes
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jane M Blazeby
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
Effectiveness of Multistrain Versus Single-strain Probiotics: Current Status and Recommendations for the Future. J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S35-S40. [PMID: 29734210 DOI: 10.1097/mcg.0000000000001052] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probiotics are investigated as single-strain and multistrain products. In the market, however, there is an increasing tendency to work with multistrain probiotics, in particular, products with a high number of different strains. There are some thoughts behind this: more strains imply more chances of success; it can mean a broader spectrum of efficacy, and there is often the hope that there are at least additive and, potentially, even synergistic effects. The present review did not find convincing evidence that these assumptions are valid. There is, however, also no strong evidence that the assumptions are incorrect and/or that there is antagonistic activity between strains in a combination. We suggest that, to answer these questions, structured research is conducted. Starting with a systematic review of meta-analyses that have compared single-strain and multistrain probiotic efficacy, dedicated human studies need to be performed, comparing single-strain and multistrain probiotics to each other and placebo. In vitro and animal studies can provide indications and may help understand mechanisms. For human, animal, and in vitro studies, it is recommended to work with the simple setup of 2 single strains, a 2-strain combination, and placebo. It is also important in such research to take into consideration the doses, as a combination product will have a higher total dose.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW After major progress in the 1980s of burn resuscitation resulting, the last years' research has focused on modulation of metabolic response and optimization of substrate utilization. The persisting variability of clinical practice is confirmed and results in difficult comparisons between burn centers. RECENT FINDINGS Recent research explores intracellular mechanisms of the massive metabolic turmoil observed after burns: very early alterations at the mitochondrial level largely explain the hypermetabolic response, with a diminished coupling of oxygen consumption and ATP production. The metabolic alterations (elevated protein and glucose turnover) have been shown to be long lasting. Modulating this response by pharmacological tools (insulin, propranolol, and oxandrolone) results in significant clinical benefits. A moderate glucose control proves to be safe in adult burns; data in children remain uncertain as the risk of hypoglycemia seems to be higher. The enteral feeding route is confirmed as an optimal route: some difficulties are now clearly identified, such as the risk of not delivering sufficient energy by this route. SUMMARY Major burn patients differ from other critically ill patients by the magnitude and duration of their inflammatory and metabolic responses, their energy and substrate requirements. Pieces of the metabolic puzzle finally seem to fit together.
Collapse
Affiliation(s)
- Mette M Berger
- Service of Adult Intensive Care Medicine and Burns, CHUV University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
28
|
Hammer AM, Morris NL, Cannon AR, Khan OM, Gagnon RC, Movtchan NV, van Langeveld I, Li X, Gao B, Choudhry MA. Interleukin-22 Prevents Microbial Dysbiosis and Promotes Intestinal Barrier Regeneration Following Acute Injury. Shock 2017; 48:657-665. [PMID: 28498296 PMCID: PMC5681896 DOI: 10.1097/shk.0000000000000900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestine barrier disruption and bacterial translocation can contribute to sepsis and multiple organ failure, leading causes of mortality in burn-injured patients. In addition, findings suggest that ethanol (alcohol) intoxication at the time of injury worsens symptoms associated with burn injury. We have previously shown that interleukin-22 (IL-22) protects from intestinal leakiness and prevents overgrowth of gram-negative bacteria following ethanol and burn injury, but how IL-22 mediates these effects has not been established. Here, utilizing a mouse model of ethanol and burn injury, we show that the combined insult results in a significant loss of proliferating cells within small intestine crypts and increases Enterobacteriaceae copies, despite elevated levels of the antimicrobial peptide lipocalin-2. IL-22 administration restored numbers of proliferating cells within crypts, significantly increased Reg3β, Reg3γ, lipocalin-2 AMP transcript levels in intestine epithelial cells, and resulted in complete reduction of Enterobacteriaceae in the small intestine. Knockout of signal transducer and activator of transcription factor-3 (STAT3) in intestine epithelial cells resulted in complete loss of IL-22 protection, demonstrating that STAT3 is required for intestine barrier protection following ethanol combined with injury. Together, these findings suggest that IL-22/STAT3 signaling is critical to gut barrier integrity and targeting this pathway may be of beneficial clinical relevance following burn injury.
Collapse
Affiliation(s)
- Adam M. Hammer
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Niya L. Morris
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Abigail R. Cannon
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Omair M. Khan
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Robin C. Gagnon
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Nellie V. Movtchan
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Ilse van Langeveld
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Xiaoling Li
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
29
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
30
|
Moreira E, Burghi G, Manzanares W. Update on metabolism and nutrition therapy in critically ill burn patients. Med Intensiva 2017; 42:306-316. [PMID: 28951113 DOI: 10.1016/j.medin.2017.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 11/19/2022]
Abstract
Major burn injury triggers severe oxidative stress, a systemic inflammatory response, and a persistent hypermetabolic and hypercatabolic state with secondary sarcopenia, multiorgan dysfunction, sepsis and an increased mortality risk. Calorie deficit, negative protein balance and antioxidant micronutrient deficiency after thermal injury have been associated to poor clinical outcomes. In this context, personalized nutrition therapy with early enteral feeding from the start of resuscitation are indicated. Over the last four decades, different nutritional and pharmacological interventions aimed at modulating the immune and metabolic responses have been evaluated. These strategies have been shown to be able to minimize acute malnutrition, as well as modulate the immunoinflammatory response, and improve relevant clinical outcomes in this patient population. The purpose of this updating review is to summarize the most current evidence on metabolic response and nutrition therapy in critically ill burn patients.
Collapse
Affiliation(s)
- E Moreira
- Centro de Tratamiento Intensivo del Hospital Maciel, ASSE, Montevideo, Uruguay
| | - G Burghi
- Centro Nacional de Quemados, Hospital de Clínicas, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - W Manzanares
- Cátedra de Medicina Intensiva, Hospital de Clínicas, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| |
Collapse
|
31
|
Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 2017; 103:234-241. [PMID: 28499948 DOI: 10.1016/j.ijbiomac.2017.05.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 12/07/2022]
Abstract
Treatment against bacterial infection is crucial for wound healing. Development of cost-effective antibacterial agent with wound healing properties is still in high demand. In this study we aimed to design chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO) beads as novel antibacterial agent with wound healing properties. CS/PVA/ZnO beads were synthesized, and characterized by using XRD, FTIR, SEM, and TEM analysis. Pure chitosan exhibits two peaks at 2θ=10 and 20 and the CS/PVA polymer matrix exhibit the peaks at 2θ=19.7° and another of low intensity at 2θ=11.5°. Pure ZnO shows the characteristic peaks at (100), (002), (101), (102), (110), (103), (200), and (112) that were in good agreement with wurtzite ore having hexagonal lattice structure. The antibacterial activity of CS/PVA/ZnO against Escherichia coli, and Staphylococcus aureus were evaluated with the zone of inhibition method. Antibacterial activity of CS/PVA/ZnO was higher than that of chitosan (CS) and poly(vinyl alcohol (PVA). Hemocompatibility and biocompatibility of CS/PVA/ZnO were tested in in vitro. Wound healing properties of CS/PVA/ZnO were tested in mice skin wound. CS/PVA/ZnO showed strong antimicrobial, wound healing effect, hemocompatibility and biocompatibility. Hence the results strongly support the possibility of using this novel CS/PVA/ZnO material for the anti bacterial and wound healing application.
Collapse
Affiliation(s)
- Yuvaraja Gutha
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Janak L Pathak
- School of pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Weijiang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaping Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xu Jiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhu X, Sun W, Li J, Zheng Y, Sun T, Dou G. Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals. Colloids Surf B Biointerfaces 2016; 148:343-353. [DOI: 10.1016/j.colsurfb.2016.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/22/2016] [Accepted: 06/09/2016] [Indexed: 12/16/2022]
|
33
|
Erdman SE, Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:91-126. [PMID: 27793228 DOI: 10.1016/bs.irn.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now understood that gut bacteria exert effects beyond the local boundaries of the gastrointestinal tract to include distant tissues and overall health. Prototype probiotic bacterium Lactobacillus reuteri has been found to upregulate hormone oxytocin and systemic immune responses to achieve a wide array of health benefits involving wound healing, mental health, metabolism, and myoskeletal maintenance. Together these display that the gut microbiome and host animal interact via immune-endocrine-brain signaling networks. Such findings provide novel therapeutic strategies to stimulate powerful homeostatic pathways and genetic programs, stemming from the coevolution of mammals and their microbiome.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|