1
|
Deshayes TA, Sodabi DGA, Dubord M, Gagnon D. Shifting focus: Time to look beyond the classic physiological adaptations associated with human heat acclimation. Exp Physiol 2024; 109:335-349. [PMID: 37885125 PMCID: PMC10988689 DOI: 10.1113/ep091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Planet Earth is warming at an unprecedented rate and our future is now assured to be shaped by the consequences of more frequent hot days and extreme heat. Humans will need to adapt both behaviorally and physiologically to thrive in a hotter climate. From a physiological perspective, countless studies have shown that human heat acclimation increases thermoeffector output (i.e., sweating and skin blood flow) and lowers cardiovascular strain (i.e., heart rate) during heat stress. However, the mechanisms mediating these adaptations remain understudied. Furthermore, several possible benefits of heat acclimation for other systems and functions involved in maintaining health and performance during heat stress remain to be elucidated. This review summarizes recent advances in human heat acclimation, with emphasis on recent studies that (1) advanced our understanding of the mechanisms mediating improved thermoeffector output and (2) investigated adaptations that go beyond those classically associated with heat acclimation. We highlight that these studies have contributed to a better understanding of the integrated physiological responses underlying human heat acclimation while leaving key unanswered questions that will need to be addressed in the future.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Dèwanou Gilles Arnaud Sodabi
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Marianne Dubord
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| |
Collapse
|
2
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Palackic A, Suman OE, Porter C, Murton AJ, Crandall CG, Rivas E. Rehabilitative Exercise Training for Burn Injury. Sports Med 2021; 51:2469-2482. [PMID: 34339042 DOI: 10.1007/s40279-021-01528-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Due to improvements in acute burn care over the last few decades, most patients with severe burns (up to 90% of the total body surface) survive. However, the metabolic and cardiovascular complications that accompany a severe burn can persist for up to 3 years post injury. Accordingly, there is now a greater appreciation of the need for strategies that can hasten recovery and reduce long-term morbidity post burn. Rehabilitation exercise training (RET) is a proven effective treatment to restore lean body mass, glucose and protein metabolism, cardiorespiratory fitness, and muscle strength in burn survivors. Despite this, very few hospitals incorporate RET in programs to aid the rehabilitation of patients with severe burns. Given that RET is a safe and efficacious treatment that restores function and reduces post-burn morbidity, we propose that a long-term exercise prescription plan should be considered for all patients with severe burns. In this literature review, we discuss the current understanding of burn trauma on major organ systems, and the positive benefits of incorporating RET as a part of the long-term rehabilitation of severely burned individuals. We also provide burn-specific exercise prescription guidelines for clinical exercise physiologists.
Collapse
Affiliation(s)
- Alen Palackic
- Department of Surgery, Division of Surgical Sciences, Medical Branch, University of Texas, Galveston, TX, USA.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Oscar E Suman
- Department of Surgery, Division of Surgical Sciences, Medical Branch, University of Texas, Galveston, TX, USA
| | - Craig Porter
- Department of Pediatrics, Division of Developmental Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew J Murton
- Department of Surgery, Division of Surgical Sciences, Medical Branch, University of Texas, Galveston, TX, USA
| | - Craig G Crandall
- Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Eric Rivas
- KBR, Human Physiology, Performance, Protection and Operations Laboratory, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA.
| |
Collapse
|
4
|
Ravanelli N, Gendron P, Gagnon D. Revisiting the evaluation of central versus peripheral thermoregulatory control in humans. Am J Physiol Regul Integr Comp Physiol 2021; 321:R91-R99. [PMID: 34075801 DOI: 10.1152/ajpregu.00321.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human thermoregulatory control is often evaluated through the relationship between thermoeffector output and core or mean body temperature. In addition to providing a general indication of whether a variable of interest alters thermoregulatory control, this relationship is often used to determine how this alteration may occur. This latter interpretation relies upon two parameters of the thermoeffector output-body temperature relationship: the onset threshold and thermosensitivity. Traditionally, changes in the onset threshold and thermosensitivity are interpreted as "central" or "peripheral" modulation of thermoregulatory control, respectively. This mini-review revisits the origins of the thermoeffector output-body temperature relationship and its use to interpret "central" or "peripheral" modulation of thermoregulatory control. Against this background, we discuss the strengths and weaknesses of this approach and highlight that "central" thermoregulatory control reflects the neural control of body temperature whereas "peripheral" thermoregulatory control reflects properties specific to the thermoeffector organs. We highlight studies that employed more direct approaches to investigate the neural control of body temperature and peripheral properties of thermoeffector organs. We conclude by encouraging future investigations interested in studying thermoregulatory control to more directly investigate the component of the thermoeffector loop under investigation.heat; human; skin blood flow; sweat; thermoregulatory.
Collapse
Affiliation(s)
| | - Philippe Gendron
- Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montreal, Quebec, Canada.,School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Belval LN, Cramer MN, Moralez G, Huang MU, Cimino FA, Watso JC, Crandall CG. Interaction of Exercise Intensity and Simulated Burn Injury Size on Thermoregulation. Med Sci Sports Exerc 2021; 53:367-374. [PMID: 32826639 PMCID: PMC7995740 DOI: 10.1249/mss.0000000000002480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to test the hypothesis that the elevation in internal body temperature during exercise in a hot environment is influenced by the combination of exercise intensity and BSA burned. METHODS Ten healthy participants (8 males, 2 females; 32 ± 9 yr; 75.3 ± 11.7 kg) completed eight exercise trials on a cycle ergometer, each with different combinations of metabolic heat productions (low, 4 W·kg-1; moderate, 6 W·kg-1) and simulated BSA burn in a hot environmental chamber (39.9°C ± 0.3°C, 20.1% ± 1.5% RH). Burns were simulated by covering 0%, 20%, 40%, or 60% of participants' BSA with a highly absorbent, vapor-impermeable material. Gastrointestinal temperature (TGI) was recorded, with the primary analysis being the increase in TGI after 60 min of exercise. RESULTS We identified an interaction effect for the increase in TGI (P < 0.01), suggesting TGI was influenced by both intensity and simulated burn BSA. Regardless of the percentage BSA burn simulated, the increase in TGI was similar across low-intensity trials (0.70°C ± 0.26°C, P > 0.11 for all). However, during moderate-intensity exercise, the increase in TGI was greater for the 60% (1.78°C ± 0.38°C, P < 0.01) and 40% BSA coverage trials (1.33°C ± 0.44°C, P = 0.04), relative to 0% (0.82°C ± 0.36°C). There were no differences in TGI responses between 0% and 20% trials. CONCLUSION These data suggest that exercise intensity influences the relationship between burn injury size and thermoregulatory responses in a hot environment.
Collapse
Affiliation(s)
- Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| | - Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Frank A Cimino
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph C Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Romero SA, Moralez G, Jaffery MF, Huang MU, Engelland RE, Cramer MN, Crandall CG. Exercise Training Improves Microvascular Function in Burn Injury Survivors. Med Sci Sports Exerc 2020; 52:2430-2436. [PMID: 33064412 DOI: 10.1249/mss.0000000000002379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Vasodilator function is impaired in individuals with well-healed burn injuries; however, therapeutic interventions that lessen or reverse this maladaptation are lacking. The purpose of this study was to test the hypothesis that a 6-month community-based exercise training program would increase microvascular dilator function in individuals with well-healed burn injuries, irrespective of the magnitude of the injured body surface area. Further, we hypothesize that macrovascular dilator function would remain unchanged posttraining. METHODS Microvascular function (forearm reactive hyperemia), macrovascular function (brachial artery flow-mediated dilation), and the maximal vasodilatory response after ischemic handgrip exercise (an estimate of microvascular remodeling) were assessed before and after exercise training in nonburned control subjects (n = 11) and individuals with burn injuries covering a moderate body surface area (26% ± 7%; n = 13) and a high body surface area (59% ± 15%; n = 19). RESULTS Peak vascular conductance and area under the curve during postocclusive reactive hyperemia increased from pretraining to posttraining in control and burn injury groups (both P < 0.05), the magnitude of which did not differ between groups (both P = 0.6). Likewise, the maximal vasodilatory response after ischemic handgrip exercise increased in all groups after exercise training (P < 0.05). Macrovascular dilator function did not differ across time or between groups (P = 0.8). CONCLUSIONS These data suggest that a community-based exercise training program improves microvascular function in individuals with well-healed burn injuries, which may be due in part to vascular remodeling.
Collapse
Affiliation(s)
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - M U Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | | | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| |
Collapse
|
7
|
Huang M, Moralez G, Romero SA, Jaffery MF, Cramer MN, Petric JK, Nabasny AD, Crandall CG. The benefits of an unsupervised exercise program in persons with well-healed burn injuries within the International Classification of Functioning, Disability and Health (ICF). Burns 2020; 46:1280-1288. [PMID: 32660830 DOI: 10.1016/j.burns.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
Vast improvements in the survival rates following burn injuries has led to a greater number of patients living with a wide range of long-term impairments, activity limitations, and participation constraints. Therefore, long-term care is critical in this clinical population and necessitates appropriate rehabilitation strategies to maximize an individual's overall health. The purpose of this study was to test the hypothesis that the extent to which outcomes within the International Classification of Functioning, Disability, and Health (ICF) framework are improved following 6 months of unsupervised exercise training is influenced by the severity of a burn injury (i.e., percent body surface area injured). Outcome variables representing the dimensions of the ICF, body functions & structure, activity, and participation, were collected pre- and post- 6 months of exercise training in three groups of participants: non-injured control subjects (N = 11), subjects with moderate-level well-healed burn injuries (N = 13, 26 ± 6% body surface area burned), and subjects with high-level well-healed burn injuries (N = 20, 58 ± 15% body surface area burned). Exercise training improved lower extremity strength (changes in peak torque/kg body mass at 90 degrees/sec flexion: 30 ± 5% and extension: 36 ± 4%, p < 0.05) and functional activities (changes in sit to stand: -9 ± 4% and ascend stairs: -4 ± 1%; p < 0.05) in all groups. For outcome variables representing ICF levels of body functions & structure and activity, there were no differences at baseline or improvements made between the groups after training. That said, with the exception of the domain of functional activity (reported 17 ± 34% improvement in the high-level burn cohort, p < 0.05), no changes were revealed in the participation level of ICF indexed by health-related quality of life questionnaires. These findings support the utilization of a 6-month unsupervised exercise training program in the long-term rehabilitation of individuals with burn injuries; that is, improvements in body functions & structure and activity can be achieved with an exercise regimen regardless of the severity of burn injury.
Collapse
Affiliation(s)
- Mu Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, USA; University of Texas Southwestern Medical Center School of Health Professions, Dallas, TX, USA
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, USA; University of Texas Southwestern Medical Center School of Health Professions, Dallas, TX, USA
| | - Steven A Romero
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, USA; University of North Texas Health Science Center, Ft. Worth, TX, USA
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, USA
| | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, USA
| | - Jan Karel Petric
- University of Texas Southwestern Medical Center School of Health Professions, Dallas, TX, USA
| | - Andrew D Nabasny
- University of Texas Southwestern Medical Center School of Health Professions, Dallas, TX, USA
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, USA.
| |
Collapse
|
8
|
Kelter B, Holavanahalli R, Suman O, Ryan C, Schneider J. Recognizing the long-term sequelae of burns as a chronic medical condition. Burns 2020; 46:493-496. [DOI: 10.1016/j.burns.2019.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
|
9
|
Barry H, Chaseling GK, Moreault S, Sauvageau C, Behzadi P, Gravel H, Ravanelli N, Gagnon D. Improved neural control of body temperature following heat acclimation in humans. J Physiol 2020; 598:1223-1234. [PMID: 32011734 DOI: 10.1113/jp279266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS With the advent of more frequent extreme heat events, adaptability to hot environments will be crucial for the survival of many species, including humans. However, the mechanisms that mediate human heat adaptation have remained elusive. We tested the hypothesis that heat acclimation improves the neural control of body temperature. Skin sympathetic nerve activity, comprising the efferent neural signal that activates heat loss thermoeffectors, was measured in healthy adults exposed to passive heat stress before and after a 7 day heat acclimation protocol. Heat acclimation reduced the activation threshold for skin sympathetic nerve activity, leading to an earlier activation of cutaneous vasodilatation and sweat production. These findings demonstrate that heat acclimation improves the neural control of body temperature in humans. ABSTRACT Heat acclimation improves autonomic temperature regulation in humans. However, the mechanisms that mediate human heat adaptation remain poorly understood. The present study tested the hypothesis that heat acclimation improves the neural control of body temperature. Body temperatures, skin sympathetic nerve activity, cutaneous vasodilatation, and sweat production were measured in 14 healthy adults (nine men and five women, aged 27 ± 5 years) during passive heat stress performed before and after a 7 day heat acclimation protocol. Heat acclimation increased whole-body sweat rate [+0.54 L h-1 (0.32, 0.75), P < 0.01] and reduced resting core temperature [-0.29°C (-0.40, -0.18), P < 0.01]. During passive heat stress, the change in mean body temperature required to activate skin sympathetic nerve activity was reduced [-0.21°C (-0.34, -0.08), P < 0.01] following heat acclimation. The earlier activation of skin sympathetic nerve activity resulted in lower activation thresholds for cutaneous vasodilatation [-0.18°C (-0.35, -0.01), P = 0.04] and local sweat rate [-0.13°C (-0.24, -0.01), P = 0.03]. These results demonstrate that heat acclimation leads to an earlier activation of the neural efferent outflow that activates the heat loss thermoeffectors of cutaneous vasodilatation and sweating.
Collapse
Affiliation(s)
- Hadiatou Barry
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Georgia K Chaseling
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Samuel Moreault
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudia Sauvageau
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Parya Behzadi
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Gravel
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicholas Ravanelli
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Vargas NT, Chapman CL, Johnson BD, Gathercole R, Cramer MN, Schlader ZJ. Thermal behavior alleviates thermal discomfort during steady-state exercise without affecting whole body heat loss. J Appl Physiol (1985) 2019; 127:984-994. [PMID: 31414951 DOI: 10.1152/japplphysiol.00379.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that thermal behavior resulting in reductions in mean skin temperature alleviates thermal discomfort and mitigates the rise in core temperature during light-intensity exercise. In a 27 ± 0°C, 48 ± 6% relative humidity environment, 12 healthy subjects (6 men, 6 women) completed 60 min of recumbent cycling. In both trials, subjects wore a water-perfused suit top continually perfusing 34 ± 0°C water. In the behavior trial, subjects maintained their upper body thermally comfortable by pressing a button to perfuse cool water (2.2 ± 0.5°C) through the top for 2 min per button press. Metabolic heat production (control: 404 ± 52 W, behavior: 397 ± 65 W; P = 0.44) was similar between trials. Mean skin temperature was reduced in the behavior trial (by -2.1 ± 1.8°C, P < 0.01) because of voluntary reductions in water-perfused top temperature (P < 0.01). Whole body (P = 0.02) and local sweat rates were lower in the behavior trial (P ≤ 0.05). Absolute core temperature was similar (P ≥ 0.30); however, the change in core temperature was greater in the behavior trial after 40 min of exercise (P ≤ 0.03). Partitional calorimetry did not reveal any differences in cumulative heat storage (control: 554 ± 229, behavior: 544 ± 283 kJ; P = 0.90). Thermal behavior alleviated whole body thermal discomfort during exercise (by -1.17 ± 0.40 arbitrary units, P < 0.01). Despite lower evaporative cooling in the behavior trial, similar heat loss was achieved by voluntarily employing convective cooling. Therefore, thermal behavior resulting in large reductions in skin temperature is effective at alleviating thermal discomfort during exercise without affecting whole body heat loss.NEW & NOTEWORTHY This study aimed to determine the effectiveness of thermal behavior in maintaining thermal comfort during exercise by allowing subjects to voluntarily cool their torso and upper limbs with 2°C water throughout a light-intensity exercise protocol. We show that voluntary cooling of the upper body alleviates thermal discomfort while maintaining heat balance through convective rather than evaporative means of heat loss.
Collapse
Affiliation(s)
- Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Rob Gathercole
- lululemon athletica inc., Vancouver, British Columbia, Canada
| | - Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
11
|
Romero SA, Moralez G, Jaffery MF, Huang M, Cramer MN, Romain N, Kouda K, Haller RG, Crandall CG. Progressive exercise training improves maximal aerobic capacity in individuals with well-healed burn injuries. Am J Physiol Regul Integr Comp Physiol 2019; 317:R563-R570. [PMID: 31433672 DOI: 10.1152/ajpregu.00201.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-term rehabilitative strategies are important for individuals with well-healed burn injuries. Such information is particularly critical because patients are routinely surviving severe burn injuries given medical advances in the acute care setting. The purpose of this study was to test the hypothesis that a 6-mo community-based exercise training program will increase maximal aerobic capacity (V̇o2max) in subjects with prior burn injuries, with the extent of that increase influenced by the severity of the burn injury (i.e., percent body surface area burned). Maximal aerobic capacity (indirect calorimetry) and skeletal muscle oxidative enzyme activity (biopsy of the vastus lateralis muscle) were measured pre- and postexercise training in noninjured control subjects (n = 11) and in individuals with well-healed burn injuries (n = 13, moderate body surface area burned; n = 20, high body surface area burned). Exercise training increased V̇o2max in all groups (control: 15 ± 5%; moderate body surface area: 11 ± 3%; high body surface area: 11 ± 2%; P < 0.05), though the magnitude of this improvement did not differ between groups (P = 0.7). Exercise training also increased the activity of the skeletal muscle oxidative enzymes citrate synthase (P < 0.05) and cytochrome c oxidase (P < 0.05), an effect that did not differ between groups (P = 0.2). These data suggest that 6 mo of progressive exercise training improves V̇o2max in individuals with burn injuries and that the magnitude of body surface area burned does not lessen this adaptive response.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,University of North Texas Health Science Center, Fort Worth, Texas
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Mu Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Nadine Romain
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Ken Kouda
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas.,Wakayama Medical University, Wakayama, Japan
| | - Ronald G Haller
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| |
Collapse
|
12
|
Romero SA, Moralez G, Jaffery MF, Huang M, Crandall CG. Vasodilator function is impaired in burn injury survivors. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1054-R1060. [PMID: 30256680 DOI: 10.1152/ajpregu.00188.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of severe burn injury on vascular health is unknown. We tested the hypothesis that, compared with nonburn control subjects, vasodilator function would be reduced and that pulse-wave velocity (a measure of arterial stiffness) would be increased in individuals with prior burn injuries, the extent of which would be associated with the magnitude of body surface area having sustained a severe burn. Pulse-wave velocity and macrovascular (flow-mediated dilation) and microvascular (reactive hyperemia) dilator functions were assessed in 14 nonburned control subjects and 32 age-matched subjects with well-healed burn injuries. Fifteen subjects with burn injuries covering 17-40% of body surface area were assigned to a moderate burn injury group, and 17 subjects with burn injuries covering >40% of body surface area were assigned to a high burn injury group. Pulse-wave velocity [ P = 0.3 (central) and P = 0.3 (peripheral)] did not differ between the three groups. Macrovascular dilator function was reduced in the moderate ( P = 0.07) and high ( P < 0.05) burn injury groups compared with the control group. Likewise, peak vascular conductance during postocclusive reactive hyperemia differed from the moderate burn injury group ( P = 0.08 vs. control) and the high burn injury group ( P < 0.05 vs. control). These data suggest that vasodilator function is impaired in well-healed burn injury survivors, with the extent of impairment not dependent on the magnitude of body surface area having sustained a severe burn injury.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas.,University of North Texas Health Science Center, Ft. Worth, Texas
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| | - Mu Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| |
Collapse
|
13
|
Li H, Chen L, Zhang M, Xie S, Cheng L. Expression and localization of Forkhead transcription factor A1 in the three-dimensional reconstructed eccrine sweat glands. Acta Histochem 2018; 120:520-524. [PMID: 29909922 DOI: 10.1016/j.acthis.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
Previously studies showed that Forkhead transcription factor A1 (FoxA1) was associated with sweat secretion. To investigate the expression and localization of FoxA1 in the three-dimensional (3D) reconstructed eccrine sweat glands, eccrine sweat gland cells were transplanted subcutaneously into nude mice with Matrigel, and at 2, 3, 4, 5, 6, 8, 10 and 12 weeks post-transplantation, the reconstructed eccrine sweat glands were removed and immunostained for FoxA1 and co-immunostained for FoxA1 and eccrine sweat markers, K7, carbonic anhydrase II (CA Ⅱ), gross cystic disease fluid protein-15 (GCDFP-15) and α-smooth muscle actin (α-SMA), and FoxA1 and sweat secretion-related proteins, Na+-K+-ATPase α and Na+-K+-2Cl- cotransporter 1 (NKCC1). The results showed that FoxA1-positive cells weren't detected until 3 weeks post-implantation, a time point of the differntiation of secretory coil-like structures. From the fourth week on, the number of FoxA1-positive cells increased and thereafter maintained at a high number. Double immunofluorescence staining showed that FoxA1-positive cells co-expressed dark cell marker GCDFP-15 and myoepithelial cell marker α-SMA, as well as secretion-related proteins, Na+-K+-ATPase α and NKCC1 in both the native and reconstructed eccrine sweat glands. In conclusion, FoxA1 might be related to the development and differentiation of secretory coil-like structures, as well as the secretory function of the 3D reconstructed eccrine sweat glands.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China; Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Sitian Xie
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Liuhanghang Cheng
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
14
|
Abstract
In humans, sweating is the most powerful autonomic thermoeffector. The evaporation of sweat provides by far the greatest potential for heat loss and it represents the only means of heat loss when air temperature exceeds skin temperature. Sweat production results from the integration of afferent neural information from peripheral and central thermoreceptors which leads to an increase in skin sympathetic nerve activity. At the neuroglandular junction, acetylcholine is released and binds to muscarinic receptors which stimulate the secretion of a primary fluid by the secretory coil of eccrine glands. The primary fluid subsequently travels through a duct where ions are reabsorbed. The end result is the expulsion of hypotonic sweat on to the skin surface. Sweating increases in proportion with the intensity of the thermal challenge in an attempt of the body to attain heat balance and maintain a stable internal body temperature. The control of sweating can be modified by biophysical factors, heat acclimation, dehydration, and nonthermal factors. The purpose of this article is to review the role of sweating as a heat loss thermoeffector in humans.
Collapse
|
15
|
Rivas E, McEntire SJ, Herndon DN, Mlcak RP, Suman OE. β-Adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and nonburned skin under neutral and hot environments in children. Microcirculation 2017; 24. [PMID: 28071840 DOI: 10.1111/micc.12350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We tested the hypothesis that propranolol, a drug given to burn patients to reduce hypermetabolism/cardiac stress, may inhibit heat dissipation by changing the sensitivity of skin blood flow (SkBF) to local heating under neutral and hot conditions. METHODS In a randomized double-blind study, a placebo was given to eight burned children, while propranolol was given to 13 burned children with similar characteristics (mean±SD: 11.9±3 years, 147±20 cm, 45±23 kg, 56±12% Total body surface area burned). Nonburned children (n=13, 11.4±3 years, 152±15 cm, 52±13 kg) served as healthy controls. A progressive local heating protocol characterized SkBF responses in burned and unburned skin and nonburned control skin under the two environmental conditions (23 and 34°C) via laser Doppler flowmetry. RESULTS Resting SkBF was greater in burned and unburned skin compared to the nonburned control (main effect: skin, P<.0001; 57±32 burned; 38±36 unburned vs 9±8 control %SkBFmax ). No difference was found for maximal SkBF capacity to local heating between groups. Additionally, dose-response curves for the sensitivity of SkBF to local heating were not different among burned or unburned skin, and nonburned control skin (EC50 , P>.05) under either condition. CONCLUSION Therapeutic propranolol does not negatively affect SkBF under neutral or hot environmental conditions and further compromise temperature regulation in burned children.
Collapse
Affiliation(s)
- Eric Rivas
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Serina J McEntire
- College of Nursing and Health Sciences, Valdosta State University, Valdosta, GA, USA
| | - David N Herndon
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ronald P Mlcak
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Oscar E Suman
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|