1
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Hall HR, Mahung C, Dunn JLM, Kartchner LM, Seim RF, Cairns BA, Wallet SM, Maile R. Characterization of the Basal and mTOR-Dependent Acute Pulmonary and Systemic Immune Response in a Murine Model of Combined Burn and Inhalation Injury. Int J Mol Sci 2022; 23:8779. [PMID: 35955914 PMCID: PMC9368856 DOI: 10.3390/ijms23158779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Severe burn injury leads to a cascade of local and systemic immune responses that trigger an extreme state of immune dysfunction, leaving the patient highly susceptible to acute and chronic infection. When combined with inhalation injury, burn patients have higher mortality and a greater chance of developing secondary respiratory complications including infection. No animal model of combined burn and inhalation injury (B+I) exists that accurately mirrors the human clinical picture, nor are there any effective immunotherapies or predictive models of the risk of immune dysfunction. Our earlier work showed that the mechanistic/mammalian target of rapamycin (mTOR) pathway is activated early after burn injury, and its chemical blockade at injury reduced subsequent chronic bacterial susceptibility. It is unclear if mTOR plays a role in the exacerbated immune dysfunction seen after B+I injury. We aimed to: (1) characterize a novel murine model of B+I injury, and (2) investigate the role of mTOR in the immune response after B+I injury. Pulmonary and systemic immune responses to B+I were characterized in the absence or presence of mTOR inhibition at the time of injury. Data describe a murine model of B+I with inhalation-specific immune phenotypes and implicate mTOR in the acute immune dysfunction observed.
Collapse
Affiliation(s)
- Hannah R. Hall
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cressida Mahung
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia L. M. Dunn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laurel M. Kartchner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Roland F. Seim
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bruce A. Cairns
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shannon M. Wallet
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27599, USA
| | - Robert Maile
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Kartchner LB, Gode CJ, Dunn JLM, Glenn LI, Duncan DN, Wolfgang MC, Cairns BA, Maile R. One-hit wonder: Late after burn injury, granulocytes can clear one bacterial infection but cannot control a subsequent infection. Burns 2019; 45:627-640. [PMID: 30833100 DOI: 10.1016/j.burns.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/04/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Burn injury induces an acute hyperactive immune response followed by a chronic immune dysregulation that leaves those afflicted susceptible to multiple secondary infections. Many murine models are able to recapitulate the acute immune response to burn injury, yet few models are able to recapitulate long-term immune suppression and thus chronic susceptibility to bacterial infections seen in burn patients. This has hindered the field, making evaluation of the mechanisms responsible for these susceptibilities difficult to study. Herein we describe a novel mouse model of burn injury that promotes chronic immune suppression allowing for susceptibility to primary and secondary infections and thus allows for the evaluation of associated mechanisms. METHODS C57Bl/6 mice receiving a full-thickness contact burn were infected with Pseudomonas aeruginosa 14 days (primary infection) and/or 17 days (secondary infection) after burn or sham injury. The survival, pulmonary and systemic bacterial load as well as frequency and function of innate immune cells (neutrophils and macrophages) were evaluated. RESULTS Following secondary infection, burn mice were less effective in clearance of bacteria compared to sham injured or burn mice following a primary infection. Following secondary infection both neutrophils and macrophages recruited to the airways exhibited reduced production of anti-bacterial reactive oxygen and nitrogen species and the pro-inflammatory cytokineIL-12 while macrophages demonstrated increased expression of the anti-inflammatory cytokine interleukin-10 compared to those from sham burned mice and/or burn mice receiving a primary infection. In addition the BALF from these mice contained significantly higher level so of the anti-inflammatory cytokine IL-4 compared to those from sham burned mice and/or burn mice receiving a primary infection. CONCLUSIONS Burn-mediated protection from infection is transient, with a secondary infection inducing immune protection to collapse. Repeated infection leads to increased neutrophil and macrophage numbers in the lungs late after burn injury, with diminished innate immune cell function and an increased anti-inflammatory cytokine environment.
Collapse
Affiliation(s)
- Laurel B Kartchner
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cindy J Gode
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Marsico Lung Institute/Cystic Fibrosis Research Center, USA
| | - Julia L M Dunn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lindsey I Glenn
- Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Danté N Duncan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Marsico Lung Institute/Cystic Fibrosis Research Center, USA
| | - Bruce A Cairns
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Jaycee Burn Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Maile
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Jaycee Burn Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Muramyl dipeptide enhances thermal injury-induced inflammatory cytokine production and organ function injury in rats. Shock 2015; 42:161-7. [PMID: 24667616 DOI: 10.1097/shk.0000000000000164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bacterial infection following thermal injury is a very important factor of excessive inflammatory response and multiple organ damage. Muramyl dipeptide (MDP) is the key structure of gram-positive bacteria and gram-negative bacteria triggering the innate immune system. The aim of the present study was to determine the effect of MDP on thermal injury-induced inflammatory responses, organ function injury, and mortality in rats. Fifty male Sprague-Dawlay rats were randomly divided into three groups: normal control group, scald group, and MDP group. Scald group only suffered 20% total body surface area third-degree thermal injury. Muramyl dipeptide 5 mg·kg was administered through the femoral vein at 24 h after thermal injury in the MDP group. Plasma inflammatory cytokine levels were measured by enzyme-linked immunosorbent assay. An additional 90 male Sprague-Dawley rats were randomly divided into three groups to observe the survival rate in 72 h. Plasma levels of interleukin-6, interleukin-10, interferon-γ, and high-mobility group box 1; the white blood cell counts; the serum concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatine kinase isoenzyme-MB, blood urea nitrogen, and creatinine; and the activity of lung tissue myeloperoxidase significantly increased after thermal injury alone. Compared with the scald group, MDP led to more serious inflammatory responses and organ function damage and higher mortality (P < 0.05, respectively). These data indicate that MDP exacerbates thermal injury-induced inflammatory cytokine production, accompanied by multiple organ dysfunction syndrome and high mortality in rats.
Collapse
|
5
|
Animal models in burn research. Cell Mol Life Sci 2014; 71:3241-55. [PMID: 24714880 DOI: 10.1007/s00018-014-1612-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.
Collapse
|
6
|
Yun HM, Oh JH, Shim JH, Ban JO, Park KR, Kim JH, Lee DH, Kang JW, Park YH, Yu D, Kim Y, Han SB, Yoon DY, Hong JT. Antitumor activity of IL-32β through the activation of lymphocytes, and the inactivation of NF-κB and STAT3 signals. Cell Death Dis 2013; 4:e640. [PMID: 23703385 PMCID: PMC3674373 DOI: 10.1038/cddis.2013.166] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8(+)) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.
Collapse
Affiliation(s)
- H-M Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|