1
|
Gaigeard N, Cardon A, Le Goff B, Guicheux J, Boutet MA. Unveiling the macrophage dynamics in osteoarthritic joints: From inflammation to therapeutic strategies. Drug Discov Today 2024; 29:104187. [PMID: 39306233 DOI: 10.1016/j.drudis.2024.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Osteoarthritis (OA) is an incurable, painful, and debilitating joint disease affecting over 500 million people worldwide. The OA joint tissues are infiltrated by various immune cells, particularly macrophages, which are able to induce or perpetuate inflammation. Notably, synovitis and its macrophage component represent a target of interest for developing treatments. In this review, we describe the latest advances in understanding the heterogeneity of macrophage origins, phenotypes, and functions in the OA joint and the effect of current symptomatic therapies on these cells. We then highlight the therapeutic potential of anticytokines/chemokines, nano- and microdrug delivery, and future strategies to modulate macrophage functions in OA.
Collapse
Affiliation(s)
- Nicolas Gaigeard
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Anaïs Cardon
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Benoit Le Goff
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Marie-Astrid Boutet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France; Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M6BQ London, UK.
| |
Collapse
|
2
|
Li B, Jin Y, Zhang B, Lu T, Li J, Zhang J, Zhou Y, Wang Y, Zhang C, Zhao Y, Li H. Adipose tissue-derived extracellular vesicles aggravate temporomandibular joint osteoarthritis associated with obesity. Clin Transl Med 2024; 14:e70029. [PMID: 39350476 PMCID: PMC11442491 DOI: 10.1002/ctm2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Temporomandibular joint osteoarthritis (TMJ OA) is a major disease that affects maxillofacial health and is characterised by cartilage degeneration and subchondral bone remodelling. Obesity is associated with the exacerbation of pathological manifestations of TMJ OA. However, the underlying mechanism between adipose tissue and the TMJ axis remains limited. OBJECTIVES To evaluate the effects of obesity and the adipose tissue on the development of TMJ OA. METHODS The obesity-related metabolic changes in TMJ OA patients were detected by physical signs and plasma metabolites. The effects of adipose tissue-derived EVs (Ad-EVs) on TMJ OA was investigated through histological and cytological experiments as well as gene editing technology. Alterations of Ad-EVs in obese state were identified by microRNA-seq analysis and the mechanism by which EVs affect TMJ OA was explored in vitro and in vivo. RESULTS Obesity and the related metabolic changes were important influencing factors for TMJ OA. Ad-EVs from obese mice induced marked chondrocyte apoptosis, cartilage matrix degradation and subchondral bone remodelling, which exacerbated the development of TMJ OA. Depletion of Ad-EVs secretion by knocking out the geranylgeranyl diphosphate synthase (Ggpps) gene in adipose tissue significantly inhibited the obesity-induced aggravation of TMJ OA. MiR-3074-5p played an important role in this process . CONCLUSIONS Our work unveils an unknown link between obese adipose tissue and TMJ OA. Targeting the Ad-EVs and the miR-3074-5p may represent a promising therapeutic strategy for obesity-related TMJ OA. KEY POINTS High-fat-diet-induced obesity aggravate the progression of TMJ OA in mice. Obese adipose tissue participates in cartilage damage through the altered miRNA in extracellular vesicles. Inhibition of miR-3074-5p/SMAD4 pathway in chondrocyte alleviated the effect of HFD-EVs on TMJ OA.
Collapse
Affiliation(s)
- Baochao Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yuqin Jin
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bingqing Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Tong Lu
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jialing Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jingzi Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of ImmunologyMedical School, Nanjing UniversityNanjingChina
| | - Yiwen Zhou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yanyi Wang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Caixia Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yue Zhao
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Huang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
3
|
Binvignat M, Sellam J, Berenbaum F, Felson DT. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 2024; 20:565-584. [PMID: 39112603 DOI: 10.1038/s41584-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.
Collapse
Affiliation(s)
- Marie Binvignat
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- Sorbonne University, INSERM UMRS_959, I3 Lab Immunology Immunopathology Immunotherapy, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France.
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, AP-HP Saint-Antoine hospital, Paris, France
- Sorbonne University, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - David T Felson
- Boston University School of Medicine, Department of Medicine, Section of Rheumatology, Boston, MA, USA
| |
Collapse
|
4
|
Lee K, Banuls-Mirete M, Lombardi AF, Posis AIB, Chang EY, Lane NE, Guma M. Infrapatellar fat pad size and subcutaneous fat in knee osteoarthritis radiographic progression: data from the osteoarthritis initiative. Arthritis Res Ther 2024; 26:145. [PMID: 39080699 PMCID: PMC11289919 DOI: 10.1186/s13075-024-03367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Adipose tissue has been associated with knee osteoarthritis (KOA) pathogenesis, but the longitudinal changes in adipose tissue with KOA progression have not been carefully evaluated. This study aimed to determine if longitudinal changes of systemic and local adipose tissue is associated with radiographic progression of KOA. METHODS This case-control study used data from the Osteoarthritis Initiative (OAI) and included 315 cases (all the right knees with a minimum of Kellgren-Lawrence score (KL) of 0 and an increase of ≥ 1 KL from baseline to 48 months) and 315 controls matched by age, sex, race, and baseline KL. Cross sectional area of IPFP (IPFP CSA) and subcutaneous adipose tissue around the distal thigh (SCATthigh) were measured using MRI images at baseline and 24 months. Conditional logistic regression models were fitted to estimate associations of obesity markers, IPFP CSA, and SCATthigh with radiographic KOA progression. Mediation analysis was used to assess whether IPFP CSA or SCATthigh mediates the relationships between baseline BMI and radiographic KOA progression. RESULTS 24-month changes of IPFP CSA (ΔIPFP CSA) and SCATthigh (ΔSCATthigh) were significantly greater in cases compared to controls, whereas Δ BMI and Δ abdominal circumference were similar in both groups during follow-up. Adjusted ORs for radiographic KOA progression were 9.299, 95% CI (5.357-16.141) per 1 SD increase of Δ IPFP CSA and 1.646, 95% CI (1.288-2.103) per 1 SD increase of Δ SCATthigh. ΔIPFP CSA mediated the association between baseline BMI and radiographic KOA progression (87%). CONCLUSIONS Subjects with radiographic progression of KOA, had significant increases in IPFP CSA and subcutaneous adipose tissue while BMI and abdominal circumference remained stable. Additional studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC 0663, La Jolla, CA, 92093-0663, USA
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Marina Banuls-Mirete
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC 0663, La Jolla, CA, 92093-0663, USA
| | - Alecio F Lombardi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Alexander I B Posis
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, USA
| | - Nancy E Lane
- Department of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Monica Guma
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC 0663, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|
5
|
Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in osteoarthritis. ANNALES D'ENDOCRINOLOGIE 2024; 85:214-219. [PMID: 38871517 DOI: 10.1016/j.ando.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, without any curative treatment. Obesity being the main modifiable risk factor for OA, much attention focused on the role of adipose tissues (AT). In addition to the involvement of visceral and subcutaneous AT via systemic ways, many arguments also highlight the involvement of local AT, present in joint tissues. Local AT include intra-articular AT (IAAT), which border the synovium, and bone marrow AT (BMAT) localized within marrow cavities in the bones. This review describes the known features and involvement of IAAT and BMAT in joint homeostasis and OA. Recent findings evidence that alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad can be predictive of the development and progression of knee OA. IAAT and synovium are partners of the same functional unit; IAAT playing an early and pivotal role in synovial inflammation and fibrosis and OA pain. BMAT, whose functions have only recently begun to be studied, is in close functional interaction with its microenvironment. The volume and molecular profile of BMAT change according to the pathophysiological context, enabling fine regulation of haematopoiesis and bone metabolism. Although its role in OA has not yet been studied, the localization of BMAT, its functions and the importance of the bone remodelling processes that occur in OA argue in favour of a role for BMAT in OA.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France
| | - Francis Berenbaum
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Xavier Houard
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France.
| |
Collapse
|
6
|
Huang J, Han J, Rozi R, Fu B, Lu Z, Liu J, Ding Y. Association between lipid accumulation products and osteoarthritis among adults in the United States: A cross-sectional study, NHANES 2017-2020. Prev Med 2024; 180:107861. [PMID: 38244933 DOI: 10.1016/j.ypmed.2024.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Using cross-sectional data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) for American, the aim of this research is to investigate the potential association between Lipid Accumulation Products (LAP) and the risk of osteoarthritis (OA). METHODS Data from the NHANES (2017-2020) were downloaded and further analyzed. The participants between 20 and 80 years reported having OA, and other relevant variables and information on LAP were included. The linear and non-linear associations between LAP and OA were evaluated using multivariable logistic regression analysis and smoothed curve fitting methods. A two-part linear regression model was also used to estimate threshold effects. RESULTS The increased risk of OA was shown to have a nonlinear relationship with higher LAP, showing a solid threshold impact with a saturation value of 120.00 cm × mmol/L, according to our data. The two variables showed a positive relationship to the left of the saturation point but no significant association to the right, pointing to a complicated nonlinear relationship between OA prevalence and LAP. CONCLUSIONS Our findings revealed that LAP was an independent risk factor for OA when it was <120.00 cm × mmol/L. The LAP index may serve as a valuable method for predicting and diagnosed OA. To validate our results, further large-scale prospective research are required.
Collapse
Affiliation(s)
- Jie Huang
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopaedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jiaheng Han
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopaedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Rigbat Rozi
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Bensheng Fu
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Zhengcao Lu
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopaedics, School of Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiang Liu
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yu Ding
- Orthopaedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopaedics, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Orthopaedics, School of Medicine, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
7
|
Kaneguchi A, Yamaoka K, Ozawa J. The Effects of Corticosteroid Administration and Treadmill Exercise on Marrow Adipose Tissue and Trabecular Bone after Anterior Cruciate Ligament Reconstruction in Rats. Acta Histochem Cytochem 2024; 57:47-55. [PMID: 38463208 PMCID: PMC10918434 DOI: 10.1267/ahc.23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
We aimed to investigate the effects of short-term corticosteroid administration after anterior cruciate ligament (ACL) reconstruction on marrow adipose tissue (MAT) and trabecular bone mass, as well as to examine whether treadmill exercise can mitigate MAT increase and trabecular bone deterioration caused by corticosteroid. ACL-reconstructed rats were divided into groups: no intervention, daily treadmill exercise (60 min/day), administration of the steroidal drug dexamethasone (250 μg/kg on days 0-5, 7, and 9 post-operatively), or dexamethasone administration combined with treadmill exercise. Untreated rats were served as controls. At day 10 or 30 post-operatively, histological assessments were performed in the proximal tibial epiphysis. MAT accumulation and trabecular bone loss were observed after ACL reconstruction. Dexamethasone promoted MAT accumulation at day 10 post-operatively but did not affect the trabecular bone loss. The MAT accumulation caused by dexamethasone reversed within 21 days after discontinuation. Treadmill exercise did not influence the changes in the MAT and trabecular bone areas. Short-term corticosteroid administration after ACL reconstruction promoted MAT accumulation while not affecting trabecular bone area. The MAT accumulation resulting from corticosteroid administration was reversible after discontinuation. Treadmill exercise could not mitigate the accumulation of MAT caused by corticosteroid administration and did not affect trabecular bone area.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555–36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555–36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555–36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
Kaneguchi A, Yamaoka K, Ozawa J. Effects of Weight Bearing on Marrow Adipose Tissue and Trabecular Bone after Anterior Cruciate Ligament Reconstruction in the Rat Proximal Tibial Epiphysis. Acta Histochem Cytochem 2024; 57:15-24. [PMID: 38463204 PMCID: PMC10918432 DOI: 10.1267/ahc.23-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
The effects of mechanical unloading after anterior cruciate ligament (ACL) reconstruction on bone and marrow adipose tissue (MAT) are unclear. We investigated weight bearing effects on bone and MAT after ACL reconstruction. Rats underwent unilateral knee ACL transection and reconstruction, followed by hindlimb unloading (non-weight bearing), no intervention (low-weight bearing, the hindlimb standing time ratio (STR; operated/contralateral) during treadmill locomotion ranging from 0.55 to 0.91), or sustained morphine administration (moderate-weight bearing, STR ranging from 0.80 to 0.95). Untreated rats were used as controls. At 7 or 14 days after surgery, changes in trabecular bone and MAT in the proximal tibial were assessed histologically. Histological assessments at 7 or 14 days after surgery showed that ACL reconstruction without post-operative intervention did not significantly change trabecular bone and MAT areas. Hindlimb unloading after ACL reconstruction induced MAT accumulation with adipocyte hyperplasia and hypertrophy within 14 days, but did not significantly affect trabecular bone area. Increased weight bearing through morphine administration did not affect trabecular bone and MAT parameters. Our results suggest that early weight bearing after ACL reconstruction is important in reducing MAT accumulation, and that reduction in weight bearing alone is not sufficient to induce bone loss early after ACL reconstruction.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
9
|
Tong B, Chen H, Wang M, Liu P, Wang C, Zeng W, Li D, Shang S. Association of body composition and physical activity with pain and function in knee osteoarthritis patients: a cross-sectional study. BMJ Open 2024; 14:e076043. [PMID: 38233052 PMCID: PMC10806729 DOI: 10.1136/bmjopen-2023-076043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE The objective of this study is to delineate disparities between patients with knee osteoarthritis (KOA) based on obesity status, investigate the interplay among body composition, physical activity and knee pain/function in patients with KOA and conduct subgroup analyses focusing on those with KOA and obesity. DESIGN Cross-sectional study. SETTING Residents of eight communities in Shijiazhuang, Hebei Province, China, were surveyed from March 2021 to November 2021. PARTICIPANTS 178 patients with symptomatic KOA aged 40 years or older were included. MAIN OUTCOMES AND MEASURES The primary outcome measure was knee pain, assessed using the Western Ontario and McMaster Universities Osteoarthritis Index-pain (WOMAC-P) scale. Secondary outcome measures included function, evaluated through the WOMAC-function (WOMAC-F) scale and the Five-Time-Sit-to-Stand Test (FTSST). Data analysis involved t-tests, Wilcoxon rank-sum tests, χ2 tests, linear and logistical regression analysis. RESULTS Participants (n=178) were 41-80 years of age (median: 65, P25-P75: 58-70), and 82% were female. Obese patients (n=103) had worse knee pain and self-reported function (p<0.05). In general patients with KOA, body fat mass was positively associated with bilateral knee pain (β=1.21 (95% CI 0.03 to 0.15)), WOMAC-P scores (β=0.25 (95% CI 0.23 to 1.22)), WOMAC-F scores (β=0.28 (95% CI 0.35 to 1.29)) and FTSST (β=0.19 (95% CI 0.03 to 0.42)), moderate-intensity to low-intensity physical activity was negatively associated with bilateral knee pain (β=-0.80 (95% CI -0.10 to -0.01)) and Skeletal Muscle Index (SMI) was negatively associated with WOMAC-F scores (β=-0.16 (95% CI -0.66 to -0.03)). In patients with KOA and obesity, SMI was negatively associated with FTSST (β=-0.30 (95% CI -3.94 to -0.00)). CONCLUSION Patients with KOA and obesity had worse knee pain and self-reported function compared with non-obese patients. Greater fat mass, lower muscle mass and lower moderate-intensity to low-intensity physical activity were associated with increased knee pain and poor self-reported function. More skeletal muscle mass was associated with the improvement of objective function.
Collapse
Affiliation(s)
- Beibei Tong
- Peking University School of Nursing, Peking University, Beijing, China
| | - Hongbo Chen
- Nursing Department of Peking University Third Hospital, Peking University Third Hospital, Beijing, China
| | - Mengqi Wang
- Peking University School of Nursing, Peking University, Beijing, China
| | - Peiyuan Liu
- Peking University School of Nursing, Peking University, Beijing, China
| | - Cui Wang
- Peking University School of Nursing, Peking University, Beijing, China
| | - Wen Zeng
- Peking University School of Nursing, Peking University, Beijing, China
| | - Dan Li
- Peking University School of Nursing, Peking University, Beijing, China
| | - Shaomei Shang
- Peking University School of Nursing, Peking University, Beijing, China
| |
Collapse
|
10
|
Lyu L, Li Y, Zhong J, Yao W. Association among peripatellar fat pad edema and related patellofemoral maltracking parameters: a case-control magnetic resonance imaging study. BMC Musculoskelet Disord 2023; 24:678. [PMID: 37626375 PMCID: PMC10463576 DOI: 10.1186/s12891-023-06827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The peripatellar fat pads are critical for protective cushioning during movement, and their endocrine function has been shown to affect osteoarthritis. Magnetic resonance imaging (MRI) is frequently used to visualize edema of the peripatellar fat pads due to injury. In this study, we aimed to assess the relationship between peripatellar fat pad edema and patellofemoral maltracking MRI parameters and investigate the association among cases of peripatellar fat pad edema. METHODS Age- and sex-matched peripatellar fat pad edema cases were identified and divided into superolateral Hoffa, quadriceps, and prefemoral groups. Images were assessed according to tibial tuberosity lateralization, trochlear dysplasia, patellar alta, patellar tilt, and bisect offset. McNemar's test or paired t-tests and Spearman's correlation were used for statistical analysis. Interobserver agreement was assessed with the intraclass correlation coefficient. RESULTS Of 1210 MRI scans, 50, 68, and 42 cases were in the superolateral Hoffa, quadriceps, and prefemoral groups, respectively. Subjects with superolateral Hoffa fat pad edema had a lower lateral trochlear inclination (p = 0.028), higher Insall-Salvati (p < 0.001) and modified Insall-Salvati (p = 0.021) ratios, and lower patellotrochlear index (p < 0.001) than controls. The prefemoral group had a lower lateral trochlear inclination (p = 0.014) and higher Insall-Salvati (p < 0.001) and modified Insall-Salvati (p = 0.004) ratios compared with the control group. In contrast, the patellotrochlear index (p = 0.001) was lower. Mean patellar tilt angle (p = 0.019) and mean bisect offset (p = 0.005) were significantly different between cases and controls. The quadriceps group showed no association. Superolateral Hoffa was positively correlated with prefemoral (p < 0.001, r = 0.408) and negatively correlated with quadriceps (p < 0.001, r = -0.500) fat pad edema. CONCLUSIONS Superolateral Hoffa and prefemoral fat pad edemas were associated with patellar maltracking parameters. Quadriceps fat pad edema and maltracking parameters were not associated. Superolateral Hoffa fat pad edema was positively correlated with prefemoral and negatively correlated with quadriceps fat pad edema.
Collapse
Affiliation(s)
- Liangjing Lyu
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| | - Yongliang Li
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
11
|
He T, Pang Z, Yin Y, Xue H, Pang Y, Song H, Li J, Bai R, Qin A, Kong X. Micron-resolution Imaging of Cortical Bone under 14 T Ultrahigh Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300959. [PMID: 37339792 PMCID: PMC10460861 DOI: 10.1002/advs.202300959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Compact, mineralized cortical bone tissues are often concealed on magnetic resonance (MR) images. Recent development of MR instruments and pulse techniques has yielded significant advances in acquiring anatomical and physiological information from cortical bone despite its poor 1 H signals. This work demonstrates the first MR research on cortical bones under an ultrahigh magnetic field of 14 T. The 1 H signals of different mammalian species exhibit multi-exponential decays of three characteristic T2 or T2 * values: 0.1-0.5 ms, 1-4 ms, and 4-8 ms. Systematic sample comparisons attribute these T2 /T2 * value ranges to collagen-bound water, pore water, and lipids, respectively. Ultrashort echo time (UTE) imaging under 14 T yielded spatial resolutions of 20-80 microns, which resolves the 3D anatomy of the Haversian canals. The T2 * relaxation characteristics further allow spatial classifications of collagen, pore water and lipids in human specimens. The study achieves a record of the spatial resolution for MR imaging in bone and shows that ultrahigh-field MR has the unique ability to differentiate the soft and organic compartments in bone tissues.
Collapse
Affiliation(s)
- Tian He
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Zhenfeng Pang
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Yu Yin
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Huadong Xue
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Yichuan Pang
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haixin Song
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Jianhua Li
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT)College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Xueqian Kong
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghai200240China
| |
Collapse
|
12
|
Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon 2023; 9:e15700. [PMID: 37180899 PMCID: PMC10172930 DOI: 10.1016/j.heliyon.2023.e15700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent progressive disease that frequently coexists with obesity. For several decades, OA was thought to be the result of ageing and mechanical stress on cartilage. Researchers' perspective has been greatly transformed when cumulative findings emphasized the role of adipose tissue in the diseases. Nowadays, the metabolic effect of obesity on cartilage tissue has become an integral part of obesity research; hoping to discover a disease-modifying drug for OA. Recently, several adipokines have been reported to be associated with OA. Particularly, metrnl (meteorin-like) and retinol-binding protein 4 (RBP4) have been recognized as emerging adipokines that can mediate OA pathogenesis. Accordingly, in this review, we will summarize the latest findings concerned with the metabolic contribution of obesity in OA pathogenesis, with particular emphasis on dyslipidemia, insulin resistance and adipokines. Additionally, we will discuss the most recent adipokines that have been reported to play a role in this context. Careful consideration of these molecular mechanisms interrelated with obesity and OA will undoubtedly unveil new avenues for OA treatment.
Collapse
Affiliation(s)
- Basma H. Sobieh
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O. El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Corresponding author. Associate Professor of Biochemistry Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, street of African Union Organization, 11566, Cairo, Egypt.
| |
Collapse
|
13
|
Martel-Pelletier J, Paiement P, Pelletier JP. Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis. Ther Adv Musculoskelet Dis 2023; 15:1759720X231165560. [PMID: 37151912 PMCID: PMC10155034 DOI: 10.1177/1759720x231165560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Knee osteoarthritis (OA) is a prevalent and disabling disease that can develop over decades. This disease is heterogeneous and involves structural changes in the whole joint, encompassing multiple tissue types. Detecting OA before the onset of irreversible changes is crucial for early management, and this could be achieved by allowing knee tissue visualization and quantifying their changes over time. Although some imaging modalities are available for knee structure assessment, magnetic resonance imaging (MRI) is preferred. This narrative review looks at existing literature, first on MRI-developed approaches for evaluating knee articular tissues, and second on prediction using machine/deep-learning-based methodologies and MRI as input or outcome for early OA diagnosis and prognosis. A substantial number of MRI methodologies have been developed to assess several knee tissues in a semi-quantitative and quantitative fashion using manual, semi-automated and fully automated systems. This dynamic field has grown substantially since the advent of machine/deep learning. Another active area is predictive modelling using machine/deep-learning methodologies enabling robust early OA diagnosis/prognosis. Moreover, incorporating MRI markers as input/outcome in such predictive models is important for a more accurate OA structural diagnosis/prognosis. The main limitation of their usage is the ability to move them in rheumatology practice. In conclusion, MRI knee tissue determination and quantification provide early indicators for individuals at high risk of developing this disease or for patient prognosis. Such assessment of knee tissues, combined with the development of models/tools from machine/deep learning using, in addition to other parameters, MRI markers for early diagnosis/prognosis, will maximize opportunities for individualized risk assessment for use in clinical practice permitting precision medicine. Future efforts should be made to integrate such prediction models into open access, allowing early disease management to prevent or delay the OA outcome.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of
Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, R11.412B,
Montreal, QC H2X 0A9, Canada
| | - Patrice Paiement
- Osteoarthritis Research Unit, University of
Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of
Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
14
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 341] [Impact Index Per Article: 170.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Hart DA. Osteoarthritis as an Umbrella Term for Different Subsets of Humans Undergoing Joint Degeneration: The Need to Address the Differences to Develop Effective Conservative Treatments and Prevention Strategies. Int J Mol Sci 2022; 23:ijms232315365. [PMID: 36499704 PMCID: PMC9736942 DOI: 10.3390/ijms232315365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) of joints such as the knee and hip are very prevalent, and the number of individuals affected is expected to continue to rise. Currently, conservative treatments after OA diagnosis consist of a series of increasingly invasive interventions as the degeneration and pain increase, leading very often to joint replacement surgery. Most interventions are focused on alleviating pain, and there are no interventions currently available that stop and reverse OA-associated joint damage. For many decades OA was considered a disease of cartilage, but it is now considered a disease of the whole multi-tissue joint. As pain is the usual presenting symptom, for most patients, it is not known when the disease process was initiated and what the basis was for the initiation. The exception is post-traumatic OA which results from an overt injury to the joint that elevates the risk for OA development. This scenario leads to very long wait lists for joint replacement surgery in many jurisdictions. One aspect of why progress has been so slow in addressing the needs of patients is that OA has been used as an umbrella term that does not recognize that joint degeneration may arise from a variety of mechanistic causes that likely need separate analysis to identify interventions unique to each subtype (post-traumatic, metabolic, post-menopausal, growth and maturation associated). A second aspect of the slow pace of progress is that the bulk of research in the area is focused on post-traumatic OA (PTOA) in preclinical models that likely are not clearly relevant to human OA. That is, only ~12% of human OA is due to PTOA, but the bulk of studies investigate PTOA in rodents. Thus, much of the research community is failing the patient population affected by OA. A third aspect is that conservative treatment platforms are not specific to each OA subset, nor are they integrated into a coherent fashion for most patients. This review will discuss the literature relevant to the issues mentioned above and propose some of the directions that will be required going forward to enhance the impact of the research enterprise to affect patient outcomes.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
16
|
Pascart T, Falgayrac G, Cortet B, Paccou J, Bleuse M, Coursier R, Putman S, Quinchon JF, Bertheaume N, Delattre J, Marchandise P, Cultot A, Norberciak L, Kerckhofs G, Budzik JF. Subchondral involvement in osteonecrosis of the femoral head: insight on local composition, microstructure and vascularization. Osteoarthritis Cartilage 2022; 30:1103-1115. [PMID: 35568111 DOI: 10.1016/j.joca.2022.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine changes of subchondral bone composition, micro-structure, bone marrow adiposity and micro-vascular perfusion in end-stage osteonecrosis of the femoral head (ONFH) compared to osteoarthritis (OA) using a combined in vivo and ex vivo approach. DESIGN Male patients up to 70 years old referred for total hip replacement surgery for end-stage ONFH were included (n = 14). Fifteen patients with OA were controls. Pre-operative MRI was used to assess bone perfusion (dynamic contrast-enhanced (DCE) sequences) and marrow fat content (chemical shift imaging). Three distinct zones of femoral head subchondral bone - necrotic, sclerotic, distant - were compared between groups. After surgery, plugs were sampled in these zones and Raman spectroscopy was applied to characterize bone mineral and organic components (old and newly-formed), and contrast-enhanced micro-computed tomography (CE-μCT) to determine bone micro-structural parameters and volume of bone marrow adipocytes, using conventional 2D histology as a reference. RESULTS In the necrotic zone of ONFH patients compared to OA patients: 1) the subchondral plate did not exhibit significant changes in composition nor structure; 2) the volume fraction of subchondral trabecular bone was significantly lower; 3) type-B carbonate substitution was less pronounced, 4) collagen maturity was more pronounced; and 5) bone marrow adipocytes were significantly depleted. The sclerotic zone from the ONFH group showed greater trabecular thickness, and higher DCE-MRI AUC and Ktrans. Volume fraction of subchondral bone, trabecular number, and Kep were significantly lower in the distant zone of the ONFH group. CONCLUSIONS This study demonstrated alterations of subchondral bone microstructure, composition, perfusion and/or adipose content in all zones of the femoral head.
Collapse
Affiliation(s)
- T Pascart
- Department of Rheumatology, Lille Catholic Hospitals and Lille Catholic University, Lille, France; Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France.
| | - G Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - B Cortet
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Univ. Lille, CHU Lille, ULR 4490, Department of Rheumatology, 59000 Lille, France
| | - J Paccou
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Univ. Lille, CHU Lille, ULR 4490, Department of Rheumatology, 59000 Lille, France
| | - M Bleuse
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - R Coursier
- Department of Orthopaedic Surgery, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - S Putman
- Department of Orthopaedic Surgery, CHU Lille, Lille University, Lille, France
| | - J-F Quinchon
- Department of Anatomopathology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - N Bertheaume
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - J Delattre
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - P Marchandise
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France
| | - A Cultot
- Department of Diagnostic and Interventional Radiology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - L Norberciak
- Department of Research, Biostatistics, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| | - G Kerckhofs
- Biomechanics Lab - Institute of Mechanics, Materials, and Civil Engineering, Louvain-la-Neuve, UCLouvain, Belgium; IREC - Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, Leuven, KU Leuven, Belgium; Prometheus, Division for Skeletal Tissue Engineering, Leuven, KU Leuven, Belgium
| | - J-F Budzik
- Univ. Lille, CHU Lille, Univ. Littoral Côte D'Opale, ULR 4490 - MABLab- Adiposité Médullaire et Os, F-59000 Lille, France; Department of Diagnostic and Interventional Radiology, Lille Catholic Hospitals and Lille Catholic University, Lille, France
| |
Collapse
|
17
|
Guler M, Ali S, Jacques C. [Osteoarthritis and obesity: Crucial role of adipose tissue]. Med Sci (Paris) 2022; 38:749-751. [PMID: 36094252 DOI: 10.1051/medsci/2022117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Merve Guler
- M1 Biologie intégrative et physiologie, Sorbonne Université, 75005 Paris, France
| | - Sarah Ali
- M1 Biologie intégrative et physiologie, Sorbonne Université, 75005 Paris, France
| | - Claire Jacques
- M1 Biologie intégrative et physiologie, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
18
|
Zhong L, Li M, Du X, Ding Y, Zhang X, Mei Y, Yi P, Feng Y, Chen Y, Zhang X. Quantitative evaluation of the characteristic of infrapatellar fat pad Fat Content and Unsaturation Index by using hydrogen proton MR spectroscopy. Magn Reson Imaging 2022; 94:18-24. [DOI: 10.1016/j.mri.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
19
|
Engineering Closed-Loop, Autoregulatory Gene Circuits for Osteoarthritis Cell-Based Therapies. Curr Rheumatol Rep 2022; 24:96-110. [PMID: 35404006 DOI: 10.1007/s11926-022-01061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Genetic engineering offers the possibility to simultaneously target multiple cellular pathways in the joints affected by osteoarthritis (OA). The purpose of this review is to summarize the ongoing efforts to develop disease-modifying osteoarthritis drugs (DMOADs) using genetic engineering, including targeting approaches, genome editing techniques, and delivery methods. RECENT FINDINGS Several gene circuits have been developed that reprogram cells to autonomously target inflammation, and their efficacy has been demonstrated in chondrocytes and stem cells. Gene circuits developed for metabolic disorders, such as those targeting insulin resistance and obesity, also have the potential to mitigate the impact of these conditions on OA onset and/or progression. Despite the strides made in characterizing the inflammatory environment of the OA joint, our incomplete understanding of how the multiple regulators interact to control signal transduction, gene transcription, and translation to protein limits the development of targeted disease-modifying therapeutics. Continuous advances in targeted genome editing, combined with online toolkits that simplify the design and production of gene circuits, have the potential to accelerate the discovery and clinical application of multi-target gene circuits with disease-modifying properties for the treatment of OA.
Collapse
|
20
|
Martel-Pelletier J, Tardif G, Pelletier JP. An Open Debate on the Morphological Measurement Methodologies of the Infrapatellar Fat Pad to Determine Its Association with the Osteoarthritis Process. Curr Rheumatol Rep 2022; 24:76-80. [PMID: 35235164 DOI: 10.1007/s11926-022-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Knee osteoarthritis (OA) is a disease affecting all the neighboring articular tissues including the infrapatellar fat pad (IPFP). Although not yet as widely studied as other tissues in the knee, the IPFP has been recognized to have important metabolic activities and is a key player in OA. METHODS In this commentary, we will briefly describe the different methodologies employed for the MRI morphological measurement of this tissue and depict the findings in regard to OA. RESULTS The morphology of this tissue, monitored mainly with the use of magnetic resonance imaging (MRI), demonstrates changes during OA. However, studies of the IPFP morphological alterations and their association with the OA process have shown conflicting results, including a detrimental or beneficial role or no role at all. Although many reasons could explain such mixed findings, one might be the different methodologies used for the MRI measurement of area, volume, or signal intensity. In addition, several techniques are also employed for measuring the volume and signal intensity. An additional level of complexity is related to the presence within the IPFP of two different types of signal intensities, hyper-intensity, and hypo-intensity. CONCLUSION A consensus of a procedure to measure the morphology of the IPFP is urgently needed to fully appreciate the role of this tissue in the pathology of OA, as well as its uses for clinical decision-making.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis Street, Pavilion R, Room R11.412, Montreal, Quebec, H2X 0A9, Canada.
| | - Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis Street, Pavilion R, Room R11.412, Montreal, Quebec, H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis Street, Pavilion R, Room R11.412, Montreal, Quebec, H2X 0A9, Canada
| |
Collapse
|
21
|
Kim S, Choe J. Association between metabolic syndrome and radiographic spine osteoarthritis: Cross‐sectional analysis using data from the Korea National Health and Nutrition Examination Survey. Int J Rheum Dis 2022; 25:466-473. [DOI: 10.1111/1756-185x.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Seong‐Kyu Kim
- Division of Rheumatology Department of Internal Medicine Catholic University of Daegu School of Medicine Daegu Korea
| | - Jung‐Yoon Choe
- Division of Rheumatology Department of Internal Medicine Catholic University of Daegu School of Medicine Daegu Korea
| |
Collapse
|
22
|
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa ME, Chong PP, Law JX. Mesenchymal Stem Cell-Derived Exosomes and MicroRNAs in Cartilage Regeneration: Biogenesis, Efficacy, miRNA Enrichment and Delivery. Pharmaceuticals (Basel) 2021; 14:1093. [PMID: 34832875 PMCID: PMC8618513 DOI: 10.3390/ph14111093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Qi Hao Looi
- My Cytohealth Sdn. Bhd., D353a, Menara Suezcap 1, KL Gateway, no. 2, Jalan Kerinchi, Gerbang Kerinchi Lestari, Kuala Lumpur 59200, Malaysia;
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Pei Pei Chong
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
23
|
Wallace IJ, Riew GJ, Landau R, Bendele AM, Holowka NB, Hedrick TL, Konow N, Brooks DJ, Lieberman DE. Experimental evidence that physical activity inhibits osteoarthritis: Implications for inferring activity patterns from osteoarthritis in archeological human skeletons. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ian J. Wallace
- Department of Human Evolutionary Biology Harvard University Cambridge Massachusetts USA
- Department of Anthropology University of New Mexico Albuquerque New Mexico USA
| | - Grant J. Riew
- Department of Human Evolutionary Biology Harvard University Cambridge Massachusetts USA
- Harvard Medical School Boston Massachusetts USA
| | - Rebecca Landau
- Department of Human Evolutionary Biology Harvard University Cambridge Massachusetts USA
| | | | - Nicholas B. Holowka
- Department of Human Evolutionary Biology Harvard University Cambridge Massachusetts USA
- Department of Anthropology University at Buffalo Buffalo New York USA
| | - Tyson L. Hedrick
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Nicolai Konow
- Department of Biological Sciences University of Massachusetts Lowell Lowell Massachusetts USA
| | - Daniel J. Brooks
- Center for Advanced Orthopaedic Studies Beth Israel Deaconess Medical Center, Harvard Medical School Boston Massachusetts USA
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology Harvard University Cambridge Massachusetts USA
| |
Collapse
|
24
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
25
|
Gupta A, Channaveera C, Anand V, Sethi S. An Investigator-Initiated, Prospective, Single-Center, Open-Label Clinical Study to Evaluate Safety and Performance of Intra-Articular Hyaluronic Acid (IA-HA) (Biovisc Ortho) in Patients with Osteoarthritis (OA) of the Knee. Clin Pharmacol 2021; 13:73-82. [PMID: 34007222 PMCID: PMC8123980 DOI: 10.2147/cpaa.s298589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022] Open
Abstract
Objective IA-HA is injected into the osteoarthritis knee as a viscosupplementation for therapeutic purposes. This clinical trial was carried out for evaluating the efficacy and safety of Biovisc Ortho IA-HA (20 mg/2 mL) in a 2 mL prefilled syringe. Design The study was conducted as an open-label, single-center, single-arm clinical trial in India. Patients of knee OA with moderate to severe symptoms for a minimum duration of 3 months were included in the study. Five visits were conducted at weekly intervals and the investigational product was administered at each visit. Two follow-up visits were conducted at 3 and 6 months after the completion of the last injection cycle. The primary outcome variable was change in KOOS pain score from baseline. The secondary outcome variables were analyzed for other KOOS scales and safety of the device. Results Change in KOOS pain score at 6 months from baseline was 29.71±15.74 and the change in mean KOOS score for pain was statistically significant (p<0.0001) for all post-baseline visits. Statistically significant improvement was observed for mean values of efficacy assessments (KOOS) during the study period (6 months) for all the domains evaluated, including pain, joint function and quality of life. Conclusion Despite being an open, noncomparative study, the safety and efficacy results of IA-HA establish the therapeutic effect of the treatment throughout the study period of 6 months and are safe.
Collapse
Affiliation(s)
- Ajay Gupta
- Department of Physical Medicine & Rehabilitation, VMM College and Safdarjang Hospital, New Delhi, 110029, India
| | - Chethan Channaveera
- Department of Physical Medicine & Rehabilitation,AIIMS, Mangalagiri, Andhra Pradesh, 522503, India
| | - Vijender Anand
- Department of Physical Medicine & Rehabilitation, VMM College and Safdarjang Hospital, New Delhi, 110029, India
| | - Satyaranjan Sethi
- Department of Physical Medicine & Rehabilitation, VMM College and Safdarjang Hospital, New Delhi, 110029, India
| |
Collapse
|