1
|
Heeger PS, Haro MC, Jordan S. Translating B cell immunology to the treatment of antibody-mediated allograft rejection. Nat Rev Nephrol 2024; 20:218-232. [PMID: 38168662 DOI: 10.1038/s41581-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Antibody-mediated rejection (AMR), including chronic AMR (cAMR), causes ~50% of kidney allograft losses each year. Despite attempts to develop well-tolerated and effective therapeutics for the management of AMR, to date, none has obtained FDA approval, thereby highlighting an urgent unmet medical need. Discoveries over the past decade from basic, translational and clinical studies of transplant recipients have provided a foundation for developing novel therapeutic approaches to preventing and treating AMR and cAMR. These interventions are aimed at reducing donor-specific antibody levels, decreasing graft injury and fibrosis, and preserving kidney function. Innovative approaches emerging from basic science findings include targeting interactions between alloreactive T cells and B cells, and depleting alloreactive memory B cells, as well as donor-specific antibody-producing plasmablasts and plasma cells. Therapies aimed at reducing the cytotoxic antibody effector functions mediated by natural killer cells and the complement system, and their associated pro-inflammatory cytokines, are also undergoing evaluation. The complexity of the pathogenesis of AMR and cAMR suggest that multiple approaches will probably be required to treat these disease processes effectively. Definitive answers await results from large, double-blind, multicentre, randomized controlled clinical trials.
Collapse
Affiliation(s)
- Peter S Heeger
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA
| | - Maria Carrera Haro
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA
| | - Stanley Jordan
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
3
|
Jia W, Fu ZL, Wang X, Luo J, Yan CL, Cao JP, Yan-Liu, Xie JF, Liu GY, Gao C, Li XF. Decreased Absolute Number of Circulating Regulatory T Cells in Patients With Takayasu's Arteritis. Front Immunol 2022; 12:768244. [PMID: 35006213 PMCID: PMC8732761 DOI: 10.3389/fimmu.2021.768244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Takayasu's arteritis (TA) is a type of primary large vessel vasculitis. Th1, Th17, and Tfh cells have been reported to be associated with TA relapse. However, the relationship between regulatory T cells (Tregs) and TA remains unclear. Objective To analyze the levels of circulating lymphocytes, especially Treg cells (CD4+CD25+FOXP3+ T cells) and serum cytokines in TA patients and explore their relationship with their changes and TA disease activity. Methods A total of 57 TA patients and 43 sex- and age-matched healthy controls (HCs) were enrolled. According to NIH standards, 36 patients had active disease status. Flow cytometry combined with counting was used to detect the absolute numbers and ratios of Th1, Th2, Th17, and Treg cells in the peripheral blood of all the subjects. Magnetic bead-based multiplex immunoassay was used to detect cytokines. Results Compared to HCs, the absolute number and proportion of peripheral Treg cells in TA patients was significantly decreased, while Th17 cells were significantly increased. Furthermore, compared to the inactive group, the TA active group had significantly increased levels of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α, but lower IL-10 levels. The absolute number of Th2 cells was negatively associated with platelet (PLT) and NIS scores in TA patients. The proportion of Th2 cells was negatively associated with the erythrocyte sedimentation rate in TA patients. After treatment, Treg cells were markedly increased. Conclusion There was a Th17-Treg cell imbalance with a significant reduction in peripheral Treg cells and an increase in Th17 cells in TA patients compared to the HCs. The levels of IL-6, IL-10, IL-17, and TNF-α appeared to be related to disease activity.
Collapse
Affiliation(s)
- Wen Jia
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zi-Li Fu
- Department of Rheumatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng-Lan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Ping Cao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan-Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Fang Xie
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guang-Ying Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
James JA, Guthridge JM, Chen H, Lu R, Bourn RL, Bean K, Munroe ME, Smith M, Chakravarty E, Baer AN, Noaiseh G, Parke A, Boyle K, Keyes-Elstein L, Coca A, Utset T, Genovese MC, Pascual V, Utz PJ, Holers VM, Deane KD, Sivils KL, Aberle T, Wallace DJ, McNamara J, Franchimont N, St Clair EW. Unique Sjögren's syndrome patient subsets defined by molecular features. Rheumatology (Oxford) 2020; 59:860-868. [PMID: 31497844 DOI: 10.1093/rheumatology/kez335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/23/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To address heterogeneity complicating primary SS (pSS) clinical trials, research and care by characterizing and clustering patients by their molecular phenotypes. METHODS pSS patients met American-European Consensus Group classification criteria and had at least one systemic manifestation and stimulated salivary flow of ⩾0.1 ml/min. Correlated transcriptional modules were derived from gene expression microarray data from blood (n = 47 with appropriate samples). Patients were clustered based on this molecular information using an unbiased random forest modelling approach. In addition, multiplex, bead-based assays and ELISAs were used to assess 30 serum cytokines, chemokines and soluble receptors. Eleven autoantibodies, including anti-Ro/SSA and anti-La/SSB, were measured by Bio-Rad Bioplex 2200. RESULTS Transcriptional modules distinguished three clusters of pSS patients. Cluster 1 showed no significant elevation of IFN or inflammation modules. Cluster 2 showed strong IFN and inflammation modular network signatures, as well as high plasma protein levels of IP-10/CXCL10, MIG/CXCL9, BLyS (BAFF) and LIGHT. Cluster 3 samples exhibited moderately elevated IFN modules, but with suppressed inflammatory modules, increased IP-10/CXCL10 and B cell-attracting chemokine 1/CXCL13 and trends toward increased MIG/CXCL9, IL-1α, and IL-21. Anti-Ro/SSA and anti-La/SSB were present in all three clusters. CONCLUSION Molecular profiles encompassing IFN, inflammation and other signatures can be used to separate patients with pSS into distinct clusters. In the future, such profiles may inform patient selection for clinical trials and guide treatment decisions.
Collapse
Affiliation(s)
- Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine
| | - Hua Chen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rufei Lu
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Krista Bean
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Melissa E Munroe
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miles Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Eliza Chakravarty
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Alan N Baer
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ghaith Noaiseh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ann Parke
- Division of Rheumatic Diseases, University of Connecticut, Farmington, CT, USA
| | - Karen Boyle
- Rho Federal Systems Division, Chapel Hill, NC, USA
| | | | - Andreea Coca
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tammy Utset
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mark C Genovese
- Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Paul J Utz
- Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora,CO, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora,CO, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Teresa Aberle
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Daniel J Wallace
- Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - James McNamara
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - E William St Clair
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Parisis D, Chivasso C, Perret J, Soyfoo MS, Delporte C. Current State of Knowledge on Primary Sjögren's Syndrome, an Autoimmune Exocrinopathy. J Clin Med 2020; 9:E2299. [PMID: 32698400 PMCID: PMC7408693 DOI: 10.3390/jcm9072299] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune rheumatic disease characterized by lymphoplasmacytic infiltration of the salivary and lacrimal glands, whereby sicca syndrome and/or systemic manifestations are the clinical hallmarks, associated with a particular autoantibody profile. pSS is the most frequent connective tissue disease after rheumatoid arthritis, affecting 0.3-3% of the population. Women are more prone to develop pSS than men, with a sex ratio of 9:1. Considered in the past as innocent collateral passive victims of autoimmunity, the epithelial cells of the salivary glands are now known to play an active role in the pathogenesis of the disease. The aetiology of the "autoimmune epithelitis" still remains unknown, but certainly involves genetic, environmental and hormonal factors. Later during the disease evolution, the subsequent chronic activation of B cells can lead to the development of systemic manifestations or non-Hodgkin's lymphoma. The aim of the present comprehensive review is to provide the current state of knowledge on pSS. The review addresses the clinical manifestations and complications of the disease, the diagnostic workup, the pathogenic mechanisms and the therapeutic approaches.
Collapse
Affiliation(s)
- Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
- Department of Rheumatology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| | | | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| |
Collapse
|
6
|
Ban T, Sato GR, Tamura T. Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int Immunol 2019; 30:529-536. [PMID: 29860420 DOI: 10.1093/intimm/dxy032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
The transcription factor interferon regulatory factor-5 (IRF5) plays an important role in innate immune responses via the TLR-MyD88 (Toll-like receptor - myeloid differentiation primary response 88) pathway. IRF5 is also involved in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE). Recent studies have identified new regulators, both positive and negative, which act on IRF5 activation events in the TLR-MyD88 pathway such as post-translational modifications, dimerization and nuclear translocation. A model of the causal relationship between IRF5 activation and SLE pathogenesis proposes that a loss of the negative regulation of IRF5 causes its hyperactivation, resulting in hyperproduction of type I interferons and other cytokines, and ultimately in the development of SLE. Importantly, to our knowledge, all murine models of SLE studied thus far have shown that IRF5 is required for the pathogenesis of SLE-like diseases. During the development of SLE-like diseases, IRF5 plays key roles in various cell types, including dendritic cells and B cells. It is noteworthy that the onset of SLE-like diseases can be inhibited by reducing the activity or amount of IRF5 by half. Therefore, IRF5 is an important therapeutic target of SLE, and selective suppression of its activity and expression may potentially lead to the development of new therapies.
Collapse
Affiliation(s)
- Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Go R Sato
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
7
|
Dolcino M, Tinazzi E, Vitali C, Del Papa N, Puccetti A, Lunardi C. Long Non-Coding RNAs Modulate Sjögren's Syndrome Associated Gene Expression and Are Involved in the Pathogenesis of the Disease. J Clin Med 2019; 8:jcm8091349. [PMID: 31480511 PMCID: PMC6780488 DOI: 10.3390/jcm8091349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren's syndrome (pSjS) is a chronic systemic autoimmune disorder, primarily affecting exocrine glands; its pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) are thought to play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in pSjS is still lacking. To this aim, the expression of more than 540,000 human transcripts, including those ascribed to more than 50,000 lncRNAs is profiled at the same time, in a cohort of 16 peripheral blood mononuclear cells PBMCs samples (eight pSjS and eight healthy subjects). A complex network analysis is carried out on the global set of molecular interactions among modulated genes and lncRNAs, leading to the identification of reliable lncRNA-miRNA-gene functional interactions. Taking this approach, a few lncRNAs are identified as targeting highly connected genes in the pSjS transcriptome, since they have a major impact on gene modulation in the disease. Such genes are involved in biological processes and molecular pathways crucial in the pathogenesis of pSjS, including immune response, B cell development and function, inflammation, apoptosis, type I and gamma interferon, epithelial cell adhesion and polarization. The identification of deregulated lncRNAs that modulate genes involved in the typical features of the disease provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Claudio Vitali
- Sections of Rheumatology, Villa S. Giuseppe, Como and Casa di Cura di Lecco, 23900 Lecco, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine, Section of Histology, University of Genova, Via G.B. Marsano 10, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy.
| |
Collapse
|
8
|
Nation J, Panuganti B, Manteghi A, Pransky S. Pediatric Sialendoscopy for Recurrent Salivary Gland Swelling: Workup, Findings, and Outcomes. Ann Otol Rhinol Laryngol 2019; 128:338-344. [DOI: 10.1177/0003489418823794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Recurrent salivary gland swelling of the parotid and submandibular glands results in painful swelling in the pediatric population. There is no defined algorithm for workup and treatment of these disorders, resulting in wide heterogeneity and in some cases overuse of computed tomography (CT) imaging. Sialendoscopy (SE) is an interventional option for recurrent swelling of both glands; however, its effectiveness in the pediatric population is still being determined. Objectives: To assess preoperative imaging utilization and benefit in the workup of recurrent pediatric sialadenitis, intraoperative SE findings, and postoperative outcomes after intervention with SE. Methods: Case-series with a 5-year retrospective chart review on children undergoing SE for recurrent sialadenitis. Results: Forty-nine SE procedures were performed on 38 parotid glands (PG) and 11 submandibular glands (SMGs) in 29 children. CT imaging findings were useful for identifying a stone or stricture and guiding surgical management in 45.5% of SMGs versus 2.6% of PGs ( P < .001). A stone was found in 45.5% of SMGs and none in PG ( P < .001). SE intervention such as balloon dilation or stone removal was performed in 54.6% of SMGs and 5.3% of PGs ( P < .001). 74% of parotid patients undergoing SE responded to 1 intervention with a cessation of recurrent gland swelling, while 26% required additional interventions. One hundred percent of SMG patients responded to first intervention. There was no improvement in the beneficial effect of SE with steroid injection ( P = .897) regardless of steroid used ( P = .082). Conclusion: CT findings were found to be low yield for recurrent parotid swelling, and ultrasound is a recommended first-line step for PG pathology. SE is a recommended first-line intervention for SMG and parotid sialadenitis as demonstrated by 100% and 74% response rate to initial SE, respectively.
Collapse
Affiliation(s)
- Javan Nation
- Division of Otolaryngology, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Otolaryngology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Bharat Panuganti
- Division of Otolaryngology, University of California San Diego, San Diego, CA, USA
| | - Alexander Manteghi
- Division of Pediatric Otolaryngology, St. Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Seth Pransky
- Division of Pediatric Otolaryngology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
9
|
Streicher K, Sridhar S, Kuziora M, Morehouse CA, Higgs BW, Sebastian Y, Groves CJ, Pilataxi F, Brohawn PZ, Herbst R, Ranade K. Baseline Plasma Cell Gene Signature Predicts Improvement in Systemic Sclerosis Skin Scores Following Treatment With Inebilizumab (MEDI-551) and Correlates With Disease Activity in Systemic Lupus Erythematosus and Chronic Obstructive Pulmonary Disease. Arthritis Rheumatol 2018; 70:2087-2095. [PMID: 29956883 DOI: 10.1002/art.40656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/26/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVE B cells impact the progression of systemic sclerosis (SSc; scleroderma) through multiple pathogenic mechanisms. CD19 inhibition in mice reduced skin thickness, collagen production, and autoantibody levels, consistent with CD19 expression on plasma cells (PCs), the source of antibody production. PC depletion could effectively reduce collagen deposition and inflammation in SSc; therefore, we investigated the effects of PC depletion on SSc disease activity. METHODS A PC gene signature was evaluated in SSc skin biopsy samples in 2 phase I clinical trials. We assessed microarray data from tissue from public studies of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), dermatomyositis (DM), systemic lupus erythematosus (SLE), and atopic dermatitis, as well as blood from a phase IIb clinical trial in SLE. RESULTS The PC signature was elevated in SSc skin specimens compared to healthy donor skin (P = 2.28 × 10-6 ) and correlated with the baseline modified Rodnan skin thickness score (MRSS) (r = 0.64, P = 0.0004). Patients with a high PC signature at baseline showed greater improvement in the MRSS (mean ± SD change 35 ± 16%; P = 6.30 × 10-4 ) following anti-CD19 treatment with inebilizumab (MEDI-551) than did patients with a low PC signature at baseline (mean ± SD change 8 ± 12%; P = 0.104). The PC signature was overexpressed in tissue from patients with SLE, DM, COPD, interstitial lung disease, and IPF relative to controls (all fold change >2; P < 0.001). The PC signature also differed significantly between SLE patients with mild-to-moderate disease and those with severe disease (SLE Disease Activity Index cutoff at 10) (fold change 1.44; P = 3.90 × 10-3 ) and correlated significantly with the degree of emphysema in COPD (r = 0.53, P = 7.55 × 10-8 ). CONCLUSION Our results support the notion that PCs have a role in the pathogenesis of SSc and other autoimmune or pulmonary indications. An elevated pretreatment PC signature was associated with increased benefit from MEDI-551 in SSc.
Collapse
|
10
|
Rosbe KW. Pediatric Sialendoscopy and Its Role in Pediatric Salivary Gland Disease. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017. [DOI: 10.1007/s40136-017-0162-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Gallagher S, Yusuf I, McCaughtry TM, Turman S, Sun H, Kolbeck R, Herbst R, Wang Y. MEDI-551 Treatment Effectively Depletes B Cells and Reduces Serum Titers of Autoantibodies in Mice Transgenic for Sle1 and Human CD19. Arthritis Rheumatol 2016; 68:965-76. [PMID: 26606525 DOI: 10.1002/art.39503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate treatment with MEDI-551, a humanized anti-human CD19 monoclonal antibody, in a model of autoimmunity involving mice transgenic (Tg) for Sle1 and human CD19 (hCD19). METHODS Sle1.hCD19-Tg mice were given either a single intravenous dose of MEDI-551 or repeated doses of MEDI-551 biweekly for up to 12 weeks. The numbers of B cells in the blood, spleen, and bone marrow were determined by flow cytometry assay. In the spleen and bone marrow, the number of IgM- and IgG-specific antibody-secreting cells (ASCs) and the number of ASCs specific for anti-double-stranded DNA (anti-dsDNA) were determined by enzyme-linked immunospot assay. Serum autoantibody and total immunoglobulin levels were determined by enzyme-linked immunosorbent assay, and levels of inflammatory proteins were tested using a multianalyte profiling platform. RESULTS MEDI-551 treatment of Sle1.hCD19-Tg mice resulted in effective and sustained B cell depletion throughout the duration of the experiment. The frequency of IgM and IgG ASCs in the spleen was reduced by ≥90%, whereas in the bone marrow, the total ASC frequency was not changed. Levels of autoantibodies specific for dsDNA as well as antihistone and antinuclear antibodies were each reduced by 40-80%, but total serum immunoglobulin levels were largely unchanged at the end of 12 weeks of treatment. CONCLUSION These findings highlight the ability of MEDI-551 to deplete B cells and ASCs in autoimmune Sle1.hCD19-Tg mice. MEDI-551 treatment resulted in a robust reduction of autoantibodies but had minimal effect on total serum immunoglobulins. Thus, the novel ability of MEDI-551 to remove a broad range of B cells as well as to lower most disease-driving autoantibodies in an autoimmune disease mouse model warrants continued research. Several clinical studies to explore the safety and activity of MEDI-551 in autoantibody-associated autoimmune diseases are ongoing.
Collapse
Affiliation(s)
| | | | | | | | - Hong Sun
- MedImmune, Gaithersburg, Maryland
| | | | | | - Yue Wang
- MedImmune, Gaithersburg, Maryland
| |
Collapse
|
12
|
Corneth OBJ, de Bruijn MJW, Rip J, Asmawidjaja PS, Kil LP, Hendriks RW. Enhanced Expression of Bruton's Tyrosine Kinase in B Cells Drives Systemic Autoimmunity by Disrupting T Cell Homeostasis. THE JOURNAL OF IMMUNOLOGY 2016; 197:58-67. [PMID: 27226091 DOI: 10.4049/jimmunol.1600208] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Upon BCR stimulation, naive B cells increase protein levels of the key downstream signaling molecule Bruton's tyrosine kinase (BTK). Transgenic CD19-hBtk mice with B cell-specific BTK overexpression show spontaneous germinal center formation, anti-nuclear autoantibodies, and systemic autoimmunity resembling lupus and Sjögren syndrome. However, it remains unknown how T cells are engaged in this pathology. In this study, we found that CD19-hBtk B cells were high in IL-6 and IL-10 and disrupted T cell homeostasis in vivo. CD19-hBtk B cells promoted IFN-γ production by T cells and expression of the immune-checkpoint protein ICOS on T cells and induced follicular Th cell differentiation. Crosses with CD40L-deficient mice revealed that increased IL-6 production and autoimmune pathology in CD19-hBtk mice was dependent on B-T cell interaction, whereas IL-10 production and IgM autoantibody formation were CD40L independent. Surprisingly, in Btk-overexpressing mice, naive B cells manifested increased CD86 expression, which was dependent on CD40L, suggesting that T cells interact with B cells in a very early stage of immune pathology. These findings indicate that increased BTK-mediated signaling in B cells involves a positive-feedback loop that establishes T cell-propagated autoimmune pathology, making BTK an attractive therapeutic target in autoimmune disease.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands; and
| | | | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands; and
| | | | - Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands; and
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands; and
| |
Collapse
|
13
|
Koff JL, Flowers CR. B cells gone rogue: the intersection of diffuse large B cell lymphoma and autoimmune disease. Expert Rev Hematol 2016; 9:553-61. [PMID: 27098121 DOI: 10.1080/17474086.2016.1180972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Diffuse large B cell lymphoma (DLBCL) is characterized by genetic, genomic and clinical heterogeneity. Autoimmune diseases (AIDs) have recently been shown to represent significant risk factors for development of DLBCL. AREAS COVERED Studies that examined the relationships between AIDs and lymphoma in terms of pathogenesis, genetic lesions, and treatment were identified in the MEDLINE database using combinations of medical subject heading (MeSH) terms. Co-authors independently performed study selection for inclusion based on appropriateness of the study question and nature of the study design and sample size. Expert commentary: Identification of AID as a substantial risk factor for DLBCL raises new questions regarding how autoimmunity influences lymphomagenesis and disease behavior. It will be important to identify whether DLBCL cases arising in the setting of AID harbor inferior prognoses, and, if so, whether they also exhibit certain molecular abnormalities that may be targeted to overcome such a gap in clinical outcomes.
Collapse
Affiliation(s)
- Jean L Koff
- a Department of Hematology and Medical Oncology, Winship Cancer Institute , Emory University , Atlanta , GA , USA
| | - Christopher R Flowers
- a Department of Hematology and Medical Oncology, Winship Cancer Institute , Emory University , Atlanta , GA , USA
| |
Collapse
|
14
|
Liebman HA. Immune modulation for autoimmune disorders: evolution of therapeutics. Semin Hematol 2016; 53 Suppl 1:S23-6. [DOI: 10.1053/j.seminhematol.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Retamozo S, Brito-Zerón P, Gheitasi H, Saurit V, Ramos-Casals M. Systemic Therapy of Sjögren Syndrome. CONNECTIVE TISSUE DISEASE 2016. [DOI: 10.1007/978-3-319-24535-5_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Rosbe KW, Milev D, Chang JL. Effectiveness and costs of sialendoscopy in pediatric patients with salivary gland disorders. Laryngoscope 2015; 125:2805-9. [DOI: 10.1002/lary.25384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dimiter Milev
- Division of Hospital Medicine; Department of Medicine
| | - Jolie L. Chang
- Otolaryngology/Head and Neck Surgery; University of California; San Francisco, San Francisco California U.S.A
| |
Collapse
|
17
|
miRNAs in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:9557-72. [PMID: 25927578 PMCID: PMC4463604 DOI: 10.3390/ijms16059557] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) were first discovered as regulatory RNAs that controlled the timing of the larval development of Caenorhabditis elegans. Since then, nearly 30,000 mature miRNA products have been found in many species, including plants, warms, flies and mammals. Currently, miRNAs are well established as endogenous small (~22 nt) noncoding RNAs, which have functions in regulating mRNA stability and translation. Owing to intensive investigations during the last decade, miRNAs were found to play essential roles in regulating many physiological and pathological processes. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by elevated autoantibodies against nuclear antigens and excessive inflammatory responses affecting multiple organs. Although efforts were taken and theories were produced to elucidate the pathogenesis of SLE, we still lack sufficient knowledge about the disease for developing effective therapies for lupus patients. Recent advances indicate that miRNAs are involved in the development of SLE, which gives us new insights into the pathogenesis of SLE and might lead to the finding of new therapeutic targets. Here, we will review recent discoveries about how miRNAs are involved in the pathogenesis of SLE and how it can promote the development of new therapy.
Collapse
|
18
|
Roberts MEP, Kaminski D, Jenks SA, Maguire C, Ching K, Burbelo PD, Iadarola MJ, Rosenberg A, Coca A, Anolik J, Sanz I. Primary Sjögren's syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells. Arthritis Rheumatol 2014; 66:2558-69. [PMID: 24909310 DOI: 10.1002/art.38734] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/29/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The significance of distinct B cell abnormalities in primary Sjögren's syndrome (SS) remains to be established. We undertook this study to analyze the phenotype and messenger RNA (mRNA) transcript profiles of B cell subsets in patients with primary SS and to compare them with those in sicca syndrome patients and healthy controls. METHODS CD19+ B cells from 26 patients with primary SS, 27 sicca syndrome patients, and 22 healthy controls were analyzed by flow cytometry. Gene expression profiles of purified B cell subsets (from 3-5 subjects per group per test) were analyzed using Affymetrix gene arrays. RESULTS Patients with primary SS had lower frequencies of CD27+IgD- switched memory B cells and CD27+IgD+ unswitched memory B cells compared with healthy controls. Unswitched memory B cell frequencies were also lower in sicca syndrome patients and correlated inversely with serologic hyperactivity in both disease states. Further, unswitched memory B cells in primary SS had lower expression of CD1c and CD21. Gene expression analysis of CD27+ memory B cells separated patients with primary SS from healthy controls and identified a subgroup of sicca syndrome patients with a primary SS-like transcript profile. Moreover, unswitched memory B cell gene expression analysis identified 187 genes differentially expressed between patients with primary SS and healthy controls. CONCLUSION A decrease in unswitched memory B cells with serologic hyperactivity is characteristic of both established primary SS and a subgroup of sicca syndrome, which suggests the value of these B cells both as biomarkers of future disease progression and for understanding disease pathogenesis. Overall, the mRNA transcript analysis of unswitched memory B cells suggests that their activation in primary SS takes place through innate immune pathways in the context of attenuated antigen-mediated adaptive signaling. Thus, our findings provide important insight into the mechanisms and potential consequences of decreased unswitched memory B cells in primary SS.
Collapse
|
19
|
Streicher K, Morehouse CA, Groves CJ, Rajan B, Pilataxi F, Lehmann KP, Brohawn PZ, Higgs BW, McKeever K, Greenberg SA, Fiorentino D, Richman LK, Jallal B, Herbst R, Yao Y, Ranade K. The plasma cell signature in autoimmune disease. Arthritis Rheumatol 2014; 66:173-84. [PMID: 24431284 DOI: 10.1002/art.38194] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/05/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Production of pathogenic autoantibodies by self-reactive plasma cells (PCs) is a hallmark of autoimmune diseases. We undertook this study to investigate the prevalence of PCs and their relationship to known pathogenic pathways to increase our understanding of the role of PCs in disease progression and treatment response. METHODS We developed a sensitive gene expression-based method to overcome the challenges of measuring PCs using flow cytometry. Whole-genome microarray analysis of sorted cellular fractions identified a panel of genes, IGHA1, IGJ, IGKC, IGKV4-1, and TNFRSF17, expressed predominantly in PCs. The sensitivity of the PC signature score created from the combined expression levels of these genes was assessed through ex vivo experiments with sorted cells. This PC gene expression signature was used for monitoring changes in PC levels following anti-CD19 therapy, for evaluating the relationship between PCs and other autoimmune disease-related genes, and for estimating PC levels in affected blood and tissue from patients with multiple autoimmune diseases. RESULTS The PC signature was highly sensitive and capable of detecting a change in as few as 360 PCs. The PC signature was reduced more than 90% in scleroderma patients following anti-CD19 treatment, and this reduction was highly correlated (r = 0.80) with inhibition of collagen gene expression. Evaluation of multiple autoimmune diseases revealed that 30-35% of lupus and rheumatoid arthritis patients had increased levels of PCs. CONCLUSION This newly developed PC signature provides a robust and accurate method of measuring PC levels in the clinic. Our results highlight subsets of patients across multiple autoimmune diseases who may benefit from PC-depleting therapy.
Collapse
|
20
|
|
21
|
Rituximab. ADVERSE EVENTS WITH BIOMEDICINES 2014. [PMCID: PMC7121599 DOI: 10.1007/978-88-470-5313-7_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rituximab (Rituxan®, MabThera®, and Genentech/Roche) is a chimeric murine/human monoclonal IgG1k antibody directed against the CD20 antigen located at the surface of normal and malignant B lymphocytes.
Collapse
|
22
|
Calvo-Alén J, Silva-Fernández L, Úcar-Angulo E, Pego-Reigosa JM, Olivé A, Martínez-Fernández C, Martínez-Taboada V, Marenco JL, Loza E, López-Longo J, Gómez-Reino JJ, Galindo-Izquierdo M, Fernández-Nebro A, Cuadrado MJ, Aguirre-Zamorano MÁ, Zea-Mendoza A, Rúa-Figueroa Í. SER Consensus Statement on the Use of Biologic Therapy for Systemic Lupus Erythematosus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.reumae.2013.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Consenso de la Sociedad Española de Reumatología sobre el uso de terapias biológicas en el lupus eritematoso sistémico. ACTA ACUST UNITED AC 2013; 9:281-96. [DOI: 10.1016/j.reuma.2013.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
|
24
|
Kramer JM, Klimatcheva E, Rothstein TL. CXCL13 is elevated in Sjögren's syndrome in mice and humans and is implicated in disease pathogenesis. J Leukoc Biol 2013; 94:1079-89. [PMID: 23904442 DOI: 10.1189/jlb.0113036] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SS is an autoimmune disease. pSS affects exocrine glands predominantly, whereas sSS occurs with other autoimmune connective tissue disorders. Currently, care for patients with SS is palliative, as no established therapeutics target the disease directly, and its pathogenetic mechanisms remain uncertain. B-cell abnormalities have been identified in SS. CXCL13 directs B-cell chemotaxis and is elevated in several autoimmune diseases. In this study, we tested the hypothesis that CXCL13 is elevated in SS in mice and humans and that neutralization of the chemokine ameliorates disease in a murine model. We assayed CXCL13 in mouse models and human subjects with SS to determine whether CXCL13 is elevated both locally and systemically during SS progression and whether CXCL13 may play a role in and be a biomarker for the disease. Cxcl13 expression in salivary tissue increases with disease progression, and its blockade resulted in a modest reduction in glandular inflammation in an SS model. We demonstrate that in humans CXCL13 is elevated in serum and saliva, and an elevated salivary CXCL13 level distinguishes patients with xerostomia. These data suggest a role for CXCL13 as a valuable biomarker in SS, as 74% of patients with SS displayed elevated CXCL13 in sera, saliva, or both. Thus, CXCL13 may be pathogenically involved in SS and may serve as a new marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Jill M Kramer
- 1.School of Dental Medicine, 211 Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
25
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
26
|
Roles of γδ T cells in the pathogenesis of autoimmune diseases. Clin Dev Immunol 2013; 2013:985753. [PMID: 23533458 PMCID: PMC3600234 DOI: 10.1155/2013/985753] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/06/2013] [Indexed: 11/18/2022]
Abstract
γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.
Collapse
|
27
|
Brito-Zerón P, Sisó-Almirall A, Bové A, Kostov BA, Ramos-Casals M. Primary Sjögren syndrome: an update on current pharmacotherapy options and future directions. Expert Opin Pharmacother 2013; 14:279-89. [DOI: 10.1517/14656566.2013.767333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Frieri M. Mechanisms of disease for the clinician: systemic lupus erythematosus. Ann Allergy Asthma Immunol 2013; 110:228-32. [PMID: 23535084 DOI: 10.1016/j.anai.2012.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To review the complex interactions and processes in systemic lupus erythematosus (SLE). DATA SOURCES Brief review of the important literature in peer-reviewed journals. STUDY SELECTION Studies on the clinical and immunologic features, pathogenesis, epidemiology, laboratory evaluation, and treatment of SLE are included in this review. RESULTS SLE may include a variety of disease entities, such as isolated cutaneous lupus, undifferentiated connective tissue disease, mixed connective tissue disease, and drug-induced lupus. There are many ongoing clinical trials in SLE patients of therapeutics with different mechanisms of cellular action, such as classic immunosuppression, cell depletion, antigen-specific immunomodulation, and targeting of antigen-nonspecific, immune-activating molecules. New immune cell-targeted therapies are now available that are specifically designed to block cellular pathways involved in disease pathogenesis. CONCLUSION The practicing physician should understand the immunology, pathogenesis, laboratory evaluation, and updated treatment options when diagnosing SLE in their clinic or daily practice.
Collapse
Affiliation(s)
- Marianne Frieri
- Department of Medicine, Nassau University Medical Center, an affiliate of North Shore Long Island Jewish (NSLIJ) Health Care System, and Department of Medicine and Pathology, The State University of New York, Stony Brook, New York, 11554, USA.
| |
Collapse
|
29
|
Pulliero A, Marengo B, Longobardi M, Fazzi E, Orcesi S, Olivieri I, Cereda C, Domenicotti C, Balottin U, Izzotti A. Inhibition of the de-myelinating properties of Aicardi-Goutières syndrome lymphocytes by cathepsin D silencing. Biochem Biophys Res Commun 2012; 430:957-62. [PMID: 23261460 DOI: 10.1016/j.bbrc.2012.11.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022]
Abstract
Molecular mechanisms relating interferon-alpha (IFN-alpha) to brain damage have recently been identified in a microarray analysis of cerebrospinal fluid lymphocytes from patients with Aicardi-Goutières Syndrome (AGS). These findings demonstrate that the inhibition of angiogenesis and the activation of neurotoxic lymphocytes are the major pathogenic mechanisms involved in the brain damage consequent to elevated interferon-alpha levels. Our previous study demonstrated that cathepsin D, a lysosomal aspartyl endopeptidase, is the primary mediator of the neurotoxicity exerted by AGS lymphocytes. Cathepsin D is a potent pro-apoptotic, neurotoxic, and demyelinating protease if it is not properly inhibited by the activities of leukocystatins. In central nervous system white matter, demyelination results from cathepsin over-expression when not balanced by the expression of its inhibitors. In the present study, we used RNA interference to inhibit cathepsin D expression in AGS lymphocytes with the aim of decreasing the neurotoxicity of these cells. Peripheral blood lymphocytes collected from an AGS patient were immortalized and co-cultured with astrocytes in the presence of interferon alpha with or without cathepsin D RNA interference probes. Cathepsin D expression was measured by qPCR, and neurotoxicity was evaluated by microscopy. RNA interference inhibited cathepsin D over-production by 2.6-fold (P<0.01) in AGS lymphocytes cultured in the presence of interferon alpha. AGS lymphocytes treated using RNA interference exhibited a decreased ability to induce neurotoxicity in astrocytes. Such neurotoxicity results in the inhibition of astrocyte growth and the inhibition of the ability of astrocytes to construct web-like aggregates. These results suggest a new strategy for repairing AGS lymphocytes in vitro by inhibiting their ability to induce astrocyte damage and leukodystrophy.
Collapse
Affiliation(s)
- A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus-an update. Curr Opin Immunol 2012; 24:651-7. [PMID: 23131610 DOI: 10.1016/j.coi.2012.10.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE, lupus) is characterized by a global loss of self-tolerance with activation of autoreactive T and B cells leading to production of pathogenic autoantibodies and tissue injury. Innate immune mechanisms are necessary for the aberrant adaptive immune responses in SLE. Recent advances in basic and clinical biology have shed new light on disease mechanisms in lupus, with this review discussing the recent studies that offer valuable insights into disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Internal Medicine (Rheumatology), Yale School of Medicine, New Haven, CT 06520, United States
| | | | | |
Collapse
|