1
|
Jiang W, Zhao F, Rahman WU, Dong T, Yang G. Comparison of the effects of different artificial discs on hybrid surgery: A finite element analysis. Proc Inst Mech Eng H 2024; 238:78-89. [PMID: 38102922 DOI: 10.1177/09544119231215721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In recent years, artificial cervical discs have been used in intervertebral disc replacement surgery and hybrid surgery (HS). The advantages and disadvantages of different artificial cervical discs in artificial cervical disc replacement surgery have been compared. However, few scholars have studied the biomechanical effects of various artificial disc prostheses on the human cervical spine in HS which include the Anterior Cervical Discectomy and Fusion (ACDF) and Cervical Disc Arthroplasty (CDA). This study compared the biomechanical behavior of Mobi-C and Prestige LP in the operative and adjacent segments during two-level hybrid surgery. A three-dimensional finite element model of C2-C7 was first established and validated. Subsequently, clinical surgery was then simulated to establish a surgical model of anterior cervical fusion at the C4-C5 level. Mobi-C and Prestige-LP artificial disc prostheses were implanted at the C5-C6 level to create two hybrid models. All finite element models were fixed on the lower endplate of the C7 vertebra and subjected to a load of 73.6 N and different directions of 1 Nm torque on the odontoid process of the C2 vertebra to simulate human flexion, extension, lateral bending, and axial rotation. This paper compares the ROM, intervertebral pressure, and facet joint force after hybrid surgery with the intact model. The results show that compared with Prestige LP, Mobi-C can improve ROM of the replacement segment and compensate for the intervertebral pressure of the adjacent segment more effectively, but the facet joint pressure of the replacement segment may be higher.
Collapse
Affiliation(s)
- Wei Jiang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Fulin Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Waseem Ur Rahman
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Tianxiang Dong
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Guanghui Yang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Zhang J, Chen W, Weng R, Liang D, Jiang X, Lin H. Biomechanical effect of endplate defects on the intermediate vertebral bone in consecutive two-level anterior cervical discectomy and fusion: a finite element analysis. BMC Musculoskelet Disord 2023; 24:407. [PMID: 37217909 DOI: 10.1186/s12891-023-06453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/22/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Intermediate vertebral collapse is a newly discovered complication of consecutive two-level anterior cervical discectomy and fusion (ACDF). There have been no analytical studies related to the effects of endplate defects on the biomechanics of the intermediate vertebral bone after ACDF. This study aimed to compare the effects of endplate defects on the intermediate vertebral bone biomechanics in the zero-profile (ZP) and cage-and-plate (CP) methods of consecutive 2-level ACDF and to determine whether collapse of the intermediate vertebra is more likely to occur using ZP. METHODS A three-dimensional finite element (FE) model of the intact cervical spine (C2-T1) was constructed and validated. The intact FE model was then modified to build ACDF models and imitate the situation of endplate injury, establishing two groups of models (ZP, IM-ZP and CP, IM-ZP). We simulated cervical motion, such as flexion, extension, lateral bending and axial rotation, and compared the range of motion (ROM), upper and lower endplate stress, fusion fixation device stress, C5 vertebral body stress, intervertebral disc internal pressure (intradiscal pressure, or IDP) and the ROM of adjacent segments in the models. RESULTS There was no significant difference between the IM-CP model and the CP model in the ROM of the surgical segment, upper and lower endplate stress, fusion fixation device stress, C5 vertebral body stress, IDP, or ROM of the adjacent segments. Compared with the CP model, the endplate stress of the ZP model is significantly higher in the flexion, extension, lateral bending and axial rotation conditions. Compared with the ZP model, endplate stress, screw stress, C5 vertebral stress and IDP in IM-ZP were significantly increased under flexion, extension, lateral bending and axial rotation conditions. CONCLUSIONS Compared to consecutive 2-level ACDF using CP, collapse of the intermediate vertebra is more likely to occur using ZP due to its mechanical characteristics. Intraoperative endplate defects of the anterior lower margin of the middle vertebra are a risk factor leading to collapse of the middle vertebra after consecutive 2-level ACDF using ZP.
Collapse
Affiliation(s)
- Jiarui Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenzhao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rui Weng
- Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - De Liang
- Department of Spine Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongheng Lin
- Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China.
| |
Collapse
|
3
|
Zhang D, Feng M, Liu W, Yu J, Wei X, Yang K, Zhan J, Peng W, Luo M, Han T, Jin Z, Yin H, Sun K, Yin X, Zhu L. From Mechanobiology to Mechanical Repair Strategies: A Bibliometric Analysis of Biomechanical Studies of Intervertebral Discs. J Pain Res 2022; 15:2105-2122. [PMID: 35923841 PMCID: PMC9342884 DOI: 10.2147/jpr.s361938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Neck pain and low back pain are major challenges in public health, and intervertebral disc (IVD) biomechanics is an important multidisciplinary field. To date, no bibliometric literature review of the relevant literature has been performed, so we explored the emerging trends, landmark studies, and major contributors to IVD biomechanics research. We searched the Web of Science core collection (1900–2022) using keywords mainly composed of “biomechanics” and “intervertebral disc” to conduct a bibliometric analysis of original papers and their references, focusing on citations, authors, journals, and countries/regions. A co-citation analysis and clustering of the references were also completed. A total of 3189 records met the inclusion criteria. In the co-citation network, cluster #0, labeled as “annulus fibrosus tissue engineering”, and cluster #1, labeled as “micromechanical environment”, were the biggest clusters. References by MacLean et al and Holzapfel et al were positioned exactly between them and had high betweenness centrality. There existed a research topic evolution between mechanobiology and mechanical repair strategies of IVDs, and the latter had been identified as an emerging trend in IVD biomechanics. Numerous landmark studies had contributed to several fields, including mechanical testing of normal and pathological IVDs, mechanical evaluation of new repair strategies and development of finite element model. Adams MA was the author most cited by IVD biomechanics papers. Spine, the European Spine Journal, and the Journal of Biomechanics were the three journals where the most original articles and their references have been published. The United States has contributed most to the literature (n = 1277 papers); however, the research output of China is increasing. In conclusion, the present study suggests that IVD repair is an emerging trend in IVD biomechanics.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Minshan Feng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Liu
- Department of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jie Yu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xu Wei
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kexin Yang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jiawen Zhan
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Peng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Mingyi Luo
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tao Han
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhefeng Jin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - He Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kai Sun
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xunlu Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Xunlu Yin; Liguo Zhu, Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, People’s Republic of China, Email ;
| | - Liguo Zhu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Numerical Size Optimization of Cervical Spine Disc Prosthesis Mobi-C Using Design of Experiment Technics. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-jo58gu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cervical spine is a structure subject to various vertebral injuries, namely, herniation of intervertebral discs and osteoporosis. Nowadays, several segments of society are vulnerable to these diseases that affect spine motion especially elderly people and women. Hence, various designs of cervical artificial discs are in use or under investigation claiming to restore the normal kinematics of the cervical spine. In this work, it is proposed to minimize the stress level by numerical size optimization in the Mobi-C cervical spine prosthesis to improve their biomechanical performances. For this aim, design of experiment (DoE) is employed as an optimization technique to investigate three geometrical parameters of the prosthesis design. Accordingly, DoE optimization allowed to minimize the equivalent stress value on Mobi-C from 20.3 MPa to 17.856 MPa corresponding to a percentage decrease of 12% from the original geometry. This provides an advantage for the durability of the prosthesis and also for the bone by reducing stress concentration.
Collapse
|
5
|
Mumtaz M, Zafarparandeh I, Erbulut DU. Investigation into Cervical Spine Biomechanics Following Single, Multilevel and Hybrid Disc Replacement Surgery with Dynamic Cervical Implant and Fusion: A Finite Element Study. Bioengineering (Basel) 2022; 9:bioengineering9010016. [PMID: 35049725 PMCID: PMC8773264 DOI: 10.3390/bioengineering9010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cervical fusion has been a standard procedure for treating abnormalities associated with the cervical spine. However, the reliability of anterior cervical discectomy and fusion (ACDF) has become arguable due to its adverse effects on the biomechanics of adjacent segments. One of the drawbacks associated with ACDF is adjacent segment degeneration (ASD), which has served as the base for the development of dynamic stabilization systems (DSS) and total disc replacement (TDR) devices for cervical spine. However, the hybrid surgical technique has also gained popularity recently, but its effect on the biomechanics of cervical spine is not well researched. Thus, the objective of this FE study was to draw a comparison among single-level, bi-level, and hybrid surgery with dynamic cervical implants (DCIs) with traditional fusion. Reductions in the range of motion (ROM) for all the implanted models were observed for all the motions except extension, compared to for the intact model. The maximum increase in the ROM of 42% was observed at segments C5–C6 in the hybrid DCI model. The maximum increase in the adjacent segment’s ROM of 8.7% was observed in the multilevel fusion model. The maximum von Mises stress in the implant was highest for the multilevel DCI model. Our study also showed that the shape of the DCI permitted flexion/extension relatively more compared to lateral bending and axial rotation.
Collapse
Affiliation(s)
- Muzammil Mumtaz
- Engineering Center for Orthopaedic Research Excellence (ECORE), Departments of Bioengineering and Orthopaedic Surgery, Colleges of Engineering and Medicine, The University of Toledo, Toledo, OH 43606, USA;
| | - Iman Zafarparandeh
- Department of Biomedical Engineering, Medipol University, Istanbul 34810, Turkey;
| | - Deniz Ufuk Erbulut
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Correspondence:
| |
Collapse
|
6
|
Ke W, Chen C, Wang B, Hua W, Lu S, Song Y, Luo R, Liao Z, Li G, Ma L, Shi Y, Wang K, Li S, Wu X, Zhang Y, Yang C. Biomechanical Evaluation of Different Surgical Approaches for the Treatment of Adjacent Segment Diseases After Primary Anterior Cervical Discectomy and Fusion: A Finite Element Analysis. Front Bioeng Biotechnol 2021; 9:718996. [PMID: 34532313 PMCID: PMC8438200 DOI: 10.3389/fbioe.2021.718996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Symptomatic adjacent segment disease (ASD) is a common challenge after anterior cervical discectomy and fusion (ACDF). The objective of this study was to compare the biomechanical effects of a second ACDF and laminoplasty for the treatment of ASD after primary ACDF. We developed a finite element (FE) model of the C2-T1 based on computed tomography images. The FE models of revision surgeries of ACDF and laminoplasty were simulated to treat one-level and two-level ASD after primary ACDF. The range of motion (ROM) and intradiscal pressure (IDP) of the adjacent segments, and stress in the cord were analyzed to investigate the biomechanical effects of the second ACDF and laminoplasty. The results indicated that revision surgery of one-level ACDF increased the ROM and IDP at the C2–C3 segment, whereas two-level ACDF significantly increased the ROM and IDP at the C2–C3 and C7-T1 segments. Furthermore, no significant changes in the ROM and IDP of the laminoplasty models were observed. The stress in the cord of the re-laminoplasty model decreased to some extent, which was higher than that of the re-ACDF model. In conclusion, both ACDF and laminoplasty can relieve the high level of stress in the spinal cord caused by ASD after primary ACDF, whereas ACDF can achieve better decompression effect. Revision surgery of the superior ACDF or the superior and inferior ACDF after the primary ACDF increased the ROM and IDP at the adjacent segments, which may be the reason for the high incidence of recurrent ASD after second ACDF.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunsong Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol 2020; 20:389-401. [PMID: 33221991 PMCID: PMC7979651 DOI: 10.1007/s10237-020-01403-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
There is an increased interest in studying the biomechanics of the facet joints. For in silico studies, it is therefore important to understand the level of reliability of models for outputs of interest related to the facet joints. In this work, a systematic review of finite element models of multi-level spinal section with facet joints output of interest was performed. The review focused on the methodology used to model the facet joints and its associated validation. From the 110 papers analysed, 18 presented some validation of the facet joints outputs. Validation was done by comparing outputs to literature data, either computational or experimental values; with the major drawback that, when comparing to computational values, the baseline data was rarely validated. Analysis of the modelling methodology showed that there seems to be a compromise made between accuracy of the geometry and nonlinearity of the cartilage behaviour in compression. Most models either used a soft contact representation of the cartilage layer at the joint or included a cartilage layer which was linear elastic. Most concerning, soft contact models usually did not contain much information on the pressure-overclosure law. This review shows that to increase the reliability of in silico model of the spine for facet joints outputs, more needs to be done regarding the description of the methods used to model the facet joints, and the validation for specific outputs of interest needs to be more thorough, with recommendation to systematically share input and output data of validation studies.
Collapse
|
8
|
Hua W, Zhi J, Wang B, Ke W, Sun W, Yang S, Li L, Yang C. Biomechanical evaluation of adjacent segment degeneration after one- or two-level anterior cervical discectomy and fusion versus cervical disc arthroplasty: A finite element analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105352. [PMID: 31991316 DOI: 10.1016/j.cmpb.2020.105352] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/29/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE To compare the biomechanical changes of adjacent segment degeneration (ASD) after one- or two-level anterior cervical discectomy and fusion (ACDF) versus cervical disc arthroplasty (CDA). METHODS A three-dimensional finite element (FE) model of intact C2-C7 segments was constructed and validated. In the one-level surgery model, the cage with plate implant or Prestige LP cervical disc prosthesis were integrated at C5-C6 segment into the FE model; while in the two-level surgery model, the prostheses were integrated at both C4-C5 and C5-C6 segments into the FE model. A pure moment of 1.0 Nm combined with a follower load of 73.6 N were imposed on C2 to investigate the flexion-extension, lateral bending, and axial rotation of different segments in the FE model. The segmental range of motion (ROM) and intradiscal pressure of the surgery models were investigated and compared with the intact model. RESULTS In the one-level model of ACDF, the ROM at C5-C6 was decreased, the ROM and intradiscal pressure at C4-C5 and C6-C7 segments were increased. In the two-level model of ACDF, the ROM at C4-C5 and C5-C6 were decreased, the ROM and intradiscal pressure at C3-C4 and C6-C7 were increased. However, in both one- and two-level models of CDA, the ROM of surgery segments were preserved, avoiding the increase of the ROM and intradiscal pressure at the adjacent segments. CONCLUSIONS Abnormal ROM and intradiscal pressure at the adjacent segments may contribute to the higher risk of ASD after ACDF compared with CDA.
Collapse
Affiliation(s)
- Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinggang Zhi
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wengang Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuhua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Li
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Ke W, Zhi J, Hua W, Wang B, Lu S, Fan L, Li L, Yang C. Percutaneous posterior full-endoscopic cervical foraminotomy and discectomy: a finite element analysis and radiological assessment. Comput Methods Biomech Biomed Engin 2020; 23:805-814. [PMID: 32406769 DOI: 10.1080/10255842.2020.1765162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Percutaneous posterior full-endoscopic cervical foraminotomy and discectomy (PECFD) is recognized as a safe, effective, and minimally invasive treatment for cervical spondylotic radiculopathy (CSR). However, the potential mechanisms of the degenerative changes and postoperative recurrence after PECFD are unclear. In this study, a finite element (FE) analysis and radiological assessment were performed to evaluate the biomechanical effects after PECFD. The FE model indicated that the ROM and IDP of C5-C6 increased significantly after PECFD in the extension loading. The radiological evaluation revealed that the extension ROM of C2-C7 and the operative level increased significantly at the one-year follow-up compared with that obtained preoperatively. Combining the FE results and radiological changes, we conclude that the increase in the ROM and IDP at the operative level in the extension loading is the potential cause of the degenerative changes and recurrences after PECFD surgery.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jinggang Zhi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lina Fan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
10
|
Wong CE, Hu HT, Hsieh MP, Huang KY. Optimization of Three-Level Cervical Hybrid Surgery to Prevent Adjacent Segment Disease: A Finite Element Study. Front Bioeng Biotechnol 2020; 8:154. [PMID: 32195235 PMCID: PMC7064443 DOI: 10.3389/fbioe.2020.00154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
Hybrid surgery (HS) allows surgeons to tailor fusion and arthroplasty in the treatment of multiple-level cervical disc degeneration. However, the decision making of selecting either ACDF or ADR for each level in three-level HS remains controversial and has not been fully investigated. This study was aimed to optimize three-level cervical hybrid constructs by systematically investigating their biomechanical properties and their effect on adjacent levels. A finite element model of cervical spine (C2–C7) was developed, and eight C3–C6 surgical models including six HS were constructed. The range of motion (ROM) in flexion, extension, lateral bending, and axial rotation under 2.0 Nm moments with 30 N follower load were simulated. The von Mises stress, strain energy at the adjacent intervertebral disc (IVD) and force at the adjacent facet were calculated. The ROM of the hybrid constructs and adjacent levels was close to that of the intact spine. HS with arthroplasty performed at C5-6 had better performance in terms of ROM reduction at the inferior adjacent level (C6-7). Moreover, C-D-D and 3ADR had best performance in reducing the von Mises stress and strain energy at C6-7. All HS reduced the facet burden at both C2-3 and C6-7 levels. However, the major drawback of HS revealed here is that the effect of C6-7 protection is at the cost of increased C2-3 IVD burden. In conclusion, we recommend C-D-D and 3ADR for patient with C3–C6 disc degeneration without predisposing C2-3 condition. C-C-D could be a good alternative with a lower medical cost. This analysis guides the decision making in three-level cervical HS before future cadaver studies or human clinical trials.
Collapse
Affiliation(s)
- Chia-En Wong
- Department of Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Teh Hu
- Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Pu Hsieh
- Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Cai XY, Sang D, Yuchi CX, Cui W, Zhang C, Du CF, Liu B. Using finite element analysis to determine effects of the motion loading method on facet joint forces after cervical disc degeneration. Comput Biol Med 2020; 116:103519. [DOI: 10.1016/j.compbiomed.2019.103519] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
|
12
|
Simplifying the human lumbar spine (L3/L4) material in order to create an elemental structure for the future modeling. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:689-700. [PMID: 31183739 DOI: 10.1007/s13246-019-00768-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
The human lumbar spine incorporates the best joints in nature due to its optimal static and dynamic behavior against the internal and external loads. Developing an elemental structure based on this joint requires simplification in terms of the materials employed by keeping the mechanical and anatomical behaviors of the human lumbar spine. In the present study, the finite element (FE) of two motion segments of the human lumbar spine (L3/L4) was developed based on the CT scan data as the base for vertebrae geometry, verified geometry properties for another part of two motion segments, and combination of materials and loads obtained from the validated resources. Then, simplification occurred in four continuous steps such as omitting the annual fibers of annual matrix, representing the material of the annual matrix to the nucleus, demonstrating the material of annual matrix to the endplates too, and omitting the trabecular part of vertebrae. The present study aimed to propose the method for developing the basic structure of the human lumbar spine by simplifying its materials in the above-mentioned steps, analyzing the biomechanical effects of these four steps in terms of their internal and external responses, and validating the data obtained from the FE method. The validated simplified way introduced in this study can be used for future research by making implants, prosthesis, and modeling based on the human lumbar spine in other fields such as industrial design, building structures, or joints, which results in making the model easier, cheaper, and more effective.
Collapse
|
13
|
Hybrid Constructs for Performing Three-level Hybrid Surgery: A Finite Element Study. World Neurosurg 2018; 114:e1302-e1309. [DOI: 10.1016/j.wneu.2018.03.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/17/2022]
|
14
|
Li Y, Shen H, Khan KZ, Fang S, Liao Z, Liu W. Comparison of Multilevel Cervical Disc Replacement and Multilevel Anterior Discectomy and Fusion: A Systematic Review of Biomechanical and Clinical Evidence. World Neurosurg 2018; 116:94-104. [PMID: 29753897 DOI: 10.1016/j.wneu.2018.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to comprehensively compare the clinical and biomechanical efficiency of anterior cervical discectomy and fusion (ACDF) with anterior cervical disc replacement (ACDR) for treatment of multilevel cervical disc disease using a meta-analysis and systematical review. METHODS A literature search was performed using PubMed, MEDLINE, EMBASE, and the Cochrane Library for articles published between January 1960 and December 2017. Both clinical and biomechanical parameters were analyzed. Statistical tests were conducted by Revman 5.3. Nineteen studies including 10 clinical studies and 9 biomechanical studies were filtered out. RESULTS The pooled results for clinical efficiency showed that no significant difference was observed in blood loss (P = 0.09; mean difference [MD], 7.38; confidence interval [CI], -1.16 to 15.91), hospital stay (P = 0.33; MD, -0.25; CI, -0.76 to 0.26), Japanese Orthopaedic Association scores (P = 0.63; MD, -0.11; CI, -0.57 to 0.34), visual analog scale (P = 0.08; MD, -0.50; CI, -1.06 to 0.05), and Neck Disability Index (P = 0.33; MD, -0.55; CI, -1.65 to 0.56) between the 2 groups. Compared with ACDF, ACDR did show increased surgical time (P = 0.03; MD, 31.42; CI, 2.71-60.14). On the other hand, ACDR showed increased index range of motion (ROM) (P < 0.00001; MD, 13.83; CI, 9.28-18.39), lower rates of adjacent segment disease (ASD) (P = 0.001; odds ratio [OR], 0.27; CI, 0.13-0.59), complications (P = 0.006; OR, 0.62; CI, 0.45-0.87), and rate of subsequent surgery (P < 0.00001; OR, 0.25; CI, 0.14-0.44). As for biomechanical performance, ACDR maintained index ROM and avoided compensation in adjacent ROM and tissue pressure. CONCLUSIONS Multilevel ACDR may be an effective and safe alternative to ACDF in terms of clinical and biomechanical performance. However, further multicenter and prospective studies should be conducted to obtain a stronger and more reliable conclusion.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China and Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Hangkai Shen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China and Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Kamran Z Khan
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shushu Fang
- School of Pharmacy, Peking University, Beijing, China
| | - Zhenhua Liao
- Biomechanics and Biotechnology Laboratory, Research Institute of Tsinghua University in Shenzhen, Shenzhen, People's Republic of China
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, People's Republic of China and Biomechanics and Biotechnology Laboratory, Research Institute of Tsinghua University in Shenzhen, Shenzhen, People's Republic of China.
| |
Collapse
|
15
|
Prosthesis and Hybrid Strategy Consideration for Treating Two-level Cervical Disc Degeneration in Hybrid Surgery. Spine (Phila Pa 1976) 2018; 43:379-387. [PMID: 28678112 DOI: 10.1097/brs.0000000000002316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biomechanical analysis using a validated nonlinear finite element (FE) model. OBJECTIVE The aim of this study was to combine the strategy of two-level hybrid surgery (HS) to explore how prostheses affect cervical biomechanics. SUMMARY OF BACKGROUND DATA Few FE studies have explored differences in biomechanical behavior between combined and stand-alone structured prostheses with HS. No FE studies have considered whether the prosthesis type and hybrid strategy influence two-level HS. METHODS Three prostheses-Prodisc-C, PCM, and DCI-were analyzed in flexion and extension during HS at C4-C6. There were two HS constructs: anterior cervical discectomy and fusion (ACDF) conducted at the C4-C5 levels and anterior cervical disc replacement (ACDR) conducted at C5-C6 levels (ACDF/ACDR); ACDR/ACDF. RESULTS Flexion motion at adjacent levels was greater than that of intact spine. A maximum increase of 80% was observed with PCM in the ACDF/ACDR group. Extension motion at adjacent levels for both hybrid strategies with PCM, however, was similar to that of intact spine (<10% change), whereas it increased by 14% to 32% with DCI. The strain energy-storing capability with DCI tended to be similar to that of normal discs. Facet stress at the infra-adjacent level, however, significantly increased with DCI in both groups, whereas it increased with PCM and Prodisc-C only in the ACDR/ACDF group. All prostheses produced overloads on cartilage at the arthroplasty level. Prodisc-C and PCM cores showed stress above the yield stress of ultrahigh-molecular-weight polyethylene. CONCLUSION Each prosthesis had advantages and disadvantages. In extension, DCI (vs. Prodisc-C and PCM) exhibited more compensation at adjacent levels in terms of motion, moments, and facet stress. The biomechanical performance of Prodisc-C was easily affected by the hybrid strategy. Thus, if only a combined-structure prosthesis is available for two-level HS (C4-C6 level), the hybrid strategy should be carefully evaluated and the ACDF/ACDR construct is recommended to avoid accelerating degeneration of adjacent segments. LEVEL OF EVIDENCE 5.
Collapse
|
16
|
Li Y, Zhang Z, Liao Z, Mo Z, Liu W. Finite Element Analysis of Influence of Axial Position of Center of Rotation of a Cervical Total Disc Replacement on Biomechanical Parameters: Simulated 2-Level Replacement Based on a Validated Model. World Neurosurg 2017; 106:932-938. [DOI: 10.1016/j.wneu.2017.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/26/2022]
|
17
|
Finite element model predicts the biomechanical performance of cervical disc replacement and fusion hybrid surgery with various geometry of ball-and-socket artificial disc. Int J Comput Assist Radiol Surg 2017; 12:1399-1409. [DOI: 10.1007/s11548-017-1616-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 11/27/2022]
|