1
|
Zhang F, Cui D, Wang Z, Li Y, Wang K, Lu H, Yu H, Jiao W, Cui X. NOX4 Regulates NLRP3 by Inhibiting the Ubiquitination of LRRC8A to Promote Ferroptosis in Nucleus Pulposus Cells. Inflammation 2025:10.1007/s10753-025-02253-0. [PMID: 39909992 DOI: 10.1007/s10753-025-02253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Intervertebral disc degeneration (IDD) is a significant contributor to low back pain, imposing a considerable socioeconomic burden. Ferroptosis, a novel form of cell death driven by iron and characterized by the accumulation of reactive oxygen species (ROS), has been associated with the progression of IDD. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) has been widely recognized as a pivotal factor promoting ferroptosis across various diseases; however, its precise role in the pathogenesis of IDD remains incompletely understood. Our experimental findings demonstrated a marked upregulation of NOX4 in degenerated cells, accompanied by elevated ROS levels and a diminished mitochondrial membrane potential, indicating the participation of ferroptosis. Furthermore, the expression of the critical regulatory factor GPX4 was reduced, while ACSL4 levels were significantly increased, further corroborating the involvement of ferroptosis. Functional loss and gain experiments revealed that NOX4 overexpression augmented ferroptosis and ROS production while promoting the secretion of inflammatory cytokines. Subsequent studies indicated that the knockdown of NOX4 could reverse tert-butyl hydroperoxide (TBHP)-induced ferroptosis. Mass spectrometry analysis identified leucine-rich repeat-containing 8A (LRRC8A) as an interacting protein of NOX4, and further validation confirmed that they co-regulate Nod-like receptor pyrin domain-3 (NLRP3) activation through their interaction. Utilizing a rat model of intervertebral disc degeneration, we further corroborated the role of NOX4 in IDD. This study provides theoretical support for the potential application of NOX4-targeting drugs in the treatment of IDD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Di Cui
- Medical School of Fuyang, Normal University, No. 100, Qinghe West Road, Yingzhou District, Fuyang, 236000, Anhui, China
| | - Zhaodong Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, No.2600, Donghai Dadao, Bengbu, 233000, Anhui, China
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287,Changhuai Road, Bengbu, 233000, Anhui, China
| | - Yifei Li
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Kangkang Wang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haitao Lu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Wei Jiao
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| |
Collapse
|
2
|
Dunbar EK, Greer PJ, Saloman JL, Albers KM, Yadav D, Whitcomb DC. Genetics of constant and severe pain in the NAPS2 cohort of recurrent acute and chronic pancreatitis patients. THE JOURNAL OF PAIN 2025; 27:104754. [PMID: 39674387 DOI: 10.1016/j.jpain.2024.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Recurrent acute and chronic pancreatitis (RAP, CP) are complex, progressive inflammatory diseases with variable pain experiences impacting patient function and quality of life. The genetic variants and pain pathways in patients contributing to most severe pain experiences are unknown. We used previously genotyped individuals with RAP/CP from the North American Pancreatitis Study II (NAPS2) of European Ancestry for nested genome-wide associated study (GWAS) for pain-severity, chronicity, or both. Lead variants from GWAS were determined using FUMA. Loci with p<1e-5 were identified for post-hoc candidate identification. Transcriptome-wide association studies (TWAS) identified loci in cis and trans to the lead variants. Serum from phenotyped individuals with CP from the PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies (PROCEED) was assessed for BDNF levels using Meso Scale Discovery Immunoassay. We identified four pain systems defined by candidate genes: 1) Pancreas-associated injury/stress mitigation genes include: REG gene cluster, CTRC, NEURL3 and HSF22. 2) Neural development and axon guidance tracing genes include: SNPO, RGMA, MAML1 and DOK6 (part of the RET complex). 3) Genes linked to psychiatric stress disorders include TMEM65, RBFOX1, and ZNF385D. 4) Genes in the dorsal horn pain-modulating BDNF/neuropathic pathway included SYNPR, NTF3 and RBFOX1. In an independent cohort BDNF was significantly elevated in patients with constant-severe pain. Extension and expansion of this exploratory study may identify pathway- and mechanism-dependent targets for individualized pain treatments in CP patients. PERSPECTIVE: Pain is the most distressing and debilitating feature of chronic pancreatitis. Yet many patients with chronic pancreatitis have little or no pain. The North American Pancreatitis Study II (NAPS2) includes over 1250 pancreatitis patients of all progressive stages with all clinical and phenotypic characteristics carefully recorded. Pain did not correlate well with disease stage, inflammation, fibrosis or other features. Here we spit the patients into groups with the most severe pain and/or chronic pain syndromes and compared them genetically with patients reporting mild or minimal pain. Although some genetic variants associated with pain were expressed in cells (1) of the pancreas, most genetic variants were linked to genes expressed in the nervous system cells associated with (2) neural development and axon guidance (as needed for the descending inhibition pathway), (3) psychiatric stress disorders, and (4) cells regulating sensory nerves associated with BDNF and neuropathic pain. Similar and overlapping genetic variants in systems 2 -4 are also seen in pain syndromes form other organs. The implications for treating pancreatic pain are great in that we can no longer focus on just the pancreas. Furthermore, new treatments designed for pain disorders in other tissues may be effective in some patient with pain syndromes from the pancreas. Further research is needed to replicate and extend these observations so that new, genetics-guided rational treatments can be developed and delivered.
Collapse
Affiliation(s)
- Ellyn K Dunbar
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Phil J Greer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jami L Saloman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology & Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Peredo AP, Gullbrand SE, Friday CS, Orozco BS, Dehghani B, Jenk AC, Bonnevie ED, Hilliard RL, Zlotnick HM, Dodge GR, Lee D, Engiles JB, Hast MW, Schaer TP, Smith HE, Mauck RL. Tension-activated nanofiber patches delivering an anti-inflammatory drug improve repair in a goat intervertebral disc herniation model. Sci Transl Med 2023; 15:eadf1690. [PMID: 37967202 PMCID: PMC10812087 DOI: 10.1126/scitranslmed.adf1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Sarah E. Gullbrand
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Chet S. Friday
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
| | - Briana S. Orozco
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Bijan Dehghani
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Austin C. Jenk
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Edward D. Bonnevie
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Rachel L. Hilliard
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
| | - Hannah M. Zlotnick
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - George R. Dodge
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania; Philadelphia, 19104, USA
| | - Julie B. Engiles
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
| | - Michael W. Hast
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, PA 19348, USA
| | - Harvey E. Smith
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania; Philadelphia, 19104, USA
- Department of Orthopaedic Surgery, University of Pennsylvania; Philadelphia, 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center; Philadelphia, 19104, USA
| |
Collapse
|
4
|
Al Doghmi A, Barta BP, Egyed-Kolumbán A, Onhausz B, Kiss S, Balázs J, Szalai Z, Bagyánszki M, Bódi N. Gut Region-Specific Interleukin 1β Induction in Different Myenteric Neuronal Subpopulations of Type 1 Diabetic Rats. Int J Mol Sci 2023; 24:ijms24065804. [PMID: 36982878 PMCID: PMC10064852 DOI: 10.3390/ijms24065804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Interleukin 1β (IL1β) is a pro-inflammatory cytokine that may play a crucial role in enteric neuroinflammation in type 1 diabetes. Therefore, our goal is to evaluate the effects of chronic hyperglycemia and insulin treatment on IL1β immunoreactivity in myenteric neurons and their different subpopulations along the duodenum-ileum-colon axis. Fluorescent immunohistochemistry was used to count IL1β expressing neurons as well as the neuronal nitric oxide synthase (nNOS)- and calcitonin gene-related peptide (CGRP)-immunoreactive myenteric neurons within this group. Tissue IL1β level was measured by ELISA in muscle/myenteric plexus-containing homogenates. IL1β mRNA was detected by RNAscope in different intestinal layers. The proportion of IL1β-immunoreactive myenteric neurons was significantly higher in the colon than in the small intestine of controls. In diabetics, this proportion significantly increased in all gut segments, which was prevented by insulin treatment. The proportion of IL1β-nNOS-immunoreactive neurons only increased in the diabetic colon, while the proportion of IL1β-CGRP-immunoreactive neurons only increased in the diabetic ileum. Elevated IL1β levels were also confirmed in tissue homogenates. IL1β mRNA induction was detected in the myenteric ganglia, smooth muscle and intestinal mucosa of diabetics. These findings support that diabetes-related IL1β induction is specific for the different myenteric neuronal subpopulations, which may contribute to diabetic motility disturbances.
Collapse
Affiliation(s)
- Afnan Al Doghmi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Bence Pál Barta
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Abigél Egyed-Kolumbán
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Benita Onhausz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Szilvia Kiss
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - János Balázs
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
5
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
6
|
Identification of miRNA-mRNA Pairs in Relation to TNF-α/IL-1β Induced Inflammatory Response in Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3374091. [PMID: 35990856 PMCID: PMC9391105 DOI: 10.1155/2022/3374091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022]
Abstract
Objective The determination of miRNA-mRNA pairs for intervertebral disc degeneration (IVDD) regulated by pro-inflammatory cytokines were investigated. Methods Two dataset (accession number GSE27494 and GSE41883 from platform GPL1352) of expression profiling was downloaded from Gene Expression Omnibus (GEO). The annulus cells were isolated from annulus fibrosus in patients with degenerative disc disease. The cells were then cultured in a three-dimensional (3D) collagen containing with/without proinflammatory cytokines (tumor necrosis factor alpha (TNF-α) or interleukin beta (IL-1β)). After being cultured for 14 days, the isolated total RNA was analyzed via microarray, and the expression array data were obtained using BRB-Array Tools followed by analyzing the differentially expressed genes (DEGs) and the prediction of potential miRNA targets of hub genes through online database. Results Firstly, 52 and 296 DEGs were found in IL-1β- and TNF-α-induced annulus cells, respectively, of these there had 42 common DEGs (co-DEGs) with 34 increased transcripts and 8 reduced ones. Based on the GO and KEGG software, these co-DEGs were mainly enriched in the response to lipopolysaccharide (LPS) and molecule of bacterial origin, the regulation of receptor ligand activity and signaling receptor activator activity, as well as the following signaling pathways, including TNF signaling pathway, IL-17 signaling pathway, and NF-κB signaling pathway. Top hub genes (CXCL1, CXCL2, CXCL8, IL1Β and PTGS2) regulated by several potential microRNAs were involved in TNF-α/IL-1β treated annulus cells. Conclusions Several candidate genes regulated by miRNAs caused by TNF-α/IL-1β in the annulus cells were found, which will guide diagnosis and treatment for degenerative disc disease.
Collapse
|
7
|
The Effect of Cutibacterium acnes Infection on Nerve Penetration in the Annulus Fibrosus of Lumbar Intervertebral Discs via Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9120674. [PMID: 35265268 PMCID: PMC8898795 DOI: 10.1155/2022/9120674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
Modic changes (MCs) and low back pain are highly correlated and an economic burden to the society. Previous studies have shown that Cutibacterium acnes (C. acnes) infection can lead to MCs. The purpose of this study was to clarify whether and how C. acnes contributes to oxidative stress and nerve growth that potentially leads to low back pain. Neurons from the hippocampus or dorsal root ganglion (DRG) of Sprague-Dawley (SD) rats were cocultured with annulus fibrosus cells (AFCs) with or without the presence of the C. acnes supernatant in vitro. Cell viability, neurite length, oxidative stress, and neuro-related gene expression were examined. Furthermore, samples from the patients with MCs and SD rat model of MCs were used to validate the nerve growth results. Neurons from both the hippocampus and DRG showed neurites when cocultured with AFCs in the environment with/without the C. acnes supernatant. The average neurite length was significantly longer when exposed to the C. acnes supernatant in the hippocampal neuron (217.1 ± 90.0 μm versus 150.1 ± 68.1 μm in the control group) and in the DRG neuron (229.1 ± 91.3 μm versus 149.2 ± 64.8 μm in the control group). Hippocampal neurons showed upregulated expression levels of NeuN, Map2, and Psd95, while upregulation was only seen in Tuj-1 in DRG neurons. Suppressed oxidative stress could be observed using axon growth symbols. Degenerated disc structures and abnormal bone remodelling were found in animal models and clinical samples of MCs, with astrocytes, microglia, and neurons in the disc. Therefore, C. acnes infection was found to cause back pain in the presence of MCs by promoting nerve penetration into the annulus fibrosus by suppressing oxidative stress.
Collapse
|
8
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
9
|
Involvement of the G-Protein-Coupled Receptor 4 in the Increased Expression of RANK/RANKL/OPG System and Neurotrophins by Nucleus Pulposus Cells under the Degenerated Intervertebral Disc-Like Acidic Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1328436. [PMID: 32566653 PMCID: PMC7277045 DOI: 10.1155/2020/1328436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 12/05/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with local inflammation and increased expression of neurotrophins. Acidic microenvironment is believed to cause the progression of IVD degeneration. However, there is a paucity of information regarding the relationship between acidic microenvironment and the inflammation and expression of neurotrophins in IVD. G-protein-coupled receptor 4 (GPR4) is a pH-sensing receptor, which can activate the inflammation and increase the expression levels of nerve growth factor in acidic microenvironment. In this study, culture media with pH 7.2 (representing the normal IVD-like acidic condition) and pH 6.5 (degenerated IVD-like acidic condition) were prepared. The gene and protein expression levels of GPR4 in SD rat nucleus pulposus cells were determined under the acidic conditions. And cyclic AMP (cAMP), the second messenger of GPR4, was assayed. Furthermore, the expression levels of receptor activator of nuclear factor κ B (RANK), RANKL ligand (RANKL), osteoprotegerin (OPG), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were also determined. To clarify the involvement of GPR4 in the upregulation of the expression of RANK/RANKL/OPG system and neurotrophins, gene knockdown and forced expression of GPR4 and inhibiting its downstream cAMP accumulation and Ca2+ mobilization were performed. The alternation of the expression levels of matrix metalloproteinase-3 (MMP-3), MMP-13, and aggrecanase-2 (ADAMTS-5) were evaluated by RT-PCR and western blot. The results showed that GPR4 was expressed in rat nucleus pulposus cells, and the expression was upregulated under the degenerated IVD-like acidic microenvironment. cAMP accumulation levels were increased under the degenerated IVD-like acidic culture conditions. The expression levels of RANK, RANKL, OPG, NGF, and BNDF were significantly upregulated under the degenerated IVD-like acidic microenvironment. GPR4 knockdown and reduction of cAMP by the inhibitor SQ22536 abolished the upregulation of the expression of RANK, RANKL, OPG, NGF, and BNDF under the degenerated IVD-like acidic microenvironment. On the opposite, acidosis-induced cAMP accumulation and upregulation of RANK, RANKL, OPG, NGF, and BNDF were further promoted by GPR4 overexpression. The expression levels of MMP-3, MMP-13, and ADAMTS-5 were upregulated under the degenerated IVD-like acidic condition, which can be promoted or attenuated by GPR4 overexpression or knockdown, respectively. We concluded that GPR4-mediated cAMP accumulation was involved in the increased expression of RANK/RANKL/OPG system and neurotrophins by nucleus pulposus cells under the degenerated IVD-like acidic microenvironment.
Collapse
|
10
|
Shen WS, Li CF, Zhou ZS, Zhai NN, Pan LP. MicroRNA-204 silencing relieves pain of cervical spondylotic radiculopathy by targeting GDNF. Gene Ther 2019; 27:254-265. [PMID: 31819204 DOI: 10.1038/s41434-019-0114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Cervical spondylosis may cause chronic neck pain, radiculopathy and/or myelopathy, and consequently results in severe brain damage. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for motoneurons. Accumulating microRNAs (miRNAs) have highlighted as critical regulators of GDNF signaling in the mediation of neuroinflammation and neuropathic pain. Hence, we performed this study to investigate the potential role of miR-204 in the neuropathic pain of cervical spondylotic radiculopathy (CSR) by targeting GDNF. A rat model of spinal cord compression (SCC) was established to stimulate a pathologic lesion. RT-qPCR and western blot assays characterized the downregulation of GDNF and the upregulation of miR-204 in spinal cord tissues of rats under the conditions of SCC. Moreover, miR-204 could directly target GDNF, as evidenced by dual-luciferase reporter gene assay. In order to elucidate the roles of miR-204 and GDNF in SCC-induced neuropathic pain, miR-204 sponge, GDNF, or shRNA against GDNF was introduced to the rats, followed by measurements for SCC-induced neuroinflammation and neuropathic pain. GDNF upregulation or miR-204 silencing was identified to reduce the spontaneous pain score, gait scores and cell apoptosis. Furthermore, GDNF upregulation or miR-204 silencing resulted in elevated amplitude of sensory-evoked potentials (SEPs), number of motoneurons, release of pro-inflammatory factors, TNF-α, and IL-1β in addition to an increase in the anti-inflammatory factor BDNF. Taken together, upregulation of GDNF induced by miR-204 silencing confers protection against SCC-induced pain in rat models, suggesting a potential therapeutic target for CSR treatment.
Collapse
Affiliation(s)
- Wen-Sheng Shen
- Department of Anesthesiology, Shaoxing Paojiang Hospital, Shaoxing, 312000, PR China.
| | - Cun-Feng Li
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| | - Zhi-Shui Zhou
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| | - Nan-Nan Zhai
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| | - Lu-Ping Pan
- Department of Anesthesiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, PR China
| |
Collapse
|