1
|
Yahanda AT, Joseph K, Bui T, Greenberg JK, Ray WZ, Ogunlade JI, Hafez D, Pallotta NA, Neuman BJ, Molina CA. Current Applications and Future Implications of Artificial Intelligence in Spine Surgery and Research: A Narrative Review and Commentary. Global Spine J 2024:21925682241290752. [PMID: 39359113 PMCID: PMC11559723 DOI: 10.1177/21925682241290752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES Artificial intelligence (AI) is being increasingly applied to the domain of spine surgery. We present a review of AI in spine surgery, including its use across all stages of the perioperative process and applications for research. We also provide commentary regarding future ethical considerations of AI use and how it may affect surgeon-industry relations. METHODS We conducted a comprehensive literature review of peer-reviewed articles that examined applications of AI during the pre-, intra-, or postoperative spine surgery process. We also discussed the relationship among AI, spine industry partners, and surgeons. RESULTS Preoperatively, AI has been mainly applied to image analysis, patient diagnosis and stratification, decision-making. Intraoperatively, AI has been used to aid image guidance and navigation. Postoperatively, AI has been used for outcomes prediction and analysis. AI can enable curation and analysis of huge datasets that can enhance research efforts. Large amounts of data are being accrued by industry sources for use by their AI platforms, though the inner workings of these datasets or algorithms are not well known. CONCLUSIONS AI has found numerous uses in the pre-, intra-, or postoperative spine surgery process, and the applications of AI continue to grow. The clinical applications and benefits of AI will continue to be more fully realized, but so will certain ethical considerations. Making industry-sponsored databases open source, or at least somehow available to the public, will help alleviate potential biases and obscurities between surgeons and industry and will benefit patient care.
Collapse
Affiliation(s)
- Alexander T. Yahanda
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Karan Joseph
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tim Bui
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jacob K. Greenberg
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John I. Ogunlade
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Hafez
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nicholas A. Pallotta
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Brian J. Neuman
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Camilo A. Molina
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Jeon YD, Jung KH, Kim MS, Kim H, Yoon DK, Park KB. Clinical validation of artificial intelligence-based preoperative virtual reduction for Neer 3- or 4-part proximal humerus fractures. BMC Musculoskelet Disord 2024; 25:669. [PMID: 39192203 DOI: 10.1186/s12891-024-07798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND If reduction images of fractures can be provided in advance with artificial-intelligence (AI)-based technology, it can assist with preoperative surgical planning. Recently, we developed the AI-based preoperative virtual reduction model for orthopedic trauma, which can provide an automatic segmentation and reduction of fractured fragments. The purpose of this study was to validate a quality of reduction model of Neer 3- or 4-part proximal humerus fractures established by AI-based technology. METHODS To develop the AI-based preoperative virtual reduction model, deep learning performed the segmentation of fracture fragments, and a Monte Carlo simulation completed the virtual reduction to determine the best model. A total of 20 pre/postoperative three-dimensional computed tomography (CT) scans of proximal humerus fracture were prepared. The preoperative CT scans were employed as the input of AI-based automated reduction (AI-R) to deduce the reduction models of fracture fragments, meanwhile, the manual reduction (MR) was conducted using the same CT images. Dice similarity coefficient (DSC) and intersection over union (IoU) between the reduction model from the AI-R/MR and postoperative CT scans were evaluated. Working times were compared between the two groups. Clinical validity agreement (CVA) and reduction quality score (RQS) were investigated for clinical validation outcomes by 20 orthopedic surgeons. RESULTS The mean DSC and IoU were better when using AI-R that when using MR (0.78 ± 0.13 vs. 0.69 ± 0.16, p < 0.001 and 0.65 ± 0.16 vs. 0.55 ± 0.18, p < 0.001, respectively). The working time of AI-R was, on average, 1.41% of that of MR. The mean CVA of all cases was 81%±14.7% (AI-R, 82.25%±14.27%; MR, 76.75%±14.17%, p = 0.06). The mean RQS was significantly higher when AI-R compared with MR was used (91.47 ± 1.12 vs. 89.30 ± 1.62, p = 0.045). CONCLUSION The AI-based preoperative virtual reduction model showed good performance in the reduction model in proximal humerus fractures with faster working times. Beyond diagnosis, classification, and outcome prediction, the AI-based technology can change the paradigm of preoperative surgical planning in orthopedic surgery. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Young Dae Jeon
- Department of Orthopaedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, 25, Daehakbyeongwon-ro, Dong-Gu, Ulsan, 44033, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Orthopaedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, 25, Daehakbyeongwon-ro, Dong-Gu, Ulsan, 44033, Republic of Korea
| | - Moo-Sub Kim
- Industrial R&D Center, KAVILAB Co. Ltd, Seoul, Republic of Korea
| | - Hyeonjoo Kim
- Industrial R&D Center, KAVILAB Co. Ltd, Seoul, Republic of Korea
| | - Do-Kun Yoon
- Industrial R&D Center, KAVILAB Co. Ltd, Seoul, Republic of Korea
| | - Ki-Bong Park
- Department of Orthopaedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, 25, Daehakbyeongwon-ro, Dong-Gu, Ulsan, 44033, Republic of Korea.
| |
Collapse
|
3
|
Fares MY, Liu HH, da Silva Etges APB, Zhang B, Warner JJP, Olson JJ, Fedorka CJ, Khan AZ, Best MJ, Kirsch JM, Simon JE, Sanders B, Costouros JG, Zhang X, Jones P, Haas DA, Abboud JA. Utility of Machine Learning, Natural Language Processing, and Artificial Intelligence in Predicting Hospital Readmissions After Orthopaedic Surgery: A Systematic Review and Meta-Analysis. JBJS Rev 2024; 12:01874474-202408000-00011. [PMID: 39172864 DOI: 10.2106/jbjs.rvw.24.00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Numerous applications and strategies have been utilized to help assess the trends and patterns of readmissions after orthopaedic surgery in an attempt to extrapolate possible risk factors and causative agents. The aim of this work is to systematically summarize the available literature on the extent to which natural language processing, machine learning, and artificial intelligence (AI) can help improve the predictability of hospital readmissions after orthopaedic and spine surgeries. METHODS This is a systematic review and meta-analysis. PubMed, Embase and Google Scholar were searched, up until August 30, 2023, for studies that explore the use of AI, natural language processing, and machine learning tools for the prediction of readmission rates after orthopedic procedures. Data regarding surgery type, patient population, readmission outcomes, advanced models utilized, comparison methods, predictor sets, the inclusion of perioperative predictors, validation method, size of training and testing sample, accuracy, and receiver operating characteristics (C-statistic), among other factors, were extracted and assessed. RESULTS A total of 26 studies were included in our final dataset. The overall summary C-statistic showed a mean of 0.71 across all models, indicating a reasonable level of predictiveness. A total of 15 articles (57%) were attributed to the spine, making it the most commonly explored orthopaedic field in our study. When comparing accuracy of prediction models between different fields, models predicting readmissions after hip/knee arthroplasty procedures had a higher prediction accuracy (mean C-statistic = 0.79) than spine (mean C-statistic = 0.7) and shoulder (mean C-statistic = 0.67). In addition, models that used single institution data, and those that included intraoperative and/or postoperative outcomes, had a higher mean C-statistic than those utilizing other data sources, and that include only preoperative predictors. According to the Prediction model Risk of Bias Assessment Tool, the majority of the articles in our study had a high risk of bias. CONCLUSION AI tools perform reasonably well in predicting readmissions after orthopaedic procedures. Future work should focus on standardizing study methodologies and designs, and improving the data analysis process, in an attempt to produce more reliable and tangible results. LEVEL OF EVIDENCE Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Mohamad Y Fares
- Rothman Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | | | - Jon J P Warner
- Department of Orthopaedic Surgery, Harvard Medical School, Boston Shoulder Institute, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Catherine J Fedorka
- Cooper Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey
| | - Adam Z Khan
- Department of Orthopaedic Surgery, Southern California Permanente Medical Group, Panorama City, California
| | - Matthew J Best
- Department of Orthopaedic Surgery, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jacob M Kirsch
- Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, Massachusetts
| | - Jason E Simon
- Department of Orthopaedic Surgery, Massachusetts General Hospital/Newton-Wellesley Hospital, Boston, Massachusetts
| | - Brett Sanders
- Center for Sports Medicine and Orthopaedics, Chattanooga, Tennessee
| | - John G Costouros
- Institute for Joint Restoration and Research, California Shoulder Center, Menlo Park, California
| | | | | | | | - Joseph A Abboud
- Rothman Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Karabacak M, Schupper A, Carr M, Margetis K. A machine learning-based approach for individualized prediction of short-term outcomes after anterior cervical corpectomy. Asian Spine J 2024; 18:541-549. [PMID: 39113482 PMCID: PMC11366553 DOI: 10.31616/asj.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 09/03/2024] Open
Abstract
STUDY DESIGN A retrospective machine learning (ML) classification study for prognostic modeling after anterior cervical corpectomy (ACC). PURPOSE To evaluate the effectiveness of ML in predicting ACC outcomes and develop an accessible, user-friendly tool for this purpose. OVERVIEW OF LITERATURE Based on our literature review, no study has examined the capability of ML algorithms to predict major shortterm ACC outcomes, such as prolonged length of hospital stay (LOS), non-home discharge, and major complications. METHODS The American College of Surgeons' National Surgical Quality Improvement Program database was used to identify patients who underwent ACC. Prolonged LOS, non-home discharges, and major complications were assessed as the outcomes of interest. ML models were developed with the TabPFN algorithm and integrated into an open-access website to predict these outcomes. RESULTS The models for predicting prolonged LOS, non-home discharges, and major complications demonstrated mean areas under the receiver operating characteristic curve (AUROC) of 0.802, 0.816, and 0.702, respectively. These findings highlight the discriminatory capacities of the models: fair (AUROC >0.7) for differentiating patients with major complications from those without, and good (AUROC >0.8) for distinguishing between those with and without prolonged LOS and non-home discharges. According to the SHapley Additive Explanations analysis, single- versus multiple-level surgery, age, body mass index, preoperative hematocrit, and American Society of Anesthesiologists physical status repetitively emerged as the most important variables for each outcome. CONCLUSIONS This study has considerably enhanced the prediction of postoperative results after ACC surgery by implementing advanced ML techniques. A major contribution is the creation of an accessible web application, highlighting the practical value of the developed models. Our findings imply that ML can serve as an invaluable supplementary tool to stratify patient risk for this procedure and can predict diverse postoperative adverse outcomes.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Alexander Schupper
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Matthew Carr
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | | |
Collapse
|
5
|
Cai S, Liu W, Cai X, Xu C, Hu Z, Quan X, Deng Y, Yao H, Chen B, Li W, Yin C, Xu Q. Predicting osteoporotic fractures post-vertebroplasty: a machine learning approach with a web-based calculator. BMC Surg 2024; 24:142. [PMID: 38724895 PMCID: PMC11080251 DOI: 10.1186/s12893-024-02427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
PURPOSE The aim of this study was to develop and validate a machine learning (ML) model for predicting the risk of new osteoporotic vertebral compression fracture (OVCF) in patients who underwent percutaneous vertebroplasty (PVP) and to create a user-friendly web-based calculator for clinical use. METHODS A retrospective analysis of patients undergoing percutaneous vertebroplasty: A retrospective analysis of patients treated with PVP between June 2016 and June 2018 at Liuzhou People's Hospital was performed. The independent variables of the model were screened using Boruta and modelled using 9 algorithms. Model performance was assessed using the area under the receiver operating characteristic curve (ROC_AUC), and clinical utility was assessed by clinical decision curve analysis (DCA). The best models were analysed for interpretability using SHapley Additive exPlanations (SHAP) and the models were deployed visually using a web calculator. RESULTS Training and test groups were split using time. The SVM model performed best in both the training group tenfold cross-validation (CV) and validation group AUC, with an AUC of 0.77. DCA showed that the model was beneficial to patients in both the training and test sets. A network calculator developed based on the SHAP-based SVM model can be used for clinical risk assessment ( https://nicolazhang.shinyapps.io/refracture_shap/ ). CONCLUSIONS The SVM-based ML model was effective in predicting the risk of new-onset OVCF after PVP, and the network calculator provides a practical tool for clinical decision-making. This study contributes to personalised care in spinal surgery.
Collapse
Affiliation(s)
- Sanying Cai
- Department of Anesthesiology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Wencai Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xintian Cai
- Department of Graduate School, Xinjiang Medical University, Urumqi, China
| | - Chan Xu
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Zhaohui Hu
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Xubin Quan
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
- Graduate School of Guangxi Medical University, Nanning, Guangxi, China
| | - Yizhuo Deng
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Hongjie Yao
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
- Graduate School of Guangxi Medical University, Nanning, Guangxi, China
| | - Binghao Chen
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Wenle Li
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, P. R. China.
| | - Qingshan Xu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China.
| |
Collapse
|
6
|
Huffman N, Pasqualini I, Khan ST, Klika AK, Deren ME, Jin Y, Kunze KN, Piuzzi NS. Enabling Personalized Medicine in Orthopaedic Surgery Through Artificial Intelligence: A Critical Analysis Review. JBJS Rev 2024; 12:01874474-202403000-00006. [PMID: 38466797 DOI: 10.2106/jbjs.rvw.23.00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
» The application of artificial intelligence (AI) in the field of orthopaedic surgery holds potential for revolutionizing health care delivery across 3 crucial domains: (I) personalized prediction of clinical outcomes and adverse events, which may optimize patient selection, surgical planning, and enhance patient safety and outcomes; (II) diagnostic automated and semiautomated imaging analyses, which may reduce time burden and facilitate precise and timely diagnoses; and (III) forecasting of resource utilization, which may reduce health care costs and increase value for patients and institutions.» Computer vision is one of the most highly studied areas of AI within orthopaedics, with applications pertaining to fracture classification, identification of the manufacturer and model of prosthetic implants, and surveillance of prosthesis loosening and failure.» Prognostic applications of AI within orthopaedics include identifying patients who will likely benefit from a specified treatment, predicting prosthetic implant size, postoperative length of stay, discharge disposition, and surgical complications. Not only may these applications be beneficial to patients but also to institutions and payors because they may inform potential cost expenditure, improve overall hospital efficiency, and help anticipate resource utilization.» AI infrastructure development requires institutional financial commitment and a team of clinicians and data scientists with expertise in AI that can complement skill sets and knowledge. Once a team is established and a goal is determined, teams (1) obtain, curate, and label data; (2) establish a reference standard; (3) develop an AI model; (4) evaluate the performance of the AI model; (5) externally validate the model, and (6) reinforce, improve, and evaluate the model's performance until clinical implementation is possible.» Understanding the implications of AI in orthopaedics may eventually lead to wide-ranging improvements in patient care. However, AI, while holding tremendous promise, is not without methodological and ethical limitations that are essential to address. First, it is important to ensure external validity of programs before their use in a clinical setting. Investigators should maintain high quality data records and registry surveillance, exercise caution when evaluating others' reported AI applications, and increase transparency of the methodological conduct of current models to improve external validity and avoid propagating bias. By addressing these challenges and responsibly embracing the potential of AI, the medical field may eventually be able to harness its power to improve patient care and outcomes.
Collapse
Affiliation(s)
- Nickelas Huffman
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | | | - Shujaa T Khan
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Alison K Klika
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Matthew E Deren
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Yuxuan Jin
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Kyle N Kunze
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
| | - Nicolas S Piuzzi
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
7
|
Wang SK, Wang P, Li ZE, Li XY, Kong C, Zhang ST, Lu SB. Development and external validation of a predictive model for prolonged length of hospital stay in elderly patients undergoing lumbar fusion surgery: comparison of three predictive models. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1044-1054. [PMID: 38291294 DOI: 10.1007/s00586-024-08132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE This study aimed to develop a predictive model for prolonged length of hospital stay (pLOS) in elderly patients undergoing lumbar fusion surgery, utilizing multivariate logistic regression, single classification and regression tree (hereafter, "classification tree") and random forest machine-learning algorithms. METHODS This study was a retrospective review of a prospective Geriatric Lumbar Disease Database. The primary outcome measure was pLOS, which was defined as the LOS greater than the 75th percentile. All patients were grouped as pLOS group and non-pLOS. Three models (including logistic regression, single-classification tree and random forest algorithms) for predicting pLOS were developed using training dataset and internal validation using testing dataset. Finally, online tool based on our model was developed to assess its validity in the clinical setting (external validation). RESULTS The development set included 1025 patients (mean [SD] age, 72.8 [5.6] years; 632 [61.7%] female), and the external validation set included 175 patients (73.2 [5.9] years; 97[55.4%] female). Multivariate logistic analyses revealed that older age (odds ratio [OR] 1.06, p < 0.001), higher BMI (OR 1.08, p = 0.002), number of fused segments (OR 1.41, p < 0.001), longer operative time (OR 1.02, p < 0.001), and diabetes (OR 1.05, p = 0.046) were independent risk factors for pLOS in elderly patients undergoing lumbar fusion surgery. The single-classification tree revealed that operative time ≥ 232 min, delayed ambulation, and BMI ≥ 30 kg/m2 as particularly influential predictors for pLOS. A random forest model was developed using the remaining 14 variables. Intraoperative EBL, operative time, delayed ambulation, age, number of fused segments, BMI, and RBC count were the most significant variables in the final model. The predictive ability of our three models was comparable, with no significant differences in AUC (0.73 vs. 0.71 vs. 0.70, respectively). The logistic regression model had a higher net benefit for clinical intervention than the other models. The nomogram was developed, and the C-index of external validation for PLOS was 0.69 (95% CI, 0.65-0.76). CONCLUSION This investigation produced three predictive models for pLOS in elderly patients undergoing lumbar fusion surgery. The predictive ability of our three models was comparable. Logistic regression model had a higher net benefit for clinical intervention than the other models. Our predictive model could inform physicians about elderly patients with a high risk of pLOS after surgery.
Collapse
Affiliation(s)
- Shuai-Kang Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Peng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Zhong-En Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiang-Yu Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Si-Tao Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Shi-Bao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China.
- National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
8
|
Wang SK, Wang P, Li ZE, Li XY, Kong C, Lu SB. Development and external validation of a nomogram for predicting postoperative adverse events in elderly patients undergoing lumbar fusion surgery: comparison of three predictive models. J Orthop Surg Res 2024; 19:8. [PMID: 38166958 PMCID: PMC10763364 DOI: 10.1186/s13018-023-04490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The burden of lumbar degenerative diseases (LDD) has increased substantially with the unprecedented aging population. Identifying elderly patients with high risk of postoperative adverse events (AEs) and establishing individualized perioperative management is critical to mitigate added costs and optimize cost-effectiveness to the healthcare system. We aimed to develop a predictive tool for AEs in elderly patients with transforaminal lumbar interbody fusion (TLIF), utilizing multivariate logistic regression, single classification and regression tree (hereafter, "classification tree"), and random forest machine learning algorithms. METHODS This study was a retrospective review of a prospective Geriatric Lumbar Disease Database (age ≥ 65). Our outcome measure was postoperative AEs, including prolonged hospital stays, postoperative complications, readmission, and reoperation within 90 days. Patients were grouped as either having at least one adverse event (AEs group) or not (No-AEs group). Three models for predicting postoperative AEs were developed using training dataset and internal validation using testing dataset. Finally, online tool was developed to assess its validity in the clinical setting (external validation). RESULTS The development set included 1025 patients (mean [SD] age, 72.8 [5.6] years; 632 [61.7%] female), and the external validation set included 175 patients (73.2 [5.9] years; 97 [55.4%] female). The predictive ability of our three models was comparable, with no significant differences in AUC (0.73 vs. 0.72 vs. 0.70, respectively). The logistic regression model had a higher net benefit for clinical intervention than the other models. A nomogram based on logistic regression was developed, and the C-index of external validation for AEs was 0.69 (95% CI 0.65-0.76). CONCLUSION The predictive ability of our three models was comparable. Logistic regression model had a higher net benefit for clinical intervention than the other models. Our nomogram and online tool ( https://xuanwumodel.shinyapps.io/Model_for_AEs/ ) could inform physicians about elderly patients with a high risk of AEs within the 90 days after TLIF surgery.
Collapse
Affiliation(s)
- Shuai-Kang Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Peng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Zhong-En Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiang-Yu Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shi-Bao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China.
- National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
9
|
Adida S, Legarreta AD, Hudson JS, McCarthy D, Andrews E, Shanahan R, Taori S, Lavadi RS, Buell TJ, Hamilton DK, Agarwal N, Gerszten PC. Machine Learning in Spine Surgery: A Narrative Review. Neurosurgery 2024; 94:53-64. [PMID: 37930259 DOI: 10.1227/neu.0000000000002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 11/07/2023] Open
Abstract
Artificial intelligence and machine learning (ML) can offer revolutionary advances in their application to the field of spine surgery. Within the past 5 years, novel applications of ML have assisted in surgical decision-making, intraoperative imaging and navigation, and optimization of clinical outcomes. ML has the capacity to address many different clinical needs and improve diagnostic and surgical techniques. This review will discuss current applications of ML in the context of spine surgery by breaking down its implementation preoperatively, intraoperatively, and postoperatively. Ethical considerations to ML and challenges in ML implementation must be addressed to maximally benefit patients, spine surgeons, and the healthcare system. Areas for future research in augmented reality and mixed reality, along with limitations in generalizability and bias, will also be highlighted.
Collapse
Affiliation(s)
- Samuel Adida
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Andrew D Legarreta
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Joseph S Hudson
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - David McCarthy
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Edward Andrews
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Regan Shanahan
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Suchet Taori
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Raj Swaroop Lavadi
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Thomas J Buell
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - D Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Nitin Agarwal
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Peter C Gerszten
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| |
Collapse
|
10
|
Ghanem M, Ghaith AK, El-Hajj VG, Bhandarkar A, de Giorgio A, Elmi-Terander A, Bydon M. Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review. Brain Sci 2023; 13:1723. [PMID: 38137171 PMCID: PMC10741524 DOI: 10.3390/brainsci13121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Clinical prediction models for spine surgery applications are on the rise, with an increasing reliance on machine learning (ML) and deep learning (DL). Many of the predicted outcomes are uncommon; therefore, to ensure the models' effectiveness in clinical practice it is crucial to properly evaluate them. This systematic review aims to identify and evaluate current research-based ML and DL models applied for spine surgery, specifically those predicting binary outcomes with a focus on their evaluation metrics. Overall, 60 papers were included, and the findings were reported according to the PRISMA guidelines. A total of 13 papers focused on lengths of stay (LOS), 12 on readmissions, 12 on non-home discharge, 6 on mortality, and 5 on reoperations. The target outcomes exhibited data imbalances ranging from 0.44% to 42.4%. A total of 59 papers reported the model's area under the receiver operating characteristic (AUROC), 28 mentioned accuracies, 33 provided sensitivity, 29 discussed specificity, 28 addressed positive predictive value (PPV), 24 included the negative predictive value (NPV), 25 indicated the Brier score with 10 providing a null model Brier, and 8 detailed the F1 score. Additionally, data visualization varied among the included papers. This review discusses the use of appropriate evaluation schemes in ML and identifies several common errors and potential bias sources in the literature. Embracing these recommendations as the field advances may facilitate the integration of reliable and effective ML models in clinical settings.
Collapse
Affiliation(s)
- Marc Ghanem
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
- School of Medicine, Lebanese American University, Byblos 4504, Lebanon
| | - Abdul Karim Ghaith
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Victor Gabriel El-Hajj
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Archis Bhandarkar
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Andrea de Giorgio
- Artificial Engineering, Via del Rione Sirignano, 80121 Naples, Italy;
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
11
|
Cabrera A, Bouterse A, Nelson M, Razzouk J, Ramos O, Bono CM, Cheng W, Danisa O. Accounting for age in prediction of discharge destination following elective lumbar fusion: a supervised machine learning approach. Spine J 2023; 23:997-1006. [PMID: 37028603 DOI: 10.1016/j.spinee.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND CONTEXT The number of elective spinal fusion procedures performed each year continues to grow, making risk factors for post-operative complications following this procedure increasingly clinically relevant. Nonhome discharge (NHD) is of particular interest due to its associations with increased costs of care and rates of complications. Notably, increased age has been found to influence rates of NHD. PURPOSE To identify aged-adjusted risk factors for nonhome discharge following elective lumbar fusion through the utilization of Machine Learning-generated predictions within stratified age groupings. STUDY DESIGN Retrospective Database Study. PATIENT SAMPLE The American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database years 2008 to 2018. OUTCOME MEASURES Postoperative discharge destination. METHODS ACS-NSQIP was queried to identify adult patients undergoing elective lumbar spinal fusion from 2008 to 2018. Patients were then stratified into the following age ranges: 30 to 44 years, 45 to 64 years, and ≥65 years. These groups were then analyzed by eight ML algorithms, each tasked with predicting post-operative discharge destination. RESULTS Prediction of NHD was performed with average AUCs of 0.591, 0.681, and 0.693 for those aged 30 to 44, 45 to 64, and ≥65 years respectively. In patients aged 30 to 44, operative time (p<.001), African American/Black race (p=.003), female sex (p=.002), ASA class three designation (p=.002), and preoperative hematocrit (p=.002) were predictive of NHD. In ages 45 to 64, predictive variables included operative time, age, preoperative hematocrit, ASA class two or class three designation, insulin-dependent diabetes, female sex, BMI, and African American/Black race all with p<.001. In patients ≥65 years, operative time, adult spinal deformity, BMI, insulin-dependent diabetes, female sex, ASA class four designation, inpatient status, age, African American/Black race, and preoperative hematocrit were predictive of NHD with p<.001. Several variables were distinguished as predictive for only one age group including ASA Class two designation in ages 45 to 64 and adult spinal deformity, ASA class four designation, and inpatient status for patients ≥65 years. CONCLUSIONS Application of ML algorithms to the ACS-NSQIP dataset identified a number of highly predictive and age-adjusted variables for NHD. As age is a risk factor for NHD following spinal fusion, our findings may be useful in both guiding perioperative decision-making and recognizing unique predictors of NHD among specific age groups.
Collapse
Affiliation(s)
- Andrew Cabrera
- School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | | | - Michael Nelson
- School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jacob Razzouk
- School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Omar Ramos
- Orthopaedic Surgery, Twin Cities Spine Center, MN 55404, USA
| | - Christopher M Bono
- Department of Orthopedics, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Wayne Cheng
- Division of Orthopaedic Surgery, Jerry L. Pettis VA Medical Center, Loma Linda, CA 92354 , USA
| | - Olumide Danisa
- Department of Orthopedics, Loma Linda University, Loma Linda, CA, 92354, USA.
| |
Collapse
|
12
|
Noh SH, Lee HS, Park GE, Ha Y, Park JY, Kuh SU, Chin DK, Kim KS, Cho YE, Kim SH, Kim KH. Predicting Mechanical Complications After Adult Spinal Deformity Operation Using a Machine Learning Based on Modified Global Alignment and Proportion Scoring With Body Mass Index and Bone Mineral Density. Neurospine 2023; 20:265-274. [PMID: 37016873 PMCID: PMC10080453 DOI: 10.14245/ns.2244854.427] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 04/03/2023] Open
Abstract
Objective: This study aimed to create an ideal machine learning model to predict mechanical complications in adult spinal deformity (ASD) surgery based on GAPB (modified global alignment and proportion scoring with body mass index and bone mineral density) factors.Methods: Between January 2009 and December 2018, 238 consecutive patients with ASD, who received at least 4-level fusions and were followed-up for ≥ 2 years, were included in the study. The data were stratified into training (n = 167, 70%) and test (n = 71, 30%) sets and input to machine learning algorithms, including logistic regression, random forest gradient boosting system, and deep neural network.Results: Body mass index, bone mineral density, the relative pelvic version score, the relative lumbar lordosis score, and the relative sagittal alignment score of the global alignment and proportion score were significantly different in the training and test sets (p < 0.05) between the complication and no complication groups. In the training set, the area under receiver operating characteristics (AUROCs) for logistic regression, gradient boosting, random forest, and deep neural network were 0.871 (0.817–0.925), 0.942 (0.911–0.974), 1.000 (1.000–1.000), and 0.947 (0.915–0.980), respectively, and the accuracies were 0.784 (0.722–0.847), 0.868 (0.817–0.920), 1.000 (1.000–1.000), and 0.856 (0.803–0.909), respectively. In the test set, the AUROCs were 0.785 (0.678–0.893), 0.808 (0.702–0.914), 0.810 (0.710–0.910), and 0.730 (0.610–0.850), respectively, and the accuracies were 0.732 (0.629–0.835), 0.718 (0.614–0.823), 0.732 (0.629–0.835), and 0.620 (0.507–0.733), respectively. The random forest achieved the best predictive performance on the training and test dataset.Conclusion: This study created a comprehensive model to predict mechanical complications after ASD surgery. The best prediction accuracy was 73.2% for predicting mechanical complications after ASD surgery.
Collapse
Affiliation(s)
- Sung Hyun Noh
- Department of Neurosurgery, Ajou University College of Medicine, Suwon, Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Go Eun Park
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Yoon Park
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Uk Kuh
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Kyu Chin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keun Su Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Eun Cho
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hyun Kim
- Department of Neurosurgery, Ajou University College of Medicine, Suwon, Korea
- Corresponding Author Kyung Hyun Kim Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea
| | - Kyung Hyun Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Co-corresponding Author Sang Hyun Kim Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
13
|
Shah AA, Karhade AV, Groot OQ, Olson TE, Schoenfeld AJ, Bono CM, Harris MB, Ferrone ML, Nelson SB, Park DY, Schwab JH. External validation of a predictive algorithm for in-hospital and ninety-day mortality after spinal epidural abscess. Spine J 2023; 23:760-765. [PMID: 36736740 DOI: 10.1016/j.spinee.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND CONTEXT Mortality in patients with spinal epidural abscess (SEA) remains high. Accurate prediction of patient-specific prognosis in SEA can improve patient counseling as well as guide management decisions. There are no externally validated studies predicting short-term mortality in patients with SEA. PURPOSE The purpose of this study was to externally validate the Skeletal Oncology Research Group (SORG) stochastic gradient boosting algorithm for prediction of in-hospital and 90-day postdischarge mortality in SEA. STUDY DESIGN/SETTING Retrospective, case-control study at a tertiary care academic medical center from 2003 to 2021. PATIENT SAMPLE Adult patients admitted for radiologically confirmed diagnosis of SEA who did not initiate treatment at an outside institution. OUTCOME MEASURES In-hospital and 90-day postdischarge mortality. METHODS We tested the SORG stochastic gradient boosting algorithm on an independent validation cohort. We assessed its performance with discrimination, calibration, decision curve analysis, and overall performance. RESULTS A total of 212 patients met inclusion criteria, with a short-term mortality rate of 10.4%. The area under the receiver operating characteristic curve (AUROC) of the SORG algorithm when tested on the full validation cohort was 0.82, the calibration intercept was -0.08, the calibration slope was 0.96, and the Brier score was 0.09. CONCLUSIONS With a contemporaneous and geographically distinct independent cohort, we report successful external validation of a machine learning algorithm for prediction of in-hospital and 90-day postdischarge mortality in SEA.
Collapse
Affiliation(s)
- Akash A Shah
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | - Aditya V Karhade
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Olivier Q Groot
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Thomas E Olson
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Andrew J Schoenfeld
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Christopher M Bono
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Mitchel B Harris
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Marco L Ferrone
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Sandra B Nelson
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Don Y Park
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
14
|
Lee W, Schwartz N, Bansal A, Khor S, Hammarlund N, Basu A, Devine B. A Scoping Review of the Use of Machine Learning in Health Economics and Outcomes Research: Part 2-Data From Nonwearables. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:2053-2061. [PMID: 35989154 DOI: 10.1016/j.jval.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Despite the increasing interest in applying machine learning (ML) methods in health economics and outcomes research (HEOR), stakeholders face uncertainties in when and how ML can be used. We reviewed the recent applications of ML in HEOR. METHODS We searched PubMed for studies published between January 2020 and March 2021 and randomly chose 20% of the identified studies for the sake of manageability. Studies that were in HEOR and applied an ML technique were included. Studies related to wearable devices were excluded. We abstracted information on the ML applications, data types, and ML methods and analyzed it using descriptive statistics. RESULTS We retrieved 805 articles, of which 161 (20%) were randomly chosen. Ninety-two of the random sample met the eligibility criteria. We found that ML was primarily used for predicting future events (86%) rather than current events (14%). The most common response variables were clinical events or disease incidence (42%) and treatment outcomes (22%). ML was less used to predict economic outcomes such as health resource utilization (16%) or costs (3%). Although electronic medical records (35%) were frequently used for model development, claims data were used less frequently (9%). Tree-based methods (eg, random forests and boosting) were the most commonly used ML methods (31%). CONCLUSIONS The use of ML techniques in HEOR is growing rapidly, but there remain opportunities to apply them to predict economic outcomes, especially using claims databases, which could inform the development of cost-effectiveness models.
Collapse
Affiliation(s)
- Woojung Lee
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Naomi Schwartz
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Aasthaa Bansal
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sara Khor
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Noah Hammarlund
- Department of Health Services Research, Management & Policy, University of Florida, Gainesville, FL, USA
| | - Anirban Basu
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Beth Devine
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Ren G, Yu K, Xie Z, Wang P, Zhang W, Huang Y, Wang Y, Wu X. Current Applications of Machine Learning in Spine: From Clinical View. Global Spine J 2022; 12:1827-1840. [PMID: 34628966 PMCID: PMC9609532 DOI: 10.1177/21925682211035363] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES This review aims to present current applications of machine learning (ML) in spine domain to clinicians. METHODS We conducted a comprehensive PubMed search of peer-reviewed articles that were published between 2006 and 2020 using terms (spine, spinal, lumbar, cervical, thoracic, machine learning) to examine ML in spine. Then exclude research of other domain, case report, review or meta-analysis, and which without available abstract or full text. RESULTS Total 1738 articles were retrieved from database, and 292 studies were finally included. Key findings of current applications were compiled and summarized in this review. Main clinical applications of those techniques including image processing, diagnosis, decision supporting, operative assistance, rehabilitation, surgery outcomes, complications, hospitalization and cost. CONCLUSIONS ML had achieved excellent performance and hold immense potential in spine. ML could help clinical staff to improve medical level, enhance work efficiency, and reduce adverse events. However more randomized controlled trials and improvement of interpretability are essential to clinicians accepting models' assistance in real work.
Collapse
Affiliation(s)
- GuanRui Ren
- Southeast University Medical College,
Nanjing, Jiangsu, China
| | - Kun Yu
- Nanjing Jiangbei Hospital, Nanjing,
Jiangsu, China
| | - ZhiYang Xie
- Department of Spine Surgery, Zhongda
Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - PeiYang Wang
- Southeast University Medical College,
Nanjing, Jiangsu, China
| | - Wei Zhang
- Southeast University Medical College,
Nanjing, Jiangsu, China
| | - Yong Huang
- Southeast University Medical College,
Nanjing, Jiangsu, China
| | - YunTao Wang
- Department of Spine Surgery, Zhongda
Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China,YunTao Wang, Department of Spine Surgery,
Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao
Road, Nanjing, Jiangsu 210009, China.
| | - XiaoTao Wu
- Department of Spine Surgery, Zhongda
Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China,XiaoTao Wu, Department of Spine Surgery,
Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao
Road, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
16
|
Shah AA, Devana SK, Lee C, Bugarin A, Hong MK, Upfill-Brown A, Blumstein G, Lord EL, Shamie AN, van der Schaar M, SooHoo NF, Park DY. A Risk Calculator for the Prediction of C5 Nerve Root Palsy After Instrumented Cervical Fusion. World Neurosurg 2022; 166:e703-e710. [PMID: 35872129 PMCID: PMC10410645 DOI: 10.1016/j.wneu.2022.07.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND C5 palsy is a common postoperative complication after cervical fusion and is associated with increased health care costs and diminished quality of life. Accurate prediction of C5 palsy may allow for appropriate preoperative counseling and risk stratification. We primarily aim to develop an algorithm for the prediction of C5 palsy after instrumented cervical fusion and identify novel features for risk prediction. Additionally, we aim to build a risk calculator to provide the risk of C5 palsy. METHODS We identified adult patients who underwent instrumented cervical fusion at a tertiary care medical center between 2013 and 2020. The primary outcome was postoperative C5 palsy. We developed ensemble machine learning, standard machine learning, and logistic regression models predicting the risk of C5 palsy-assessing discrimination and calibration. Additionally, a web-based risk calculator was built with the best-performing model. RESULTS A total of 1024 patients were included, with 52 cases of C5 palsy. The ensemble model was well-calibrated and demonstrated excellent discrimination with an area under the receiver-operating characteristic curve of 0.773. The following features were the most important for ensemble model performance: diabetes mellitus, bipolar disorder, C5 or C4 level, surgical approach, preoperative non-motor neurologic symptoms, degenerative disease, number of fused levels, and age. CONCLUSIONS We report a risk calculator that generates patient-specific C5 palsy risk after instrumented cervical fusion. Individualized risk prediction for patients may facilitate improved preoperative patient counseling and risk stratification as well as potential intraoperative mitigating measures. This tool may also aid in addressing potentially modifiable risk factors such as diabetes and obesity.
Collapse
Affiliation(s)
- Akash A Shah
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Sai K Devana
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Changhee Lee
- Department of Artificial Intelligence, Chung-Ang University, Seoul, South Korea
| | - Amador Bugarin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michelle K Hong
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alexander Upfill-Brown
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gideon Blumstein
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Elizabeth L Lord
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arya N Shamie
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mihaela van der Schaar
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom; Department of Electrical & Computer Engineering, UCLA, Los Angeles, California, USA
| | - Nelson F SooHoo
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Don Y Park
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Alsoof D, McDonald CL, Kuris EO, Daniels AH. Machine Learning for the Orthopaedic Surgeon: Uses and Limitations. J Bone Joint Surg Am 2022; 104:1586-1594. [PMID: 35383655 DOI: 10.2106/jbjs.21.01305] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
➤ Machine learning is a subset of artificial intelligence in which computer algorithms are trained to make classifications and predictions based on patterns in data. The utilization of these techniques is rapidly expanding in the field of orthopaedic research. ➤ There are several domains in which machine learning has application to orthopaedics, including radiographic diagnosis, gait analysis, implant identification, and patient outcome prediction. ➤ Several limitations prevent the widespread use of machine learning in the daily clinical environment. However, future work can overcome these issues and enable machine learning tools to be a useful adjunct for orthopaedic surgeons in their clinical decision-making.
Collapse
Affiliation(s)
- Daniel Alsoof
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | |
Collapse
|
18
|
Hornung AL, Hornung CM, Mallow GM, Barajas JN, Rush A, Sayari AJ, Galbusera F, Wilke HJ, Colman M, Phillips FM, An HS, Samartzis D. Artificial intelligence in spine care: current applications and future utility. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2057-2081. [PMID: 35347425 DOI: 10.1007/s00586-022-07176-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE The field of artificial intelligence is ever growing and the applications of machine learning in spine care are continuously advancing. Given the advent of the intelligence-based spine care model, understanding the evolution of computation as it applies to diagnosis, treatment, and adverse event prediction is of great importance. Therefore, the current review sought to synthesize findings from the literature at the interface of artificial intelligence and spine research. METHODS A narrative review was performed based on the literature of three databases (MEDLINE, CINAHL, and Scopus) from January 2015 to March 2021 that examined historical and recent advancements in the understanding of artificial intelligence and machine learning in spine research. Studies were appraised for their role in, or description of, advancements within image recognition and predictive modeling for spinal research. Only English articles that fulfilled inclusion criteria were ultimately incorporated in this review. RESULTS This review briefly summarizes the history and applications of artificial intelligence and machine learning in spine. Three basic machine learning training paradigms: supervised learning, unsupervised learning, and reinforced learning are also discussed. Artificial intelligence and machine learning have been utilized in almost every facet of spine ranging from localization and segmentation techniques in spinal imaging to pathology specific algorithms which include but not limited to; preoperative risk assessment of postoperative complications, screening algorithms for patients at risk of osteoporosis and clustering analysis to identify subgroups within adolescent idiopathic scoliosis. The future of artificial intelligence and machine learning in spine surgery is also discussed with focusing on novel algorithms, data collection techniques and increased utilization of automated systems. CONCLUSION Improvements to modern-day computing and accessibility to various imaging modalities allow for innovative discoveries that may arise, for example, from management. Given the imminent future of AI in spine surgery, it is of great importance that practitioners continue to inform themselves regarding AI, its goals, use, and progression. In the future, it will be critical for the spine specialist to be able to discern the utility of novel AI research, particularly as it continues to pervade facets of everyday spine surgery.
Collapse
Affiliation(s)
- Alexander L Hornung
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - G Michael Mallow
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - J Nicolás Barajas
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Augustus Rush
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Arash J Sayari
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | | | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University, Ulm, Germany
| | - Matthew Colman
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Frank M Phillips
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Howard S An
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Dino Samartzis
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
19
|
Greenberg JK, Otun A, Ghogawala Z, Yen PY, Molina CA, Limbrick DD, Foraker RE, Kelly MP, Ray WZ. Translating Data Analytics Into Improved Spine Surgery Outcomes: A Roadmap for Biomedical Informatics Research in 2021. Global Spine J 2022; 12:952-963. [PMID: 33973491 PMCID: PMC9344511 DOI: 10.1177/21925682211008424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES There is growing interest in the use of biomedical informatics and data analytics tools in spine surgery. Yet despite the rapid growth in research on these topics, few analytic tools have been implemented in routine spine practice. The purpose of this review is to provide a health information technology (HIT) roadmap to help translate data assets and analytics tools into measurable advances in spine surgical care. METHODS We conducted a narrative review of PubMed and Google Scholar to identify publications discussing data assets, analytical approaches, and implementation strategies relevant to spine surgery practice. RESULTS A variety of data assets are available for spine research, ranging from commonly used datasets, such as administrative billing data, to emerging resources, such as mobile health and biobanks. Both regression and machine learning techniques are valuable for analyzing these assets, and researchers should recognize the particular strengths and weaknesses of each approach. Few studies have focused on the implementation of HIT, and a variety of methods exist to help translate analytic tools into clinically useful interventions. Finally, a number of HIT-related challenges must be recognized and addressed, including stakeholder acceptance, regulatory oversight, and ethical considerations. CONCLUSIONS Biomedical informatics has the potential to support the development of new HIT that can improve spine surgery quality and outcomes. By understanding the development life-cycle that includes identifying an appropriate data asset, selecting an analytic approach, and leveraging an effective implementation strategy, spine researchers can translate this potential into measurable advances in patient care.
Collapse
Affiliation(s)
- Jacob K. Greenberg
- Department of Neurological Surgery, Washington University School of Medicine,
St. Louis, MO, USA,Jacob K. Greenberg, Department of
Neurosurgery, Washington University School of Medicine, 660S. Euclid Ave., Box
8057, St. Louis, MO 63 110, USA.
| | - Ayodamola Otun
- Department of Neurological Surgery, Washington University School of Medicine,
St. Louis, MO, USA
| | - Zoher Ghogawala
- Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Po-Yin Yen
- Institute for Informatics, Washington University School of Medicine,
St. Louis, MO, USA
| | - Camilo A. Molina
- Department of Neurological Surgery, Washington University School of Medicine,
St. Louis, MO, USA
| | - David D. Limbrick
- Department of Neurological Surgery, Washington University School of Medicine,
St. Louis, MO, USA
| | - Randi E Foraker
- Institute for Informatics, Washington University School of Medicine,
St. Louis, MO, USA
| | - Michael P. Kelly
- Department of Orthopaedic Surgery, Washington University School of Medicine,
St. Louis, MO, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine,
St. Louis, MO, USA
| |
Collapse
|
20
|
Nunes AA, Pinheiro RP, Costa HRT, Defino HLA. Predictors of hospital readmission within 30 days after surgery for thoracolumbar fractures: A mixed approach. Int J Health Plann Manage 2022; 37:1708-1721. [PMID: 35170106 DOI: 10.1002/hpm.3437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Readmission followed by surgery to treat spinal fractures has a substantial impact on patient care costs and reflects a hospital's quality standards. This article analyzes the factors associated with hospital readmission followed by surgery to treat spinal fractures. METHODS This was a cross-sectional study with time-series analysis. For prediction analysis, we used Cox proportional hazards and machine-learning models, using data from the Healthcare Cost and Utilization Project, Inpatient Database from Florida (USA). RESULTS The sample comprised 215,999 patients, 8.8% of whom were readmitted within 30 days. The factors associated with a risk of readmission were male sex (1.1 [95% confidence interval 1.06-1.13]) and >60 years of age (1.74 [95% CI: 1.69-1.8]). Surgeons with a higher annual patient volume presented a lower risk of readmission (0.61 [95% CI: 0.59-0.63]) and hospitals with an annual volume >393 presented a lower risk (0.92 [95% CI: 0.89-0.95]). CONCLUSION Surgical procedures and other selected predictors and machine-learning models can be used to reduce 30-day readmissions after spinal surgery. Identification of patients at higher risk for readmission and complications is the first step to reducing unplanned readmissions.
Collapse
Affiliation(s)
- Altacílio Aparecido Nunes
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rômulo Pedroza Pinheiro
- Department of Orthopedics and Anesthesiology, Hospital das Clínicas at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Herton Rodrigo Tavares Costa
- Department of Orthopedics and Anesthesiology, Hospital das Clínicas at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Helton Luiz Aparecido Defino
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Artificial Intelligence in Adult Spinal Deformity. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:313-318. [PMID: 34862555 DOI: 10.1007/978-3-030-85292-4_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Artificial Intelligence is gaining traction in medicine for its ease of use and advancements in technology. This study evaluates the current literature on the use of artificial intelligence in adult spinal deformity.
Collapse
|
22
|
Shah AA, Devana SK, Lee C, Bugarin A, Lord EL, Shamie AN, Park DY, van der Schaar M, SooHoo NF. Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A Machine Learning-Driven Approach. World Neurosurg 2021; 152:e227-e234. [PMID: 34058366 PMCID: PMC8338911 DOI: 10.1016/j.wneu.2021.05.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Given the significant cost and morbidity of patients undergoing lumbar fusion, accurate preoperative risk-stratification would be of great utility. We aim to develop a machine learning model for prediction of major complications and readmission after lumbar fusion. We also aim to identify the factors most important to performance of each tested model. METHODS We identified 38,788 adult patients who underwent lumbar fusion at any California hospital between 2015 and 2017. The primary outcome was major perioperative complication or readmission within 30 days. We build logistic regression and advanced machine learning models: XGBoost, AdaBoost, Gradient Boosting, and Random Forest. Discrimination and calibration were assessed using area under the receiver operating characteristic curve and Brier score, respectively. RESULTS There were 4470 major complications (11.5%). The XGBoost algorithm demonstrates the highest discrimination of the machine learning models, outperforming regression. The variables most important to XGBoost performance include angina pectoris, metastatic cancer, teaching hospital status, history of concussion, comorbidity burden, and workers' compensation insurance. Teaching hospital status and concussion history were not found to be important for regression. CONCLUSIONS We report a machine learning algorithm for prediction of major complications and readmission after lumbar fusion that outperforms logistic regression. Notably, the predictors most important for XGBoost differed from those for regression. The superior performance of XGBoost may be due to the ability of advanced machine learning methods to capture relationships between variables that regression is unable to detect. This tool may identify and address potentially modifiable risk factors, helping risk-stratify patients and decrease complication rates.
Collapse
Affiliation(s)
- Akash A Shah
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Sai K Devana
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Changhee Lee
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California, USA
| | - Amador Bugarin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Elizabeth L Lord
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arya N Shamie
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Don Y Park
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mihaela van der Schaar
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California, USA; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Nelson F SooHoo
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|