1
|
Han H, Li R, Fu D, Zhou H, Zhan Z, Wu Y, Meng B. Revolutionizing spinal interventions: a systematic review of artificial intelligence technology applications in contemporary surgery. BMC Surg 2024; 24:345. [PMID: 39501233 PMCID: PMC11536876 DOI: 10.1186/s12893-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/28/2024] [Indexed: 11/09/2024] Open
Abstract
Leveraging its ability to handle large and complex datasets, artificial intelligence can uncover subtle patterns and correlations that human observation may overlook. This is particularly valuable for understanding the intricate dynamics of spinal surgery and its multifaceted impacts on patient prognosis. This review aims to delineate the role of artificial intelligence in spinal surgery. A search of the PubMed database from 1992 to 2023 was conducted using relevant English publications related to the application of artificial intelligence in spinal surgery. The search strategy involved a combination of the following keywords: "Artificial neural network," "deep learning," "artificial intelligence," "spinal," "musculoskeletal," "lumbar," "vertebra," "disc," "cervical," "cord," "stenosis," "procedure," "operation," "surgery," "preoperative," "postoperative," and "operative." A total of 1,182 articles were retrieved. After a careful evaluation of abstracts, 90 articles were found to meet the inclusion criteria for this review. Our review highlights various applications of artificial neural networks in spinal disease management, including (1) assessing surgical indications, (2) assisting in surgical procedures, (3) preoperatively predicting surgical outcomes, and (4) estimating the occurrence of various surgical complications and adverse events. By utilizing these technologies, surgical outcomes can be improved, ultimately enhancing the quality of life for patients.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ran Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongming Fu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyou Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi'ang Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Regmi M, Liu W, Liu S, Dai Y, Xiong Y, Yang J, Yang C. The evolution and integration of technology in spinal neurosurgery: A scoping review. J Clin Neurosci 2024; 129:110853. [PMID: 39348790 DOI: 10.1016/j.jocn.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Spinal disorders pose a significant global health challenge, affecting nearly 5% of the population and incurring substantial socioeconomic costs. Over time, spinal neurosurgery has evolved from basic 19th-century techniques to today's minimally invasive procedures. The recent integration of technologies such as robotic assistance and advanced imaging has not only improved precision but also reshaped treatment paradigms. This review explores key innovations in imaging, biomaterials, and emerging fields such as AI, examining how they address long-standing challenges in spinal care, including enhancing surgical accuracy and promoting tissue regeneration. Are we at the threshold of a new era in healthcare technology, or are these innovations merely enhancements that may not fundamentally advance clinical care? We aim to answer this question by offering a concise introduction to each technology and discussing in depth its status and challenges, providing readers with a clearer understanding of its actual potential to revolutionize surgical practices.
Collapse
Affiliation(s)
- Moksada Regmi
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Peking University Health Science Center, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China
| | - Weihai Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Shikun Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuwei Dai
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Ying Xiong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jun Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Chenlong Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China.
| |
Collapse
|
3
|
Yao YC, Lin CL, Chen HH, Lin HH, Hsiung W, Wang ST, Sun YC, Tang YH, Chou PH. Development and validation of deep learning models for identifying the brand of pedicle screws on plain spine radiographs. JOR Spine 2024; 7:e70001. [PMID: 39291095 PMCID: PMC11406509 DOI: 10.1002/jsp2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Background In spinal revision surgery, previous pedicle screws (PS) may need to be replaced with new implants. Failure to accurately identify the brand of PS-based instrumentation preoperatively may increase the risk of perioperative complications. This study aimed to develop and validate an optimal deep learning (DL) model to identify the brand of PS-based instrumentation on plain radiographs of spine (PRS) using anteroposterior (AP) and lateral images. Methods A total of 529 patients who received PS-based instrumentation from seven manufacturers were enrolled in this retrospective study. The postoperative PRS were gathered as ground truths. The training, validation, and testing datasets contained 338, 85, and 106 patients, respectively. YOLOv5 was used to crop out the screws' trajectory, and the EfficientNet-b0 model was used to develop single models (AP, Lateral, Merge, and Concatenated) based on the different PRS images. The ensemble models were different combinations of the single models. Primary outcomes were the models' performance in accuracy, sensitivity, precision, F1-score, kappa value, and area under the curve (AUC). Secondary outcomes were the relative performance of models versus human readers and external validation of the DL models. Results The Lateral model had the most stable performance among single models. The discriminative performance was improved by the ensemble method. The AP + Lateral ensemble model had the most stable performance, with an accuracy of 0.9434, F1 score of 0.9388, and AUC of 0.9834. The performance of the ensemble models was comparable to that of experienced orthopedic surgeons and superior to that of inexperienced orthopedic surgeons. External validation revealed that the Lat + Concat ensemble model had the best accuracy (0.9412). Conclusion The DL models demonstrated stable performance in identifying the brand of PS-based instrumentation based on AP and/or lateral images of PRS, which may assist orthopedic spine surgeons in preoperative revision planning in clinical practice.
Collapse
Affiliation(s)
- Yu-Cheng Yao
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Orthopedics and Traumatology Taipei Veterans General Hospital Taipei Taiwan
| | - Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine National Cheung Kung University Tainan Taiwan
| | - Hung-Hsun Chen
- Program of Artificial Intelligence and Information Security Fu Jen Catholic University New Taipei City Taiwan
| | - Hsi-Hsien Lin
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Orthopedics and Traumatology Taipei Veterans General Hospital Taipei Taiwan
| | - Wei Hsiung
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Orthopedics and Traumatology Taipei Veterans General Hospital Taipei Taiwan
- Department of Orthopedics Shin Kong Wu Ho-Su Memorial Hospital Taipei Taiwan
| | - Shih-Tien Wang
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Orthopedics and Traumatology Taipei Veterans General Hospital Taipei Taiwan
- Kinmen Hospital Ministry of Health and Welfare Kinmen Taiwan
| | - Ying-Chou Sun
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Radiology Taipei Veterans General Hospital Taipei Taiwan
- Department of Medical Imaging and Radiological Technology Yuanpei University of Medical Technology Hsinchu Taiwan
| | - Yu-Hsuan Tang
- Department of Medical Imaging and Radiological Technology Yuanpei University of Medical Technology Hsinchu Taiwan
| | - Po-Hsin Chou
- School of Medicine National Yang Ming Chiao Tung University Taipei Taiwan
- Department of Orthopedics and Traumatology Taipei Veterans General Hospital Taipei Taiwan
| |
Collapse
|
4
|
Lee S, Jung JY, Mahatthanatrakul A, Kim JS. Artificial Intelligence in Spinal Imaging and Patient Care: A Review of Recent Advances. Neurospine 2024; 21:474-486. [PMID: 38955525 PMCID: PMC11224760 DOI: 10.14245/ns.2448388.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Artificial intelligence (AI) is transforming spinal imaging and patient care through automated analysis and enhanced decision-making. This review presents a clinical task-based evaluation, highlighting the specific impact of AI techniques on different aspects of spinal imaging and patient care. We first discuss how AI can potentially improve image quality through techniques like denoising or artifact reduction. We then explore how AI enables efficient quantification of anatomical measurements, spinal curvature parameters, vertebral segmentation, and disc grading. This facilitates objective, accurate interpretation and diagnosis. AI models now reliably detect key spinal pathologies, achieving expert-level performance in tasks like identifying fractures, stenosis, infections, and tumors. Beyond diagnosis, AI also assists surgical planning via synthetic computed tomography generation, augmented reality systems, and robotic guidance. Furthermore, AI image analysis combined with clinical data enables personalized predictions to guide treatment decisions, such as forecasting spine surgery outcomes. However, challenges still need to be addressed in implementing AI clinically, including model interpretability, generalizability, and data limitations. Multicenter collaboration using large, diverse datasets is critical to advance the field further. While adoption barriers persist, AI presents a transformative opportunity to revolutionize spinal imaging workflows, empowering clinicians to translate data into actionable insights for improved patient care.
Collapse
Affiliation(s)
- Sungwon Lee
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Visual Analysis and Learning for Improved Diagnostics (VALID) Lab, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Visual Analysis and Learning for Improved Diagnostics (VALID) Lab, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Akaworn Mahatthanatrakul
- Department of Orthopaedics, Faculty of Medicine, Naresuan University Hospital, Phitsanulok, Thailand
| | - Jin-Sung Kim
- Spine Center, Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Thirunavukarasu AJ, Elangovan K, Gutierrez L, Hassan R, Li Y, Tan TF, Cheng H, Teo ZL, Lim G, Ting DSW. Clinical performance of automated machine learning: A systematic review. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2024; 53:187-207. [PMID: 38920245 DOI: 10.47102/annals-acadmedsg.2023113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Automated machine learning (autoML) removes technical and technological barriers to building artificial intelligence models. We aimed to summarise the clinical applications of autoML, assess the capabilities of utilised platforms, evaluate the quality of the evidence trialling autoML, and gauge the performance of autoML platforms relative to conventionally developed models, as well as each other. Method This review adhered to a prospectively registered protocol (PROSPERO identifier CRD42022344427). The Cochrane Library, Embase, MEDLINE and Scopus were searched from inception to 11 July 2022. Two researchers screened abstracts and full texts, extracted data and conducted quality assessment. Disagreement was resolved through discussion and if required, arbitration by a third researcher. Results There were 26 distinct autoML platforms featured in 82 studies. Brain and lung disease were the most common fields of study of 22 specialties. AutoML exhibited variable performance: area under the receiver operator characteristic curve (AUCROC) 0.35-1.00, F1-score 0.16-0.99, area under the precision-recall curve (AUPRC) 0.51-1.00. AutoML exhibited the highest AUCROC in 75.6% trials; the highest F1-score in 42.3% trials; and the highest AUPRC in 83.3% trials. In autoML platform comparisons, AutoPrognosis and Amazon Rekognition performed strongest with unstructured and structured data, respectively. Quality of reporting was poor, with a median DECIDE-AI score of 14 of 27. Conclusion A myriad of autoML platforms have been applied in a variety of clinical contexts. The performance of autoML compares well to bespoke computational and clinical benchmarks. Further work is required to improve the quality of validation studies. AutoML may facilitate a transition to data-centric development, and integration with large language models may enable AI to build itself to fulfil user-defined goals.
Collapse
Affiliation(s)
- Arun James Thirunavukarasu
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kabilan Elangovan
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Laura Gutierrez
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Refaat Hassan
- University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yong Li
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Ting Fang Tan
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Haoran Cheng
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Gilbert Lim
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Daniel Shu Wei Ting
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- Singapore National Eye Centre, Singapore
| |
Collapse
|
6
|
Courtman M, Kim D, Wit H, Wang H, Sun L, Ifeachor E, Mullin S, Thurston M. Deep Learning Detection of Aneurysm Clips for Magnetic Resonance Imaging Safety. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:72-80. [PMID: 38343241 DOI: 10.1007/s10278-023-00932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 03/02/2024]
Abstract
Flagging the presence of metal devices before a head MRI scan is essential to allow appropriate safety checks. There is an unmet need for an automated system which can flag aneurysm clips prior to MRI appointments. We assess the accuracy with which a machine learning model can classify the presence or absence of an aneurysm clip on CT images. A total of 280 CT head scans were collected, 140 with aneurysm clips visible and 140 without. The data were used to retrain a pre-trained image classification neural network to classify CT localizer images. Models were developed using fivefold cross-validation and then tested on a holdout test set. A mean sensitivity of 100% and a mean accuracy of 82% were achieved. Predictions were explained using SHapley Additive exPlanations (SHAP), which highlighted that appropriate regions of interest were informing the models. Models were also trained from scratch to classify three-dimensional CT head scans. These did not exceed the sensitivity of the localizer models. This work illustrates an application of computer vision image classification to enhance current processes and improve patient safety.
Collapse
Affiliation(s)
- Megan Courtman
- Faculty of Science and Engineering, School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Daniel Kim
- Department of Radiology, Royal Cornwall Hospitals NHS Trust, Truro, TR1 3LJ, UK
| | - Huub Wit
- Department of Radiology, Torbay and South Devon NHS Trust, Torquay, TQ2 7AA, UK
| | - Hongrui Wang
- Department of Radiology, University Hospitals Plymouth NHS Trust, Plymouth, PL6 8DH, UK
| | - Lingfen Sun
- Faculty of Science and Engineering, School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Emmanuel Ifeachor
- Faculty of Science and Engineering, School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stephen Mullin
- Plymouth Institute of Health and Care Research, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Mark Thurston
- Department of Radiology, University Hospitals Plymouth NHS Trust, Plymouth, PL6 8DH, UK
| |
Collapse
|
7
|
Anand A, Flores AR, McDonald MF, Gadot R, Xu DS, Ropper AE. A computer vision approach to identifying the manufacturer of posterior thoracolumbar instrumentation systems. J Neurosurg Spine 2022; 38:417-424. [PMID: 36681945 DOI: 10.3171/2022.11.spine221009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Knowledge of the manufacturer of the previously implanted pedicle screw systems prior to revision spinal surgery may facilitate faster and safer surgery. Often, this information is unavailable because patients are referred by other centers or because of missing information in the patients' records. Recently, machine learning and computer vision have gained wider use in clinical applications. The authors propose a computer vision approach to classify posterior thoracolumbar instrumentation systems. METHODS Lateral and anteroposterior (AP) radiographs obtained in patients undergoing posterior thoracolumbar pedicle screw implantation for any indication at the authors' institution (2015-2021) were obtained. DICOM images were cropped to include both the pedicle screws and rods. Images were labeled with the manufacturer according to the operative record. Multiple feature detection methods were tested (SURF, MESR, and Minimum Eigenvalues); however, the bag-of-visual-words technique with KAZE feature detection was ultimately used to construct a computer vision support vector machine (SVM) classifier for lateral, AP, and fused lateral and AP images. Accuracy was tested using an 80%/20% training/testing pseudorandom split over 100 iterations. Using a reader study, the authors compared the model performance with the current practice of surgeons and manufacturer representatives identifying spinal hardware by visual inspection. RESULTS Among the three image types, 355 lateral, 379 AP, and 338 fused radiographs were obtained. The five pedicle screw implants included in this study were the Globus Medical Creo, Medtronic Solera, NuVasive Reline, Stryker Xia, and DePuy Expedium. When the two most common manufacturers used at the authors' institution were binarily classified (Globus Medical and Medtronic), the accuracy rates for lateral, AP, and fused images were 93.15% ± 4.06%, 88.98% ± 4.08%, and 91.08% ± 5.30%, respectively. Classification accuracy decreased by approximately 10% with each additional manufacturer added. The multilevel five-way classification accuracy rates for lateral, AP, and fused images were 64.27% ± 5.13%, 60.95% ± 5.52%, and 65.90% ± 5.14%, respectively. In the reader study, the model performed five-way classification on 100 test images with 79% accuracy in 14 seconds, compared with an average of 44% accuracy in 20 minutes for two surgeons and three manufacturer representatives. CONCLUSIONS The authors developed a KAZE feature detector with an SVM classifier that successfully identified posterior thoracolumbar hardware at five-level classification. The model performed more accurately and efficiently than the method currently used in clinical practice. The relative computational simplicity of this model, from input to output, may facilitate future prospective studies in the clinical setting.
Collapse
Affiliation(s)
- Adrish Anand
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Alex R Flores
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - Malcolm F McDonald
- 1Department of Neurosurgery, Baylor College of Medicine, Houston.,2Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas; and
| | - Ron Gadot
- 1Department of Neurosurgery, Baylor College of Medicine, Houston
| | - David S Xu
- 3Department of Neurosurgery, The Ohio State University School of Medicine, Columbus, Ohio
| | | |
Collapse
|
8
|
Unadkat V, Pangal DJ, Kugener G, Roshannai A, Chan J, Zhu Y, Markarian N, Zada G, Donoho DA. Code-free machine learning for object detection in surgical video: a benchmarking, feasibility, and cost study. Neurosurg Focus 2022; 52:E11. [PMID: 35364576 DOI: 10.3171/2022.1.focus21652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE While the utilization of machine learning (ML) for data analysis typically requires significant technical expertise, novel platforms can deploy ML methods without requiring the user to have any coding experience (termed AutoML). The potential for these methods to be applied to neurosurgical video and surgical data science is unknown. METHODS AutoML, a code-free ML (CFML) system, was used to identify surgical instruments contained within each frame of endoscopic, endonasal intraoperative video obtained from a previously validated internal carotid injury training exercise performed on a high-fidelity cadaver model. Instrument-detection performances using CFML were compared with two state-of-the-art ML models built using the Python coding language on the same intraoperative video data set. RESULTS The CFML system successfully ingested surgical video without the use of any code. A total of 31,443 images were used to develop this model; 27,223 images were uploaded for training, 2292 images for validation, and 1928 images for testing. The mean average precision on the test set across all instruments was 0.708. The CFML model outperformed two standard object detection networks, RetinaNet and YOLOv3, which had mean average precisions of 0.669 and 0.527, respectively, in analyzing the same data set. Significant advantages to the CFML system included ease of use, relatively low cost, displays of true/false positives and negatives in a user-friendly interface, and the ability to deploy models for further analysis with ease. Significant drawbacks of the CFML model included an inability to view the structure of the trained model, an inability to update the ML model once trained with new examples, and the inability for robust downstream analysis of model performance and error modes. CONCLUSIONS This first report describes the baseline performance of CFML in an object detection task using a publicly available surgical video data set as a test bed. Compared with standard, code-based object detection networks, CFML exceeded performance standards. This finding is encouraging for surgeon-scientists seeking to perform object detection tasks to answer clinical questions, perform quality improvement, and develop novel research ideas. The limited interpretability and customization of CFML models remain ongoing challenges. With the further development of code-free platforms, CFML will become increasingly important across biomedical research. Using CFML, surgeons without significant coding experience can perform exploratory ML analyses rapidly and efficiently.
Collapse
Affiliation(s)
- Vyom Unadkat
- 1Department of Computer Science, USC Viterbi School of Engineering, Los Angeles, California.,2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Dhiraj J Pangal
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Guillaume Kugener
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Arman Roshannai
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Justin Chan
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Yichao Zhu
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Nicholas Markarian
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Gabriel Zada
- 2Department of Neurosurgery, Keck School of Medicine of USC, Los Angeles, California; and
| | - Daniel A Donoho
- 3Division of Neurosurgery, Center for Neurosciences, Children's National Hospital, Washington, DC
| |
Collapse
|
9
|
An Evolution Gaining Momentum—The Growing Role of Artificial Intelligence in the Diagnosis and Treatment of Spinal Diseases. Diagnostics (Basel) 2022; 12:diagnostics12040836. [PMID: 35453884 PMCID: PMC9025301 DOI: 10.3390/diagnostics12040836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, applications using artificial intelligence have been gaining importance in the diagnosis and treatment of spinal diseases. In our review, we describe the basic features of artificial intelligence which are currently applied in the field of spine diagnosis and treatment, and we provide an orientation of the recent technical developments and their applications. Furthermore, we point out the possible limitations and challenges in dealing with such technological advances. Despite the momentary limitations in practical application, artificial intelligence is gaining ground in the field of spine treatment. As an applying physician, it is therefore necessary to engage with it in order to benefit from those advances in the interest of the patient and to prevent these applications being misused by non-medical partners.
Collapse
|
10
|
Ouyang H, Meng F, Liu J, Song X, Li Y, Yuan Y, Wang C, Lang N, Tian S, Yao M, Liu X, Yuan H, Jiang S, Jiang L. Evaluation of Deep Learning-Based Automated Detection of Primary Spine Tumors on MRI Using the Turing Test. Front Oncol 2022; 12:814667. [PMID: 35359400 PMCID: PMC8962659 DOI: 10.3389/fonc.2022.814667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
BackgroundRecently, the Turing test has been used to investigate whether machines have intelligence similar to humans. Our study aimed to assess the ability of an artificial intelligence (AI) system for spine tumor detection using the Turing test.MethodsOur retrospective study data included 12179 images from 321 patients for developing AI detection systems and 6635 images from 187 patients for the Turing test. We utilized a deep learning-based tumor detection system with Faster R-CNN architecture, which generates region proposals by Region Proposal Network in the first stage and corrects the position and the size of the bounding box of the lesion area in the second stage. Each choice question featured four bounding boxes enclosing an identical tumor. Three were detected by the proposed deep learning model, whereas the other was annotated by a doctor; the results were shown to six doctors as respondents. If the respondent did not correctly identify the image annotated by a human, his answer was considered a misclassification. If all misclassification rates were >30%, the respondents were considered unable to distinguish the AI-detected tumor from the human-annotated one, which indicated that the AI system passed the Turing test.ResultsThe average misclassification rates in the Turing test were 51.2% (95% CI: 45.7%–57.5%) in the axial view (maximum of 62%, minimum of 44%) and 44.5% (95% CI: 38.2%–51.8%) in the sagittal view (maximum of 59%, minimum of 36%). The misclassification rates of all six respondents were >30%; therefore, our AI system passed the Turing test.ConclusionOur proposed intelligent spine tumor detection system has a similar detection ability to annotation doctors and may be an efficient tool to assist radiologists or orthopedists in primary spine tumor detection.
Collapse
Affiliation(s)
- Hanqiang Ouyang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Fanyu Meng
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianfang Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Xinhang Song
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yuan Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Chunjie Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Shuai Tian
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Meiyi Yao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
- *Correspondence: Huishu Yuan, ; Shuqiang Jiang, ; Liang Jiang,
| | - Shuqiang Jiang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Huishu Yuan, ; Shuqiang Jiang, ; Liang Jiang,
| | - Liang Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- *Correspondence: Huishu Yuan, ; Shuqiang Jiang, ; Liang Jiang,
| |
Collapse
|
11
|
Artificial intelligence in orthopedic implant model classification: a systematic review. Skeletal Radiol 2022; 51:407-416. [PMID: 34351457 DOI: 10.1007/s00256-021-03884-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
Abstract
Although artificial intelligence models have demonstrated high accuracy in identifying specific orthopedic implant models from imaging, which is an important and time-consuming task, the scope of prior works and performance of prior models have not been evaluated. We performed a systematic review to summarize the scope, methodology, and performance of artificial intelligence algorithms in classifying orthopedic implant models. We performed a literature search in PubMed, EMBASE, and the Cochrane Library for studies published up to March 10, 2021, using search terms related to "artificial intelligence", "orthopedic", "implant", and "arthroplasty". Studies were assessed using a modified version of the methodologic index for non-randomized studies. Reported outcomes included area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. The search identified 2689 records, of which 11 were included in the final review. The number of implant models evaluated ranged from 2 to 27. Five studies reported overall AUC across all included models which ranged from 0.94 to 1.0. Overall accuracy values ranged from 0.804 to 1.0. One study compared AI model performance with that of three surgeons, reporting similar performance. There was a large degree of variation in methodology and reporting quality. Artificial intelligence algorithms have demonstrated strong performance in classifying orthopedic implant models from radiographs. Further research is needed to compare artificial intelligence alone and as an adjunct with human experts in implant identification. Future studies should aim to adhere to rigorous artificial intelligence development methods and thorough, transparent reporting of methods and results.
Collapse
|
12
|
AI MSK clinical applications: orthopedic implants. Skeletal Radiol 2022; 51:305-313. [PMID: 34350476 DOI: 10.1007/s00256-021-03879-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023]
Abstract
Artificial intelligence (AI) and deep learning have multiple potential uses in aiding the musculoskeletal radiologist in the radiological evaluation of orthopedic implants. These include identification of implants, characterization of implants according to anatomic type, identification of specific implant models, and evaluation of implants for positioning and complications. In addition, natural language processing (NLP) can aid in the acquisition of clinical information from the medical record that can help with tasks like prepopulating radiology reports. Several proof-of-concept works have been published in the literature describing the application of deep learning toward these various tasks, with performance comparable to that of expert musculoskeletal radiologists. Although much work remains to bring these proof-of-concept algorithms into clinical deployment, AI has tremendous potential toward automating these tasks, thereby augmenting the musculoskeletal radiologist.
Collapse
|
13
|
Cai H, Liu G. Exploring the Learning Psychology Mobilization of Music Majors Through Innovative Teaching Methods Under the Background of New Curriculum Reform. Front Psychol 2022; 12:751234. [PMID: 35126231 PMCID: PMC8814414 DOI: 10.3389/fpsyg.2021.751234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The research expects to explore the psychological mobilization of innovative teaching methods of Music Majors under the new curriculum reform. The relevant theories of college students’ innovative teaching methods are analyzed under deep learning together with the innovation and construction of music courses. Thereupon, college students’ psychological mobilization is studied. Firstly, the relationship between innovation and entrepreneurship teaching and deep learning is obtained through a literature review. Secondly, the music classroom model is designed based on the deep learning theory, and the four dimensions of the music curriculum are defined to innovate and optimize the music teaching model. Finally, the Questionnaire Survey (QS) is used to analyze the design classroom model. Only 15% of the 180 respondents understand the concept of deep learning, 32% like interactive music learning, and 36% like competitive comparative music classroom learning. And the students who study instrumental music have higher significant differences in learning motivation than those who study vocal music. In addition to classroom learning, 16% of people improve their music skills through music equipment. College students like interactive music classes and competitive comparison classes that can give more play to their subjective initiative. After the new curriculum reform, the music curriculum based on deep learning can stimulate students’ interest in learning and participate in the mobilization of students’ learning psychology. Therefore, in the future of music education and teaching, there is a need to pay more attention to students’ psychological status. The research results can provide references and practical significance for the innovative teaching activities of music classrooms after the new curriculum reform.
Collapse
Affiliation(s)
- Haiqin Cai
- College of Music, Gannan Normal University, Ganzhou, China
- Graduate School, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Haiqin Cai,
| | - Guangliang Liu
- Graduate School, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|