1
|
Jiang J, Huang Y, He B. Advances in the interaction between lumbar intervertebral disc degeneration and fat infiltration of paraspinal muscles: critical summarization, classification, and perspectives. Front Endocrinol (Lausanne) 2024; 15:1353087. [PMID: 38978618 PMCID: PMC11228240 DOI: 10.3389/fendo.2024.1353087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
More than 619 million people in the world suffer from low back pain (LBP). As two potential inducers of LBP, intervertebral disc degeneration (IVDD) and fat infiltration of paraspinal muscles (PSMs) have attracted extensive attention in recent years. So far, only one review has been presented to summarize their relationship and relevant mechanisms. Nevertheless, it has several noticeable drawbacks, such as incomplete categorization and discussion, lack of practical proposals, etc. Consequently, this paper aims to systematically summarize and classify the interaction between IVDD and fat infiltration of PSMs, thus providing a one-stop search handbook for future studies. As a result, four mechanisms of IVDD leading to fat infiltration of PSMs and three mechanisms of fat infiltration in PSMs causing IVDD are thoroughly analyzed and summarized. The typical reseaches are tabulated and evaluated from four aspects, i.e., methods, conclusions, benefits, and drawbacks. We find that IVDD and fat infiltration of PSMs is a vicious cycle that can promote the occurrence and development of each other, ultimately leading to LBP and disability. Finally, eight perspectives are proposed for future in-depth research.
Collapse
Affiliation(s)
- Jiaqiu Jiang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yilong Huang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo He
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Liu J, Zhang J, Zhao X, Pan C, Liu Y, Luo S, Miao X, Wu T, Cheng X. Identification of CXCL16 as a diagnostic biomarker for obesity and intervertebral disc degeneration based on machine learning. Sci Rep 2023; 13:21316. [PMID: 38044363 PMCID: PMC10694141 DOI: 10.1038/s41598-023-48580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of neck and back pain. Obesity has been established as a significant risk factor for IDD. The objective of this study was to explore the molecular mechanisms affecting obesity and IDD by identifying the overlapping crosstalk genes associated with both conditions. The identification of specific diagnostic biomarkers for obesity and IDD would have crucial clinical implications. We obtained gene expression profiles of GSE70362 and GSE152991 from the Gene Expression Omnibus, followed by their analysis using two machine learning algorithms, least absolute shrinkage and selection operator and support vector machine-recursive feature elimination, which enabled the identification of C-X-C motif chemokine ligand 16 (CXCL16) as a shared diagnostic biomarker for obesity and IDD. Additionally, gene set variant analysis was used to explore the potential mechanism of CXCL16 in these diseases, and CXCL16 was found to affect IDD through its effect on fatty acid metabolism. Furthermore, correlation analysis between CXCL16 and immune cells demonstrated that CXCL16 negatively regulated T helper 17 cells to promote IDD. Finally, independent external datasets (GSE124272 and GSE59034) were used to verify the diagnostic efficacy of CXCL16. In conclusion, a common diagnostic biomarker for obesity and IDD, CXCL16, was identified using a machine learning algorithm. This study provides a new perspective for exploring the possible mechanisms by which obesity impacts the development of IDD.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yuchi Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Shengzhong Luo
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Yi J, Zhou Q, Huang J, Niu S, Ji G, Zheng T. Lipid metabolism disorder promotes the development of intervertebral disc degeneration. Biomed Pharmacother 2023; 166:115401. [PMID: 37651799 DOI: 10.1016/j.biopha.2023.115401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Lipid metabolism is a complex process that maintains the normal physiological function of the human body. The disorder of lipid metabolism has been implicated in various human diseases, such as cardiovascular diseases and bone diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease in the musculoskeletal system, is characterized by high morbidity, high treatment cost, and chronic recurrence. Lipid metabolism disorder may promote the pathogenesis of IDD, and the potential mechanisms are complex. Leptin, resistin, nicotinamide phosphoribosyltransferase (NAMPT), fatty acids, and cholesterol may promote the pathogenesis of IDD, while lipocalin, adiponectin, and progranulin (PGRN) exhibit protective activity against IDD development. Lipid metabolism disorder contributes to extracellular matrix (ECM) degradation, cell apoptosis, and cartilage calcification in the intervertebral discs (IVDs) by activating inflammatory responses, endoplasmic reticulum (ER) stress, and oxidative stress and inhibiting autophagy. Several lines of agents have been developed to target lipid metabolism disorder. Inhibition of lipid metabolism disorder may be an effective strategy for the therapeutic management of IDD. However, an in-depth understanding of the molecular mechanism of lipid metabolism disorder in promoting IDD development is still needed.
Collapse
Affiliation(s)
- Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shuo Niu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Höflsauer S, Bonnaire FC, Bamberger CE, Danalache M, Feierabend M, Hofmann UK. Changes in stiffness of the extracellular and pericellular matrix in the anulus fibrosus of lumbar intervertebral discs over the course of degeneration. Front Bioeng Biotechnol 2022; 10:1006615. [PMID: 36619385 PMCID: PMC9816436 DOI: 10.3389/fbioe.2022.1006615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local chondrocyte spatial organisation. Using atomic force microscopy, we measured the Young's modulus of the local ECM and PCM in human and bovine disc samples using the spatial chondrocyte patterns as an image-based biomarker. By measuring tissue from 31 patients and six bovine samples, we found a significant difference in the elastic moduli (E) of the PCM in clusters when compared to the healthy patterns single cells (p = 0.029), pairs (p = 0.016), and string-formations (p = 0.010). The ECM/PCM ratio ranged from 0.62-0.89. Interestingly, in the bovine IVD, the ECM/PCM ratio of the E significantly varied (p = 0.002) depending on the tissue origin. Overall the reduced E in clusters demonstrates that cluster formation is not only a morphological phenomenon describing disc degeneration, but it marks a compromised biomechanical functioning. Immunohistochemical analyses indicate that collagen type III degradation might be involved. This study is the first to describe and quantify the differences in the E of the ECM in relation to the PCM in the anulus fibrosus of the IVD by means of atomic force microscopy on the basis of spatial chondrocyte organisation.
Collapse
Affiliation(s)
- Sebastian Höflsauer
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Charlotte Emma Bamberger
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Martina Feierabend
- Institute for Bioinformatics and Medical Informatics, Faculty of Science of the University of Tübingen, Tübingen, Germany,*Correspondence: Martina Feierabend,
| | - Ulf Krister Hofmann
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Department of Orthopaedic Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
5
|
Chen HH, Hsu HT, Liao MH, Teng MS. Effects of Sex and Obesity on LEP Variant and Leptin Level Associations in Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms232012275. [PMID: 36293132 PMCID: PMC9603873 DOI: 10.3390/ijms232012275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IVDD), for which obesity and genetics are known risk factors, is a chronic process that alters the structure and function of the intervertebral discs (IVD). Circulating leptin is positively correlated with body weight and is often measured to elucidate the pathogenesis of IVD degeneration. In this study, we examined the associations of LEP single nucleotide polymorphisms (SNPs) genetic and environmental effects with IVDD. A total of 303 Taiwanese patients with IVDD (mean age, 58.6 ± 12.7 years) undergoing cervical discectomy for neck pain or lumbar discectomy for back pain were enrolled. Commercially available enzyme-linked immunosorbent assay (ELISA) kits measured the circulating plasma leptin levels. TaqMan SNP genotyping assays genotyped the LEP SNPs rs2167270 and rs7799039. Leptin levels were significantly increased in obese individuals (p < 0.001) and non-obese or obese women (p < 0.001). In the dominant model, recoded minor alleles of rs2167270 and rs7799039 were associated with higher leptin levels in all individuals (p = 0.011, p = 0.012). Further, the association between these LEP SNPs and leptin levels was significant only in obese women (p = 0.025 and p = 0.008, respectively). There was an interaction effect between sex and obesity, particularly among obese women (interaction p = 0.04 and 0.02, respectively). Our findings demonstrate that these SNPs have sex-specific associations with BMI in IVDD patients, and that obesity and sex, particularly among obese women, may modify the LEP transcription effect.
Collapse
Affiliation(s)
- Hsing-Hong Chen
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
| | - Mei-Hsiu Liao
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5790); Fax: +886-2-6628-9009
| |
Collapse
|
6
|
Huang X, Chen C, Chen Y, Xu J, Liu L. Omentin-1 alleviate interleukin-1β(IL-1β)-induced nucleus pulposus cells senescence. Bioengineered 2022; 13:13849-13859. [PMID: 35707832 PMCID: PMC9275897 DOI: 10.1080/21655979.2022.2084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
One of the main causes of low back pain (LBP) and degenerative musculoskeletal disorders is intervertebral disc degeneration (IVDD). Inflammation-associated senescence of Human nucleus pulposus cells (HNPCs) plays an essential function in the disease progression of IVDD. Omentin-1 is an adipokine that has been recently reported to have anti-inflammatory potential. In our research, IL-1β was used to simulate the inflammatory environment in the IVDD. We investigated in vitro the effects of Omentin-1 on HNPCs, including the components of senescence, cell cycle and extracellular matrix (ECM) synthesis. The results showed that the addition of Omentin-1 improved IL-1β-induced senescence in HNPCs. G1 phase cell cycle arrest and reduced ECM synthesis in HNPCs. Furthermore, we demonstrated that the effect of Omentin-1 in reducing senescence of HNPCs is dependent on SIRT1. These findings suggest that Omentin-1 plays an important function in protecting HNPCs against senescence and has the potential for IVDD gene target therapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedic Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Changhong Chen
- Department of Orthopaedic Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yaofei Chen
- Department of Orthopaedic Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Lin Liu
- Department of Orthopaedic Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
7
|
A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol 2022; 18:47-60. [PMID: 34845360 DOI: 10.1038/s41584-021-00713-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Intervertebral disc (IVD) degeneration is a common finding on spine imaging that increases in prevalence with age. IVD degeneration is a frequent cause of low back pain, which is a leading cause of disability. The process of IVD degeneration consists of gradual structural change accompanied by severe alterations in metabolic homeostasis. IVD degeneration, like osteoarthritis, is a common comorbidity in patients with obesity and type 2 diabetes mellitus, two metabolic syndrome pathological conditions in which adipokines are important promoters of low-grade inflammation, extracellular matrix degradation and fibrosis. Impairment in white adipose tissue function, due to the abnormal fat accumulation in obesity, is characterized by increased production of specific pro-inflammatory proteins such as adipokines by white adipose tissue and of cytokines such as TNF by immune cells of the stromal compartment. Investigations into the immunometabolic alterations in obesity and type 2 diabetes mellitus and their interconnections with IVD degeneration provide insights into how adipokines might affect the pathogenesis of IVD degeneration and impair IVD function and repair. Toll-like receptor-mediated signalling has also been implicated as a promoter of the inflammatory response in the metabolic alterations associated with IVD and is thus thought to have a role in IVD degeneration. Pathological starvation, obesity and adipokine dysregulation can result in immunometabolic alterations, which could be targeted for the development of new therapeutics.
Collapse
|
8
|
Cui H, Du X, Liu C, Chen S, Cui H, Liu H, Wang J, Zheng Z. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte 2021; 10:201-215. [PMID: 33853482 PMCID: PMC8057091 DOI: 10.1080/21623945.2021.1910155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visfatin reportedly induces the expression of proinflammatory cytokines. Severe grades of intervertebral disc disease (IVDD) exhibit higher expression of visfatin than mild ones. However, the direct relationship between visfatin and IVDD remains to be elucidated. This study aimed to clarify whether stimulation of visfatin in IVDD is mediated by IL-6. To investigate the role of visfatin in IVDD, a rat model of anterior disc puncture was established by injecting visfatin or PBS using a 27-gauge needle. Results revealed an obvious aggravation of the histological morphology of IVDD in the visfatin group. On treating human NP cellswith visfatin, the levels of collagenII and aggrecan decreased and those of matrix metallopeptidase 3 and IL-6 gradually increased. A rapid increase in ERK, JNK, and p38 phosphorylation was also noted after visfatin treatment. Compared to those treated with visfatin alone, NP cells pretreated with ERK1/2, JNK, and p38 inhibitors or siRNA targeting p38, ERK, and JNK exhibited a significant suppression of IL-6. Our data represent the first evidence that visfatin promotes IL-6 expression in NP cells via the JNK/ERK/p38-MAPK signalling pathways. Further, our findings suggest epidural fat and visfatin as potential therapeutic targets for controlling IVDD-associated inflammation.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xianfa Du
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shunlun Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haowen Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Pain Research Center, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
9
|
Wang Z, Wu H, Chen Y, Chen H, Wang X, Yuan W. Lactobacillus paracasei S16 Alleviates Lumbar Disc Herniation by Modulating Inflammation Response and Gut Microbiota. Front Nutr 2021; 8:701644. [PMID: 34447774 PMCID: PMC8382687 DOI: 10.3389/fnut.2021.701644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Lumbar disc herniation (LDH) is a common cause for low back pain. In this study, we aimed to explore the effects of a specific Lactobacillus paracasei (L. paracasei), L. paracasei S16, on the symptoms of LDH using a mouse model of LDH. The results showed that L. paracasei S16 treatment improved the behavior, increased the cell proliferation, and decreased the apoptosis in LDH mice. Moreover, L. paracasei S16 treatment alleviated the aberrant inflammation response in the LDH mice, which is characterized by the decreased anti-inflammatory cytokines, increased pro-inflammatory cytokines, and decreased percentage of Th1 and Th2 cells and Th17/Treg ratio. 16S rRNA sequencing results showed that the LDH mice treated with L. paracasei S16 have higher relative abundance of Lachnospiraceae and Ruminococcaceae and lower abundance of Lactobacillaceae than mice in the LDH group. Additionally, the serum metabolites involved in the linoleic acid metabolism, alanine. aspartate, and glutamate, glycerophospholipid, and TCA cycle were significantly decreased and the metabolite involved in purine metabolism was significantly increased after the L. paracasei S16 treatment in the LDH mice. These results showed that administration of L. paracasei S16 can improve inflammation response, alter gut microbiota, and modulate serum metabolomics in a mouse model of LDH.
Collapse
Affiliation(s)
- Zhanchao Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huiqiao Wu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huajiang Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinwei Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Chen R, Yang F, Wang Y, Wang X, Fan X. Pharmacological inhibition of mTORC1 activity protects against inflammation-induced apoptosis of nucleus pulposus cells. ACTA ACUST UNITED AC 2021; 54:e10185. [PMID: 33729389 PMCID: PMC7959168 DOI: 10.1590/1414-431x202010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Lumbar disc herniation is a common disease characterized by the degeneration of intervertebral discs (IVDs), accompanied by imbalance of metabolic and inflammatory homeostasis. Current studies establish that IVD degeneration is induced by increased apoptosis of nucleus pulposus (NP) cells. However, the underlying mechanisms of NP cell survival/apoptosis are not well elucidated. Here, we reveal a novel mechanism by which mTORC1 signaling controls NP cell survival through regulating metabolic homeostasis. We demonstrated that hyperactivated mTORC1 activity induced by inflammatory cytokines engenders the apoptosis of NP cells, whereas pharmacological inhibition of mTORC1 activity promotes NP cell survival. Using an integrative approach spanning metabolomics and biochemical approaches, we showed that mTORC1 activation enhanced glucose metabolism and lactic acid production, and therefore caused NP cell apoptosis. Our study identified mTORC1 in NP cells as a novel target for IVD degeneration, and provided potential strategies for clinical intervention of lumbar disc herniation.
Collapse
Affiliation(s)
- Rigao Chen
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinling Wang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Fan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Al-Zoubi MS, Otoum O, Alsmadi M, Muhaidat R, Albdour A, Mohaidat Z, Abu Alarjah MI, Al-Zoubi RM, Al-Batayneh KM. Elevated BMI is considerably associated with IDD rather than polymorphic variations in interleukin-1 and vitamin D receptor genes: A case-control study. J Med Biochem 2021; 40:129-137. [PMID: 33776562 PMCID: PMC7982293 DOI: 10.5937/jomb0-26367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/01/2020] [Indexed: 11/06/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a musculoskeletal disorder and one of the major causes of low back pain leading to the disability with high economic repercussions worldwide. This study applied the candidategene approach to investigate the potential association of selected polymorphisms with IDD development in a Jordanian population. Methods MRI-diagnosed IDD patients (N=155) and asymptomatic individuals as a control group (N=55). Whole blood samples for four variants in three genes (rs1800587 of IL-1α, rs1143634 of IL-1β and rs2228570 and rs731236 of VDR) were genotyped by PCR-RFLP. Results There was no significant association between the studied polymorphisms or their allelic frequency and the occurrence of IDD. However, the cohort presented a significant reverse association between rs1143634 C > T of the IL-1β gene and the occurrence of IDD (p<0.0001). In addition, BMI showed a significant association with the IDD in the study population (p<0.005). The current study was conceptualized based on the candidate-gene approach to investigate the role of inflammatory and metabolic genes, IL and VDR, respectively, in the occurrence of IDD. Conclusions While the data presented in this study showed that polymorphisms in these genes were not associated with IDD of the cohort investigated, elevated BMI, as a measure of obesity, is strongly associated with IDD. Investigating potential roles of other structural genes, such as col-IX and aggrecan (ACAN), in IDD and considering a GWAS to elucidate a genomically global look at the basis of IDD development would be of considerable impact on our understanding of IDD.
Collapse
Affiliation(s)
- Mazhar Salim Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Osama Otoum
- Yarmouk University, Faculty of Science, Department of Biological Sciences, Irbid, Jordan
| | - Mohammed Alsmadi
- King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Riyadh Muhaidat
- Yarmouk University, Faculty of Science, Department of Biological Sciences, Irbid, Jordan
| | - Ahmed Albdour
- King Hussein Medical Centre, Royal Medical Services, Amman, Jordan
| | - Ziyad Mohaidat
- Jordan University of Science and Technology, Faculty of Medicine, Irbid, Jordan
| | - Manal Issam Abu Alarjah
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Raed M Al-Zoubi
- Jordan University of Science & Technology, Department of Chemistry, Irbid, Jordan
| | - Khalid M Al-Batayneh
- Yarmouk University, Faculty of Science, Department of Biological Sciences, Irbid, Jordan
| |
Collapse
|
12
|
Intervertebral Disc and Adipokine Leptin-Loves Me, Loves Me Not. Int J Mol Sci 2020; 22:ijms22010375. [PMID: 33396484 PMCID: PMC7795371 DOI: 10.3390/ijms22010375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
Leptin—the most famous adipose tissue-secreted hormone—in the human body is mostly observed in a negative connotation, as the hormone level increases with the accumulation of body fat. Nowadays, fatness is becoming another normal body shape. Fatness is burdened with numerous illnesses—including low back pain and degenerative disease of lumbar intervertebral disc (IVD). IVD degeneration and IVD inflammation are two indiscerptible phenomena. Irrespective of the underlying pathophysiological background (trauma, obesity, nutrient deficiency), the inflammation is crucial in triggering IVD degeneration. Leptin is usually depicted as a proinflammatory adipokine. Many studies aimed at explaining the role of leptin in IVD degeneration, though mostly in in vitro and on animal models, confirmed leptin’s “bad reputation”. However, several studies found that leptin might have protective role in IVD metabolism. This review examines the current literature on the metabolic role of different depots of adipose tissue, with focus on leptin, in pathogenesis of IVD degeneration.
Collapse
|
13
|
Hu S, Shao Z, Zhang C, Chen L, Mamun AA, Zhao N, Cai J, Lou Z, Wang X, Chen J. Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. Aging (Albany NY) 2020; 12:11732-11753. [PMID: 32526705 PMCID: PMC7343479 DOI: 10.18632/aging.103339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Now days, obesity is a major risk factor for intervertebral disc degeneration (IDD). However, adipokine, such as chemerin is a novel cytokine, which is secreted by adipose tissue, and are thought to be played major roles in various degenerative diseases. Obese individuals are known to have high concentration of serum chemerin. Our purpose was to study whether chemerin acts as a biochemical relationship between obesity, and IDD. In this study, we found that the expression level of chemerin was significantly increased in the human degenerated nucleus pulposus (NP) tissues, and had higher level in the obese people than the normal people. Chemerin significantly increased the inflammatory mediator level, contributing to ECM degradation in nucleus pulposus cells (NPCs). Furthermore, chemerin overexpression aggravates the puncture-induced IVDD progression in rats, while knockdown CMKLR1 reverses IVDD progression. Chemerin activates the NF-kB signaling pathway via its receptors CMKLR1, and TLR4 to release inflammatory mediators, which cause matrix degradation, and cell aging. These findings generally provide novel evidence supporting the causative role of obesity in IDD, which is essentially important to literally develop novel preventative or generally therapeutic treatment in the disc degenerative disorders.
Collapse
Affiliation(s)
- Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning Zhao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinfeng Cai
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Zhao Y, Qiu C, Wang W, Peng J, Cheng X, Shangguan Y, Xu M, Li J, Qu R, Chen X, Jia S, Luo D, Liu L, Li P, Guo F, Vasilev K, Liu L, Hayball J, Dong S, Pan X, Li Y, Guo L, Cheng L, Li W. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics 2020; 10:7015-7033. [PMID: 32550919 PMCID: PMC7295059 DOI: 10.7150/thno.45359] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Intervertebral disc (IVD) degeneration is a common degenerative disease that can lead to collapse or herniation of the nucleus pulposus (NP) and result in radiculopathy in patients. Methods: NP tissue and cells were isolated from patients and mice, and the expression profile of cortistatin (CST) was analysed. In addition, ageing of the NP was compared between 6-month-old WT and CST-knockout (CST-/-) mice. Furthermore, NP tissues and cells were cultured to validate the role of CST in TNF-α-induced IVD degeneration. Moreover, in vitro and in vivo experiments were performed to identify the potential role of CST in mitochondrial dysfunction, mitochondrial ROS generation and activation of the NLRP3 inflammasome during IVD degeneration. In addition, NF-κB signalling pathway activity was tested in NP tissues and cells from CST-/- mice. Results: The expression of CST in NP cells was diminished in the ageing- and TNF-α-induced IVD degeneration process. In addition, compared with WT mice, aged CST-/- mice displayed accelerated metabolic imbalance and enhanced apoptosis, and these mice showed a disorganized NP tissue structure. Moreover, TNF-α-mediated catabolism and apoptosis were alleviated by exogenous CST treatment. Furthermore, CST inhibited mitochondrial dysfunction in NP cells through IVD degeneration and suppressed activation of the NLRP3 inflammasome. In vitro and ex vivo experiments indicated that increased NF-κB pathway activity might have been associated with the IVD degeneration observed in CST-/- mice. Conclusion: This study suggests the role of CST in mitochondrial ROS and activation of the NLRP3 inflammasome in IVD degeneration, which might shed light on therapeutic targets for IVD degeneration.
Collapse
|
15
|
Natelson DM, Lai A, Krishnamoorthy D, Hoy RC, Iatridis JC, Illien-Jünger S. Leptin signaling and the intervertebral disc: Sex dependent effects of leptin receptor deficiency and Western diet on the spine in a type 2 diabetes mouse model. PLoS One 2020; 15:e0227527. [PMID: 32374776 PMCID: PMC7202633 DOI: 10.1371/journal.pone.0227527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes and obesity are associated with back pain in juveniles and adults and are implicated in intervertebral disc (IVD) degeneration. Hypercaloric Western diets are associated with both obesity and type 2 diabetes. The objective of this study was to determine if obesity and type 2 diabetes result in spinal pathology in a sex-specific manner using in vivo diabetic and dietary mouse models. Leptin is an appetite-regulating hormone, and its deficiency leads to polyphagia, resulting in obesity and diabetes. Leptin is also associated with IVD degeneration, and increased expression of its receptor was identified in degenerated IVDs. We used young, leptin receptor deficient (Db/Db) mice to mimic the effect of diet and diabetes on adolescents. Db/Db and Control mice were fed either Western or Control diets, and were sacrificed at 3 months of age. Db/Db mice were obese, while only female mice developed diabetes. Female Db/Db mice displayed altered IVD morphology, with increased intradiscal notochordal band area, suggesting delayed IVD cell proliferation and differentiation, rather than IVD degeneration. Motion segments from Db/Db mice exhibited increased failure risk with decreased torsional failure strength. Db/Db mice also had inferior bone quality, which was most prominent in females. We conclude that obesity and diabetes due to impaired leptin signaling contribute to pathological changes in vertebrae, as well as an immature IVD phenotype, particularly of females, suggesting a sex-dependent role of leptin in the spine.
Collapse
Affiliation(s)
- Devorah M. Natelson
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alon Lai
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Divya Krishnamoorthy
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Robert C. Hoy
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - James C. Iatridis
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Svenja Illien-Jünger
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
16
|
巩 朝, 赵 光, 向 高, 刘 开, 张 海. [Research progress on the role of adipokines in intervertebral disc degeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:399-403. [PMID: 32174090 PMCID: PMC8171637 DOI: 10.7507/1002-1892.201906004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/16/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the research progress of the role and mechanism of adipokines in intervertebral disc degeneration (IVDD) in recent years. METHODS The domestic and foreign literature related to adipokines in the process of IVDD was extensively reviewed. The types and functions of adipokines, the role and mechanism in the process of IVDD, and the application prospects of intervertebral disc biotherapy were reviewed. RESULTS As a kind of bioactive substance secreted by adipose tissue, adipokine plays an important role in bone and joint diseases, metabolic diseases, and breast cancer. During IVDD, most adipokines can activate multiple signaling pathways by binding to autoreceptors, cause the proliferation and apoptosis of cells and proinflammatory and anti-inflammatory factors parasecretions in the intervertebral disc, and lead to imbalance of intradiscal metabolism and establishment of the initial inflammatory environment, and finally cause the IVDD. CONCLUSION Adipokines, as a biologically active substance with metabolic and immunomodulatory functions, play important roles in the occurrence, development, and biological treatment of IVDD.
Collapse
Affiliation(s)
- 朝阳 巩
- 兰州大学第二医院骨科 甘肃省骨关节疾病研究重点实验室(兰州 730000)Department of Orthopedics, Lanzhou University Second Hospital, Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou Gansu, 730000, P.R.China
| | - 光海 赵
- 兰州大学第二医院骨科 甘肃省骨关节疾病研究重点实验室(兰州 730000)Department of Orthopedics, Lanzhou University Second Hospital, Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou Gansu, 730000, P.R.China
| | - 高 向
- 兰州大学第二医院骨科 甘肃省骨关节疾病研究重点实验室(兰州 730000)Department of Orthopedics, Lanzhou University Second Hospital, Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou Gansu, 730000, P.R.China
| | - 开鑫 刘
- 兰州大学第二医院骨科 甘肃省骨关节疾病研究重点实验室(兰州 730000)Department of Orthopedics, Lanzhou University Second Hospital, Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou Gansu, 730000, P.R.China
| | - 海鸿 张
- 兰州大学第二医院骨科 甘肃省骨关节疾病研究重点实验室(兰州 730000)Department of Orthopedics, Lanzhou University Second Hospital, Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou Gansu, 730000, P.R.China
| |
Collapse
|
17
|
Li X, Liu X, Wang Y, Cao F, Chen Z, Hu Z, Yu B, Feng H, Ba Z, Liu T, Li H, Jiang B, Huang Y, Li L, Wu D. Intervertebral disc degeneration in mice with type II diabetes induced by leptin receptor deficiency. BMC Musculoskelet Disord 2020; 21:77. [PMID: 32024487 PMCID: PMC7003448 DOI: 10.1186/s12891-020-3091-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background The leptin receptor-deficient knockout (db/db) mouse is a well-established model for studying type II diabetes mellitus (T2DM). T2DM is an important risk factor of intervertebral disc degeneration (IVDD). Although the relationship between type I diabetes and IVDD has been reported by many studies, few studies have reported the effects of T2DM on IVDD in db/db mice model. Methods Mice were separated into 3 groups: wild-type (WT), db/db, and IGF-1 groups (leptin receptor-deficient mice were treated with insulin-like growth factor-1 (IGF-1). To observe the effects of T2DM and glucose-lowering treatment on IVDD, IGF-1 injection was used. The IVD phenotype was detected by H&E and safranin O fast green staining among db/db, WT and IGF-1 mice. The levels of blood glucose and weight in mice were also recorded. The changes in the mass of the trabecular bone in the fifth lumbar vertebra were documented by micro-computed tomography (micro-CT). Tunnel assays were used to detect cell apoptosis in each group. Results The weight of the mice were 27.68 ± 1.6 g in WT group, which was less than 57.56 ± 4.8 g in db/db group, and 52.17 ± 3.7 g in IGF-1 injected group (P < 0.05). The blood glucose levels were also significantly higher in the db/db mice group. T2DM caused by leptin receptor knockout showed an association with significantly decreased vertebral bone mass and increased IVDD when compared to WT mice. The db/db mice induced by leptin deletion showed a higher percentage of MMP3 expression as well as cell apoptosis in IVDD mice than WT mice (P < 0.05), while IGF-1 treatment reversed this situation (P < 0.05). Conclusions T2DM induced by leptin receptor knockout led to IVDD by increasing the levels of MMP3 and promoting cell apoptosis. IGF-1 treatment partially rescue the phenotype of IVDD induced by leptin receptor knockout.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaoming Liu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Yiru Wang
- Department of endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fuming Cao
- Department of endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoxiong Chen
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhouyang Hu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Bin Yu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hang Feng
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Tao Liu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Haoxi Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Bei Jiang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Lijun Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Desheng Wu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
18
|
Gao B, Yin J, Xu X, Fan J, Wang D, Zheng C, Lu W, Cheng P, Sun J, Wang D, Li L, Zhou BO, Yang L, Luo Z. Leptin receptor-expressing cells represent a distinct subpopulation of notochord-derived cells and are essential for disc homoeostasis. J Orthop Translat 2019; 21:91-99. [PMID: 32110508 PMCID: PMC7033302 DOI: 10.1016/j.jot.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Background/objective Intervertebral disc degeneration (IDD) remains to be an intractable clinical challenge. Although IDD is characterised by loss of notochordal cells (NCs) and dysfunction of nucleus pulposus (NP) cells, little is known about the origin, heterogeneity, fate and maintenance of NCs and NP cells, which further stunts the therapeutic development. Thus, effective tools to spatially and temporally trace specific cell lineage and clarify cell functions in intervertebral disc (IVD) development and homoeostasis are urgently required. Methods In this study, NP specimens were obtained from 20 patients with degenerative disc disease or scoliosis. LepR-Cre mice was crossed with R26R-Tdtomato mice to generate LepR-Cre; R26R-Tdtomato mice, which enabled fate-mapping of NPs from embryo stage to late adult. LMNA G609G/G609G mice was used to determine the effect of premature-aging induced IDD on LepR NPs. X-ray imaging was used to measure lumber disc height of mice. Results Here, we provide the first evidence that the leptin receptor (LepR) is preferentially expressed in NCs at embryonic stages and notochord-derived cells in the postnatal IVD. By using R26R-Tdtomato fluorescent reporter mice, we systematically analysed the specificity of activity and targeting efficiency of leptin receptor-Cre (LepR-Cre) in IVD tissues from the embryonic stage E15.5 to 6-month-old LepR-Cre; Rosa26-Tdtomato (R26R-Tdtomato) mice. Specifically, LepR-Cre targets a distinct subpopulation of notochord-derived cells closely associated with disc homoeostasis. The percentage of LepR-expressing NP cells markedly decreases in the postnatal mouse IVD and, more importantly, in the human IVD with the progression of IDD. Moreover, both spine instability-induced and premature ageing-induced IDD mouse models display the phenotype of IDD with decreased percentage of LepR-expressing NP cells. These findings uncover a potential role of LepR-expressing notochord-derived cells in disc homoeostasis and open the gate for therapeutically targeting the NP cell subpopulation. Conclusion In conclusion, our data prove LepR-Cre mice useful for mapping the fate of specific subpopulations of IVD cells and uncovering the underlying mechanisms of IDD. The translational potential of this article The translation potential of article is that we first identified LepR as a candidate marker of subpopulation of nucleus pulposus (NP) cells and provided LepR as a potential target for the treatment of intervertebral disc degeneration (IDD), which have certain profound significance.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinhua Yin
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710032, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengzhen Cheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jicheng Sun
- Department of Aerospace Medical Equipment, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lu Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710032, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, 710032, China
| |
Collapse
|
19
|
Ruiz-Fernández C, Francisco V, Pino J, Mera A, González-Gay MA, Gómez R, Lago F, Gualillo O. Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link? Int J Mol Sci 2019; 20:ijms20082030. [PMID: 31027158 PMCID: PMC6515363 DOI: 10.3390/ijms20082030] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a chronic, expensive, and high-incidence musculoskeletal disorder largely responsible for back/neck and radicular-related pain. It is characterized by progressive degenerative damage of intervertebral tissues along with metabolic alterations of all other vertebral tissues. Despite the high socio-economic impact of IVDD, little is known about its etiology and pathogenesis, and currently, no cure or specific treatments are available. Recent evidence indicates that besides abnormal and excessive mechanical loading, inflammation may be a crucial player in IVDD. Furthermore, obese adipose tissue is characterized by a persistent and low-grade production of systemic pro-inflammatory factors. In this context, chronic low-grade inflammation associated with obesity has been hypothesized as an important contributor to IVDD through different, but still unknown, mechanisms. Adipokines, such as leptin, produced prevalently by white adipose tissues, but also by other cells of mesenchymal origin, particularly cartilage and bone, are cytokine-like hormones involved in important physiologic and pathophysiological processes. Although initially restricted to metabolic functions, adipokines are now viewed as key players of the innate and adaptative immune system and active modulators of the acute and chronic inflammatory response. The goal of this review is to summarize the most recent findings regarding the interrelationships among inflammation, obesity and the pathogenic mechanisms involved in the IVDD, with particular emphasis on the contribution of adipokines and their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, 39008 Santander, Spain.
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group. SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Tu C, He J, Wu B, Wang W, Li Z. An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 2019; 113:1-12. [DOI: 10.1016/j.cyto.2018.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/12/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
|
21
|
Leptin and the intervertebral disc: a biochemical link exists between obesity, intervertebral disc degeneration and low back pain-an in vitro study in a bovine model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 28:214-223. [PMID: 30324498 DOI: 10.1007/s00586-018-5778-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study was to identify the effects of leptin upon the intervertebral disc (IVD) and to determine whether these responses are potentiated within an environment of existing degeneration. Obesity is a significant risk factor for low back pain (LBP) and IVD degeneration. Adipokines, such as leptin, are novel cytokines produced primarily by adipose tissue and have been implicated in degradative and inflammatory processes. Obese individuals are known to have higher concentrations of serum leptin, and IVD cells express leptin receptors. We hypothesise that adipokines, such as leptin, mediate a biochemical link between obesity, IVD degeneration and LBP. METHODS The bovine intervertebral disc was used as a model system to investigate the biochemical effects of obesity, mediated by leptin, upon the intervertebral disc. Freshly isolated cells, embedded in 3D alginate beads, were subsequently cultured under varying concentrations of leptin, alone or together with the pro-inflammatory cytokines TNF-α, IL-1β or IL-6. Responses in relation to production of nitric oxide, lactate, glycosaminoglycans and expression of anabolic and catabolic genes were analysed. RESULTS Leptin influenced the cellular metabolism leading particularly to greater production of proteases and NO. Addition of leptin to an inflammatory environment demonstrated a marked deleterious synergistic effect with greater production of NO, MMPs and potentiation of pro-inflammatory cytokine production. CONCLUSIONS Leptin can initiate processes involved in IVD degeneration. This effect is potentiated in an environment of existing degeneration and inflammation. Hence, a biochemical mechanism may underlie the link between obesity, intervertebral disc degeneration and low back pain. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
22
|
Chen J, Zhu Q, Liu G, Yang X, Zhao S, Chen W, Wu Z, Wu N, Qiu G. Fat Mass and Obesity-Associated (FTO) Gene Polymorphisms Are Associated with Risk of Intervertebral Disc Degeneration in Chinese Han Population: A Case Control Study. Med Sci Monit 2018; 24:5598-5609. [PMID: 30099472 PMCID: PMC6103244 DOI: 10.12659/msm.911101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate whether the fat mass and obesity-associated (FTO) gene polymorphisms are associated with risk of intervertebral disc degeneration (IDD) in a largest Chinese Han population. MATERIAL AND METHODS There were 502 IDD patients and 497 healthy controls enrolled in this study. Nineteen single nucleotide polymorphisms (SNPs) in the FTO gene were tested using the Sequenom MassARRAY platform. The Hardy-Weinberg equilibrium test, followed by allelic, genotypic, haplotypic association, and SNP interaction analyses were used for SNP evaluation. The Genotype-Tissue Expression (GTEx) database was used to evaluate expression quantitative trait loci (eQTL) value of polymorphism. Spearman rank correlation and logistic regression analyses were used for assessing the internal relation between genotypic changes and the risk of IDD. RESULTS Seventeen SNPs survived the Hardy-Weinberg equilibrium test. Allelic analysis showed that allele T of SNP rs1121980 was a risk allele. Haplotypic and SNP interaction analyses suggested that 2 haplotypes and 5 SNP combinations were associated with the predisposition of IDD respectively. GTEx database revealed that the SNP rs1121980 might interfere with the expression of the FTO gene in the muscle-skeletal system. Through clinical statistics analysis, the different genotypes of rs1121980 can present different disease severity of IDD. CONCLUSIONS Our study suggests that rs1121980 can become a biomarker for the screening and prognosis of IDD. The 2 haplotype blocks and 5 SNP-SNP combinations that we discovered might be indicative of the onset of IDD. Therefore, our study might serve as evidence for future IDD molecular diagnosis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xinzhuang Yang
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland).,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| |
Collapse
|
23
|
The Role of Adipokines in Intervertebral Disc Degeneration. Med Sci (Basel) 2018; 6:medsci6020034. [PMID: 29695079 PMCID: PMC6024372 DOI: 10.3390/medsci6020034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is an important cause of low back pain. Recent evidence suggests that in addition to abnormal and excessive mechanical loading, inflammation may be a key driver for both IDD and low back pain. Obesity, a known mechanical risk factor of IDD, is now increasingly being recognized as a systemic inflammatory state with adipokines being postulated as likely inflammatory mediators. The aim of this review was to summarize the current literature regarding the inflammatory role of adipokines in the pathophysiology of IDD. A systematic literature search was performed using the OVID Medline, EMBASE and PubMed databases to identify all studies assessing IDD and adipokines. Fifteen studies were included in the present review. Leptin was the most commonly assessed adipokine. Ten of 15 studies were conducted in humans; three in rats and two in both humans and rats. Studies focused on a variety of topics ranging from receptor identification, pathway analysis, genetic associations, and proteonomics. Currently, data from both human and animal experiments demonstrate significant effects of leptin and adiponectin on the internal milieu of intervertebral discs. However, future studies are needed to determine the molecular pathway relationships between adipokines in the pathophysiology of IDD as avenues for future therapeutic targets.
Collapse
|
24
|
Brady SRE, Mousa A, Naderpoor N, de Courten MPJ, Cicuttini F, de Courten B. Adipsin Concentrations Are Associated with Back Pain Independently of Adiposity in Overweight or Obese Adults. Front Physiol 2018; 9:93. [PMID: 29483883 PMCID: PMC5816231 DOI: 10.3389/fphys.2018.00093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Objective: To compare cardiometabolic risk factors including cytokine and adipokine concentrations between individuals with and without back pain. Methods: In 62 overweight/obese adults (BMI ≥ 25 kg/m2; 23F/39M), we collected data on: self-reported back pain; anthropometry [BMI, waist circumference, body composition (dual energy X-ray absorptiometry-DEXA)]; metabolic parameters [fasting glucose; insulin sensitivity (hyperinsulinaemic-euglycaemic clamps)]; cardiovascular parameters (blood pressure, lipids); serum inflammation markers [high-sensitivity C-reactive protein (hsCRP; immunoturbidimetric-assay), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-10 (multiplex-assay)]; and adipokines [leptin, adipsin, resistin, and adiponectin (multiplex-assay)]. Results: Participants who reported having back pain in the past month (n = 24; 39%) had higher BMI (mean ± SD = 33.8 ± 6.3 vs. 30.2 ± 4.1 kg/m2, p = 0.008), fat-mass (39.9 ± 12.3 vs. 33.9 ± 9.8%, p = 0.04), and waist circumference (109.6 ± 16.8 vs. 101.0 ± 9.3 cm, p = 0.01) compared to those without back pain (n = 38; 61%). No differences were observed in cardiometabolic parameters, inflammatory markers, or adiponectin or resistin concentrations. Those reporting back pain had higher adipsin concentrations compared to those without back pain [median (IQR) = 744 (472-2,804) vs. 721 (515-867) ng/ml, p = 0.03], with a trend for higher leptin [5.5 (1.5-24.3) vs. 2.3 (1.5-6.7) ng/ml, p = 0.05], both of which persisted after adjustment for age and sex. Adipsin remained associated with back pain independently of adiposity (BMI, waist, fat-mass, or total %body fat; all p ≤ 0.03). Conclusions: Greater obesity, and higher adipsin and leptin concentrations were observed in those who reported back pain in the past month compared to those without back pain, and adipsin was associated with back pain independently of adiposity. Larger studies are needed to determine if adipsin could be a novel therapeutic target for prevention and/or treatment of back pain.
Collapse
Affiliation(s)
- Sharmayne R. E. Brady
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| | | | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
26
|
Delgado-López PD, Castilla-Díez JM. [Impact of obesity in the pathophysiology of degenerative disk disease and in the morbidity and outcome of lumbar spine surgery]. Neurocirugia (Astur) 2017; 29:93-102. [PMID: 28750870 DOI: 10.1016/j.neucir.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Obesity (BMI>30Kg/m2) is a pandemic with severe medical and financial implications. There is growing evidence that relates certain metabolic processes within the adipose tissue, preferentially abdominal fat, with a low-intensity chronic inflammatory state mediated by adipokines and other substances that favor disk disease and chronic low back pain. Obesity greatly conditions both the preoperative evaluation and the spinal surgical technique itself. Some meta-analyses have confirmed an increase of complications following lumbar spine surgery (mainly infections and venous thrombosis) in obese subjects. However, functional outcomes after lumbar spine surgery are favorable although inferior to the non-obese population, acknowledging that obese patients present with worse baseline function levels and the prognosis of conservatively treated obese cohorts is much worse. The impact of preoperative weight loss in spine surgery has not been prospectively studied in these patients.
Collapse
|
27
|
Ouyang ZH, Wang WJ, Yan YG, Wang B, Lv GH. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget 2017; 8:57870-57881. [PMID: 28915718 PMCID: PMC5593690 DOI: 10.18632/oncotarget.18628] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the primary cause of low back pain, a severe public health problem worldwide. Current therapy for IDD aims to alleviate the symptoms and does not target the underlying pathological alternations within the disc. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway protects against IDD, which is attributed to increase of ECM content, prevention of cell apoptosis, facilitation of cell proliferation, induction or prevention of cell autophagy, alleviation of oxidative damage, and adaptation of hypoxic microenvironment. In the current review, we summarize recent progression on activation and negative regulation of the PI3K/Akt signaling pathway, and highlight its impact on IDD. Targeting this pathway could become an attractive therapeutic strategy for IDD in the near future.
Collapse
Affiliation(s)
- Zhi-Hua Ouyang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China.,Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bing Wang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Jackson KL, Devine JG. The Effects of Obesity on Spine Surgery: A Systematic Review of the Literature. Global Spine J 2016; 6:394-400. [PMID: 27190743 PMCID: PMC4868585 DOI: 10.1055/s-0035-1570750] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Study Design Literature review. Objective The aim of this literature review is to examine the effects of obesity on postoperative complications and functional outcomes after spine surgery. Methods A review of the relevant literature examining the effects of obesity and spine surgery was conducted using PubMed, Google Scholar, and Cochrane databases. Results Obesity contributes to disk degeneration and low back pain and potentially increases the risk of developing operative pathology. Obese patients undergoing spine surgery have a higher risk of developing postoperative complications, particularly surgical site infection and venous thromboembolism. Though functional outcomes in this population may not mirror the general population, the treatment effect associated with surgery is at least equivalent if not better in obese individuals. This reduction is primarily due to worse outcomes associated with nonoperative treatment in the obese population. Conclusion Obese individuals represent a unique patient population with respect to nonoperative treatment, postoperative complication rates, and functional outcomes. However, given the equivalent or greater treatment effect of surgery, this comorbidity should not prohibit obese patients from undergoing operative intervention. Future investigations in this area should attempt to develop strategies to minimize complications and improve outcomes in obese individuals and also examine the role of controlled weight loss preoperatively to mitigate these risks.
Collapse
Affiliation(s)
- Keith L. Jackson
- Department of Orthopaedics and Rehabilitation, Womack Army Medical Center, Fort Bragg, North Carolina, United States,Address for correspondence Keith L. Jackson II, MD Staff Spine Surgeon, Department of Orthopaedics and RehabilitationWomack Army Medical Center, 2817 Reilly Road, Fort Bragg, NC 28310United States
| | - John G. Devine
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia, United States
| |
Collapse
|
29
|
Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Oka H, Minamide A, Ishimoto Y, Nagata K, Kagotani R, Tanaka S, Kawaguchi H, Nakamura K, Akune T, Yoshida M. Metabolic Syndrome Components Are Associated with Intervertebral Disc Degeneration: The Wakayama Spine Study. PLoS One 2016; 11:e0147565. [PMID: 26840834 PMCID: PMC4739731 DOI: 10.1371/journal.pone.0147565] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of the present study was to examine the associations between metabolic syndrome (MS) components, such as overweight (OW), hypertension (HT), dyslipidemia (DL), and impaired glucose tolerance (IGT), and intervertebral disc degeneration (DD). DESIGN The present study included 928 participants (308 men, 620 women) of the 1,011 participants in the Wakayama Spine Study. DD on magnetic resonance imaging was classified according to the Pfirrmann system. OW, HT, DL, and IGT were assessed using the criteria of the Examination Committee of Criteria for MS in Japan. RESULTS Multivariable logistic regression analysis revealed that OW was significantly associated with cervical, thoracic, and lumbar DD (cervical: odds ratio [OR], 1.28; 95% confidence interval [CI], 0.92-1.78; thoracic: OR, 1.75; 95% CI, 1.24-2.51; lumbar: OR, 1.87; 95% CI, 1.06-3.48). HT and IGT were significantly associated with thoracic DD (HT: OR, 1.54; 95% CI, 1.09-2.18; IGT: OR, 1.65; 95% CI, 1.12-2.48). Furthermore, subjects with 1 or more MS components had a higher OR for thoracic DD compared with those without MS components (vs. no component; 1 component: OR, 1.58; 95% CI, 1.03-2.42; 2 components: OR, 2.60; 95% CI, 1.62-4.20; ≥3 components: OR, 2.62; 95% CI, 1.42-5.00). CONCLUSION MS components were significantly associated with thoracic DD. Furthermore, accumulation of MS components significantly increased the OR for thoracic DD. These findings support the need for further studies of the effects of metabolic abnormality on DD.
Collapse
Affiliation(s)
- Masatoshi Teraguchi
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Noriko Yoshimura
- Department of Joint Disease Research, 22 Century Medical & Research Center, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Hiroshi Hashizume
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Shigeyuki Muraki
- Department of Joint Disease Research, 22 Century Medical & Research Center, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for Musculoskeletal Pain, 22nd Century Medical and Research Center, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Akihito Minamide
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Yuyu Ishimoto
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Keiji Nagata
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Ryohei Kagotani
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| | - Sakae Tanaka
- Department of Orthopaedic surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Hiroshi Kawaguchi
- Japan Community Healthcare Organization Tokyo Shinjuku Medical Center, 5–1 Tsukudo-chome, Shinjuku-ku, Tokyo, 162–8543, Japan
| | - Kozo Nakamura
- Rehabilitation Services Bureau, National Rehabilitation Center for Persons with Disabilities, 1 Namiki 4-chome, Tokorozawa City, Saitama, 359–8555, Japan
| | - Toru Akune
- Rehabilitation Services Bureau, National Rehabilitation Center for Persons with Disabilities, 1 Namiki 4-chome, Tokorozawa City, Saitama, 359–8555, Japan
| | - Munehito Yoshida
- Department of Orthopaedic surgery, Wakayama Medical University, 811–1 Kimiidera, Wakayama, 641–8509, Japan
| |
Collapse
|
30
|
Kadow T, Sowa G, Vo N, Kang JD. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res 2015; 473:1903-12. [PMID: 25024024 PMCID: PMC4418989 DOI: 10.1007/s11999-014-3774-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intervertebral disc degeneration is a common condition with few inexpensive and effective modes of treatment, but current investigations seek to clarify the underlying process and offer new treatment options. It will be important for physicians to understand the molecular basis for the pathology and how it translates to developing clinical treatments for disc degeneration. In this review, we sought to summarize for clinicians what is known about the molecular processes that causes disc degeneration. RESULTS A healthy disc requires maintenance of a homeostatic environment, and when disrupted, a catabolic cascade of events occurs on a molecular level resulting in upregulation of proinflammatory cytokines, increased degradative enzymes, and a loss of matrix proteins. This promotes degenerative changes and occasional neurovascular ingrowth potentially contributing to the development of pain. Research demonstrates the molecular changes underlying the harmful effects of aging, smoking, and obesity seen clinically while demonstrating the variable influence of exercise. Finally, oral medications, supplements, biologic treatments, gene therapy, and stem cells hold great promise but require cautious application until their safety profiles are better outlined. CONCLUSIONS Intervertebral disc degeneration occurs where there is a loss of homeostatic balance with a predominantly catabolic metabolic profile. A basic understanding of the molecular changes occurring in the degenerating disc is important for practicing clinicians because it may help them to inform patients to alter lifestyle choices, identify beneficial or harmful supplements, or offer new biologic, genetic, or stem cell therapies.
Collapse
Affiliation(s)
- Tiffany Kadow
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Gwendolyn Sowa
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Nam Vo
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - James D. Kang
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
31
|
Miao D, Zhang L. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways. Mol Med Rep 2015; 12:1761-8. [PMID: 25892402 PMCID: PMC4464091 DOI: 10.3892/mmr.2015.3646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
Obesity has been demonstrated to be involved in the progress of intervertebral disc degeneration (IDD). However, the associated mechanisms remain to be elucidated. The purpose the present study was to examine the effect of leptin on the expression of degeneration-associated genes in rat nucleus pulposus (NP) cells, and determine the possible mechanism. Normal NP cells, obtained from Sprague Dawley rats, were identified using immunocytochemistry for the expression of collagen II and CA125, and treated with leptin and/or interleukin (IL)-β. Subsequently, the mRNA expression levels of matrix metalloproteinase (MMP)-1, MMP-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, ADAMTS-5, aggrecan and COL2A1 were detected by reverse transcription-quantitative polymerase chain reaction (RT-q-PCR). Alcian staining and immunocytochemistry were used to examine the expression levels of proteoglycan and collagen II. The pathway activation was investigated using western blotting, and inhibitors of the pathways were used to reveal the effect of these pathways on the NP cells. The results of the RT-qPCR demonstrated that leptin alone upregulated the mRNA expression levels of MMP-1, MMP-13, ADAMTS-4, ADAMTS-5 and COL2A1. Synergy of leptin and IL-β was found in the increased expression levels of MMP-1, MMP-3 and ADAMTS-5. The leptin-treated NP cells exhibited decreased expression of collagen II. The mitrogen-activated protein kinase (MAPK) pathway (c-Jun-N-terminal kinase, phosphorylated extracellular signal-regulated kinase and p38), phosphatidylinositol 3-kinase (PI3K)/Akt pathway and Janus kinase (JAK)2/signal transducer and activator of transcription 3 pathway were all activated by leptin, however, inhibitors of all the pathways, with the exception of the PI3K/Akt pathway, reversed the expression levels of MMP-1 and MMP-13. These results suggested that leptin promoted catabolic metabolism in the rat NP cells via the MAPK and JAK2/STAT3 pathways, which may be the mechanism mediating the association between obesity and IDD.
Collapse
Affiliation(s)
- Daoyi Miao
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Lingzhou Zhang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| |
Collapse
|
32
|
Li B, Su YJ, Zheng XF, Yang YH, Jiang SD, Jiang LS. Evidence for an Important Role of Smad-7 in Intervertebral Disc Degeneration. J Interferon Cytokine Res 2015; 35:569-79. [PMID: 25811233 DOI: 10.1089/jir.2014.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Smad-7 inhibited the transforming growth factor beta (TGF-β)-induced proteoglycan synthesis in chondrocytes and completely antagonized the effect of TGF-β on the proliferation of the cells. The aim of this study was to evaluate the contribution of Smad-7 to the pathophysiology of disc degeneration by determining the expression of Smad-7 in the degenerative intervertebral discs and its effect on the extracellular matrix metabolism of disc cells. Instability of the lumbar spine produced by imbalanced dynamic and static forces was used to induce intervertebral disc degeneration in rats. The expression of Smad-7 was assessed by the immunohistochemical method. Disc cell apoptosis was detected by in situ TUNEL staining. The effect of Smad-7 overexpression on the matrix metabolism of disc cells was analyzed in vitro by real-time polymerase chain reaction (PCR) and Western blotting. Finally, intradiscal injection of the Smad-7 overexpression lentivirus was performed to evaluate the in vivo effect of Smad-7 on disc degeneration. Radiographic and histomorphological examinations showed that lumbar disc degeneration became more and more severe in the rats with induced instability. Immunohistochemical observation demonstrated increasing protein expression of Smad-7 in the degenerative discs. A significantly positive correlation was found between Smad-7 expression and the degree of disc degeneration and between Smad-7 expression and disc cell apoptosis. Overexpression of Smad-7 in disc cells inhibited the expression of TGF-β1, collagen type-I, collagen type-II, and aggrecan and promoted the expression of MMP-13, but did not change the expression of ADAMTS-5. The in vivo findings illustrated that intradiscal injection of lentivirus vector with Smad-7 overexpression accelerated the progress of disc degeneration. In conclusion, Smad-7 was highly expressed in the degenerative discs. Overexpression of Smad-7 weakened the protective role of TGF-β and accelerated the progress of disc degeneration. Interference on Smad-7 might be a potential therapeutic method for the prevention and treatment of degenerative disc diseases.
Collapse
Affiliation(s)
- Bo Li
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yi-Jun Su
- 2 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , Washington, District of Columbia
| | - Xin-Feng Zheng
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yue-Hua Yang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Sheng-Dan Jiang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Lei-Sheng Jiang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
33
|
Pillai S, Littlejohn G. Metabolic factors in diffuse idiopathic skeletal hyperostosis - a review of clinical data. Open Rheumatol J 2014; 8:116-28. [PMID: 25598855 PMCID: PMC4293739 DOI: 10.2174/1874312901408010116] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/21/2014] [Accepted: 11/08/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES We aimed to review the literature linking metabolic factors to Diffuse Idiopathic Skeletal Hyperostosis (DISH), in order to assess associations between growth factors and DISH. METHOD We identified studies in our personal database and PubMed using the following keywords in various combinations: "diffuse idiopathic skeletal hyperostosis", "ankylosing hyperostosis", "Forestier's disease", "diabetes", "insulin", "obesity", "metabolic", "growth factors", "adipokines", "glucose tolerance" and "chondrocytes". RESULTS We were not able to do a systematic review due to variability in methodology of studies. We found positive associations between obesity (especially abdominal obesity), Type 2 diabetes mellitus, glucose intolerance, hyperinsulinemia and DISH. CONCLUSION Current research indicates that certain metabolic factors associate with DISH. More precise studies deriving from these findings on these and other newly identified bone-growth factors are needed.
Collapse
Affiliation(s)
- Sruti Pillai
- Departments of Rheumatology and Medicine, Monash Health and Monash University, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | - Geoffrey Littlejohn
- Departments of Rheumatology and Medicine, Monash Health and Monash University, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| |
Collapse
|
34
|
Gu SX, Li X, Hamilton JL, Chee A, Kc R, Chen D, An HS, Kim JS, Oh CD, Ma YZ, van Wijnen AJ, Im HJ. MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc. Gene 2014; 555:80-7. [PMID: 25311550 DOI: 10.1016/j.gene.2014.10.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 02/08/2023]
Abstract
Because miR-146a expression in articular chondrocytes is associated with osteoarthritis (OA), we assessed whether miR-146a is linked to cartilage degeneration in the spine. Monolayer cultures of nucleus pulposus (NP) cells from the intervertebral discs (IVD) of bovine tails were transfected with a miR-146a mimic. To provoke inflammatory responses and catabolic extracellular matrix (ECM) degradation, cells were co-treated with interleukin-1 (IL-1). Transfection of miR-146a decreases IL-1 induced mRNA levels of inflammatory genes and catabolic proteases in NP cells based on quantitative real-time reverse transcriptase PCR (qRT-PCR) analysis. Similarly, miR146a suppresses IL-1 induced protein levels of matrix metalloproteinases and aggrecanases as revealed by immunoblotting. Disc segments from wild type (WT) and miR-146a knockout (KO) mice were cultured ex vivo in the presence or absence of IL-1 for 3days. Histological and immuno-histochemical (IHC) analyses of disc organ cultures revealed that IL-1 mediates changes in proteoglycan (PG) content and in-situ levels of catabolic proteins (MMP-13 and ADAMTS-5) in the nucleus pulposus of the disc. However, these IL-1 effects are more pronounced in miR-146a KO discs compared to WT discs. For example, absence of miR-146a increases the percentage of MMP-13 and ADAMTS-5 positive cells after treatment with IL-1. Thus, miR-146a appears to protect against IL-1 induced IVD degeneration and inflammation. Stimulation of endogenous miR-146a expression or exogenous delivery of miRNA-146a are viable therapeutic strategies that may decelerate disc degeneration and regain a normal homeostatic balance in extracellular matrix production and turn-over.
Collapse
Affiliation(s)
- Su-Xi Gu
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; Department of Orthopedic Surgery, PLA309 Hospital, Beijing 100091, China
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Howard S An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jae-Sung Kim
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Republic of Korea
| | - Chun-do Oh
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yuan-Zheng Ma
- Department of Orthopedic Surgery, PLA309 Hospital, Beijing 100091, China.
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; Department of Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
35
|
Li Z, Yu X, Liang J, Wu WKK, Yu J, Shen J. Leptin downregulates aggrecan through the p38-ADAMST pathway in human nucleus pulposus cells. PLoS One 2014; 9:e109595. [PMID: 25299465 PMCID: PMC4192299 DOI: 10.1371/journal.pone.0109595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022] Open
Abstract
The mechanistic basis of obesity-associated intervertebral disc degeneration (IDD) is unclear. Aberrant expression of aggrecan and its degrading enzymes ADAMTS-4 and ADAMTS-5 is implicated in the development of IDD. Here, we investigated the effect of leptin, a hormone with increased circulating levels in obesity, on the expression of aggrecan and ADAMTSs in primary human nucleus pulposus (NP) cells. Real-time PCR and Western blots showed that leptin increased the mRNA and protein expression of ADAMTS-4 and ADAMTS-5 and reduced the level of aggrecan in NP cells, accompanied by a prominent induction of p38 phosphorylation. Treatment of NP cells with SB203580 (a p38 inhibitor) abolished the regulation of aggrecan and ADAMTSs by leptin. Knockdown of ADAMTS-4 and ADAMTS-5 by siRNAs also attenuated the degradation of aggrecan in leptin-stimulated NP cells. To conclude, we demonstrated that leptin induces p38 to upregulate ADAMTSs and thereby promoting aggrecan degradation in human NP cells. These results provide a novel mechanistic insight into the molecular pathogenesis of obesity-associated IDD.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing, China
| | - Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Ding W, Zhao C, Cao L, Zhang K, Sun W, Xie Y, Li H, Zhao J. Leptin induces terminal differentiation of rat annulus fibrosus cells via activation of MAPK signaling. Anat Rec (Hoboken) 2014; 296:1806-12. [PMID: 24249395 DOI: 10.1002/ar.22806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022]
Abstract
Both leptin and its receptor are expressed in rat annulus fibrosus (AF) cells. However, little is known about their role and mechanism during disc degeneration. The mitogen activating protein kinase (MAPK) pathway which mediates leptin-induced terminal differentiation of rat AF cells was analyzed using PCR, Western-blot and immunocytochemistry. It was found that leptin-induced AF cells terminal differentiation, which may be attributed to upregulated p38 and ERK1/2 phosphorylation, however, JNK phosphorylation was not observed. Specific inhibitors of p38 or ERK1/2, but not JNK, could inhibit the stimulative activity of leptin on collagen X and MMP-13 protein levels. This study, for the first time, shows that the MAPK pathway, especially p38 and ERK1/2 signaling, plays a distinct role in leptin-induced AF cells terminal differentiation.
Collapse
Affiliation(s)
- Wei Ding
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu WJ, Zhang XK, Zheng XF, Yang YH, Jiang SD, Jiang LS. SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc. Int J Immunopathol Pharmacol 2014; 26:601-9. [PMID: 24067457 DOI: 10.1177/039463201302600304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypoxia-inducible factor-1alpha (HIF-1 alpha) has been reported to have an important role in the metabolism and synthesis of extracellular matrix of the nucleus pulposus cells (NPCs) and was assumed to be involved in the process of intervertebral disc degeneration. The objective of this study was to investigate the role of HIF-1alpha in disc degeneration in vivo using a conditional HIF-1alpha knockout (KO) mouse model. ShhCre transgenic mice were mated with HIF-1 alpha fl/fl mice to generate conditional HIF-1alpha KO mice (HIF-1alpha fl/fl-ShhCre+). Three mice of each genotype (Wide-type and HIF-1alpha KO) at the age of 3 days, 6, and 12 weeks were sacrificed after genotyping. Five lumbar disc samples were harvested from each mouse, with a total of 45 disc samples for each genotype. In situ hybridization and immunohistochemical analysis were used to check the efficacy of HIF-1alpha knockout. Histological grading of the disc degeneration was performed according to the classification system proposed by Boos et al. Picro-sirius red staining, Safranine O/fast green staining and immunohistochemical study were used to evaluate the expression of aggrecan, type-II collagen and vascular endothelial growth factor (VEGF). Histologic analysis revealed more NPC deaths and signs of degeneration in HIF-1alpha KO mice and the degeneration scores of HIF-1alpha KO mice were significantly higher than those of the Wide-type mice at the age of 6 weeks and 12 weeks. There were less expressions of aggrecan, type-II collagen and VEGF in the intervertebral discs of HIF1-alpha KO mice than in those of wild-type mice. Taken together, the results of our study indicated that HIF-1alpha is a pivotal contributor to NPC survival and the homeotasis of extracellular matrix through the HIF-1alpha/VEGF signaling pathway, and plays an important role in the development of disc degeneration.
Collapse
Affiliation(s)
- W J Wu
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
38
|
Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells. Int J Mol Sci 2014; 15:1176-88. [PMID: 24441571 PMCID: PMC3907862 DOI: 10.3390/ijms15011176] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/01/2023] Open
Abstract
Hyperleptinemia is implicated in obesity-associated lumbar disc degeneration. Nevertheless, the effect of leptin on the intracellular signaling of nucleus pulposus cells is not clear. The current study sought to delineate the possible involvement of the RhoA/ROCK pathway in leptin-mediated cytoskeleton reorganization in nucleus pulposus cells. Nucleus pulposus cells isolated from scoliosis patients were treated with 10 ng/mL of leptin. Fluorescent resonance energy transfer analysis was used to determine the activation of RhoA signaling in nucleus pulposus cells. The protein expression of LIMK1 and cofilin-2 were analyzed by western blot analysis. F-actin cytoskeletal reorganization was assessed by rhodamine-conjugated phalloidin immunoprecipitation. Leptin induced F-actin reorganization and stress fiber formation in nucleus pulposus cells, accompanied by localized RhoA activation and phosphorylation of LIMK1 and cofilin. The RhoA inhibitor C3 exoenzyme or the ROCK inhibitor Y-27632 potently attenuated the effects of leptin on F-actin reorganization and stress fiber formation. Both inhibitors also prevented leptin-induced phosphorylation of LIMK1 and cofilin-2. Our study demonstrated that leptin activated the RhoA/ROCK/LIMK/cofilin-2 cascade to induce cytoskeleton reorganization in nucleus pulposus cells. These findings may provide novel insights into the pathogenic mechanism of obesity-associated lumbar disc degeneration.
Collapse
|
39
|
Yu X, Li Z, Shen J, Wu WKK, Liang J, Weng X, Qiu G. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One 2013; 8:e83080. [PMID: 24376640 PMCID: PMC3869743 DOI: 10.1371/journal.pone.0083080] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022] Open
Abstract
Aberrant proliferation of nucleus pulposus cell is implicated in the pathogenesis of intervertebral disc degeneration. Recent findings revealed that microRNAs, a class of small noncoding RNAs, could regulate cell proliferation in many pathological conditions. Here, we showed that miR-10b was dramatically upregulated in degenerative nucleus pulposus tissues when compared with nucleus pulposus tissues isolated from patients with idiopathic scoliosis. Moreover, miR-10b levels were associated with disc degeneration grade and downregulation of HOXD10. In cultured nucleus pulposus cells, miR-10b overexpression stimulated cell proliferation with concomitant translational inhibition of HOXD10 whereas restored expression of HOXD10 reversed the mitogenic effect of miR-10b. MiR-10b-mediated downregulation of HOXD10 led to increased RhoC expression and Akt phosphorylation. Either knockdown of RhoC or inhibition of Akt abolished the effect of miR-10b on nucleus pulposus cell proliferation. Taken together, aberrant miR-10b upregulation in intervertebral disc degeneration could contribute to abnormal nucleus pulposus cell proliferation through derepressing the RhoC-Akt pathway by targeting HOXD10. Our study also underscores the potential of miR-10b and the RhoC-Akt pathway as novel therapeutic targets in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road, Xicheng District, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- * E-mail:
| | - William K. K. Wu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences & Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Berthelot JM, Le Goff B, Maugars Y. Pathogenesis of hyperostosis: A key role for mesenchymatous cells? Joint Bone Spine 2013; 80:592-6. [PMID: 23731645 DOI: 10.1016/j.jbspin.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 01/07/2023]
|
41
|
Samartzis D, Karppinen J, Cheung JPY, Lotz J. Disk degeneration and low back pain: are they fat-related conditions? Global Spine J 2013; 3:133-44. [PMID: 24436864 PMCID: PMC3854598 DOI: 10.1055/s-0033-1350054] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/05/2013] [Indexed: 01/30/2023] Open
Abstract
Low back pain (LBP) is the world's most debilitating condition. Disk degeneration has been regarded as a strong determinant associated with LBP. Overweight and obesity are public health concerns that affect every population worldwide and whose prevalence continues to rise. Studies have indicated strong associations between overweight/obesity and disk degeneration as well as with LBP. This broad narrative review article addresses the various mechanisms that may be involved leading to disk degeneration and/or LBP in the setting of overweight/obesity. In particular, our goal is to raise awareness of the role of fat cells and their involvement via altered metabolism or the release of adipokines as well as other pathways that may lead to the development of disk degeneration and LBP. Understanding the role of fat in this process may aid in the development of novel biological therapies and technologies to halt the progression or regenerate the disk. Moreover, with genetic advancements and the appreciation of genetic epidemiology, a more personalized approach to spine care may have to consider the role of fat in any preventative, therapeutic, and/or prognosis modalities toward the disk and LBP.
Collapse
Affiliation(s)
- Dino Samartzis
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, SAR, China
| | - Jaro Karppinen
- Department of Physical and Rehabilitation Medicine, Institute of Clinical Medicine, University of Oulu, and Medical Research Center Oulu, Oulu, Finland
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, SAR, China
| | - Jeffrey Lotz
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States
| |
Collapse
|
42
|
Li Z, Shen J, Wu WKK, Yu X, Liang J, Qiu G, Liu J. The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells. J Orthop Res 2013; 31:847-57. [PMID: 23335226 PMCID: PMC3664408 DOI: 10.1002/jor.22308] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/12/2012] [Indexed: 02/04/2023]
Abstract
Obesity is an important risk factor for intervertebral disc degeneration and leptin is a biomarker of obesity. However, the expression of leptin receptors has not been determined in disc tissue. It is not known whether leptin has a direct effect on the nucleus pulposus (NP) cells. To determine whether the NP tissues and cells express leptin receptors (OBRa and OBRb) and whether leptin affects the organization and the expression of major cytoskeletal elements in NP cells. Messenger RNA (mRNA) and protein levels of OBRa and OBRb were measured by real-time PCR and Western blot, respectively, in NP tissues and cells. Immunofluorescence and real-time PCR and Western blot were performed to investigate the effect of leptin on cytoskeleton reorganization and expression. Results show that mRNA and proteins of OBRa and OBRb were expressed in all NP tissues and cells, and that OBRb expression was correlated with patients' body weight. Increased expression of β-actin and reorganization of F-actin were evident in leptin-stimulated NP cells. Leptin also induced vimentin expression but had no effect on β-tubulin in NP cells. These findings provide novel evidence supporting the possible involvement of leptin in the pathogenesis of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - William Ka Kei Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, The Chinese University of Hong KongHong Kong, China
| | - Xin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jiaming Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| |
Collapse
|
43
|
Li B, Zheng XF, Ni BB, Yang YH, Jiang SD, Lu H, Jiang LS. Reduced Expression of Insulin-like Growth Factor 1 Receptor Leads to Accelerated Intervertebral Disc Degeneration in Mice. Int J Immunopathol Pharmacol 2013; 26:337-47. [PMID: 23755749 DOI: 10.1177/039463201302600207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) and its receptor (insulin-like growth factor 1 receptor, IGF1R) can regulate the extracellular matrix synthesis and play a crucial role in maintaining the normal functions of the intervertebral disc (IVD). The objective of this study was to investigate whether there would be accelerated IVD degeneration (IVDD) in IGF1R+/- mice. Three IGF1R+/- male mice and three wild-type male mice were sacrificed respectively at 6, 12, and 18 weeks after birth. Six lumbar disc samples were harvested from each mouse, with a total of 54 disc samples taken from each genotype. Histomorphological analysis for the IVD was performed to assess the degenerative extent according to the classification system proposed by Boos et al. Quantitative real-time PCR and semi-quantitative histologic scoring (HScore) for immunohistochemical staining were used to evaluate the expression level of type-II collagen, aggrecan and matrix metallopeptidase 13 (MMP-13). Histomorphological analysis for the discs revealed significantly less amounts of proteoglycan and type-II collagen, and significantly higher total degenerative score in IGF1R+/- mice than in wild-type mice. Real-time PCR showed that the mRNA expressions of type-II collagen and aggrecan in the discs were significantly lower, while MMP-13 was significantly higher in IGF1R+/- mice than in wild-type mice. The results of HScore analysis were similar to those obtained from the quantitative real-time PCR. Taken together, our study indicates that reduced expression of IGF1R would lead to accelerated degeneration of IVD. IGF1R+/- mice could be regarded as a good animal model to study IVD degeneration (IVDD), and studies on the IVD of IGF1R+/- mice could provide further insight into the pathogenesis of IVDD.
Collapse
Affiliation(s)
- B. Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - X-F. Zheng
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - B-B. Ni
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y-H. Yang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - S-D. Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - H. Lu
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L-S. Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Li Z, Shen J, Wu WKK, Yu X, Liang J, Qiu G, Liu J. Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS One 2012; 7:e53176. [PMID: 23300886 PMCID: PMC3534060 DOI: 10.1371/journal.pone.0053176] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- * E-mail:
| | - William Ka Kei Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jiaming Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Hsiao SY, Chen DC, Yang CH, Huang HM, Lu YP, Huang HS, Lin CY, Lin YS. Chemical-Free and Reusable Cellular Analysis. INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION 2012. [DOI: 10.4018/jthi.2012070101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To advance innovative green technology in studying cytology, this study developed an electrochemical impedance spectroscopic (EIS) system with an indium tin oxide (ITO) culture chip module. This paper also demonstrates typical examples of solution effects and B16-F10 cell culture. Results indicate that higher concentrations of saline or albumin had lower impedance. From impedance data, cell proliferation and decline could be elucidated. The impedance soon decreased when Triton X-100 was applied to kill cells. Furthermore, the implemented transparent ITO culture chip module is experiment-friendly to perform optical inspections. The proposed green EIS system which is advantage of chemical-free and reusability can be widely applied to cytology studies in the future.
Collapse
Affiliation(s)
- Sheng-Yi Hsiao
- Instrument Technology Research Center, National Applied Research Laboratories, Taiwan
| | | | | | | | - Yen-Pei Lu
- Instrument Technology Research Center, National Applied Research Laboratories, Taiwan
| | - Hui-Shun Huang
- Instrument Technology Research Center, National Applied Research Laboratories, Taiwan
| | | | | |
Collapse
|
46
|
Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther 2012; 14:R101. [PMID: 22548760 PMCID: PMC3446478 DOI: 10.1186/ar3826] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/15/2012] [Accepted: 05/01/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Although the prevalence of arthritis dramatically increases with age, the great majority of preclinical studies concerning the mechanisms that drive arthritic joint pain have been performed in young animals. One mechanism hypothesized to contribute to arthritic pain is ectopic nerve sprouting; however, neuroplasticity is generally thought to be greater in young versus old nerves. Here we explore whether sensory and sympathetic nerve fibers can undergo a significant ectopic nerve remodeling in the painful arthritic knee joint of geriatric mice. Methods Vehicle (saline) or complete Freund's adjuvant (CFA) was injected into the knee joint of 27- to 29-month-old female mice. Pain behaviors, macrophage infiltration, neovascularization, and the sprouting of sensory and sympathetic nerve fibers were then assessed 28 days later, when significant knee-joint pain was present. Knee joints were processed for immunohistochemistry by using antibodies raised against CD68 (monocytes/macrophages), PECAM (endothelial cells), calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kDa (NF200; sensory nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), and growth-associated protein 43 (GAP43; nerve fibers undergoing sprouting). Results At 4 weeks after initial injection, CFA-injected mice displayed robust pain-related behaviors (which included flinching, guarding, impaired limb use, and reduced weight bearing), whereas animals injected with vehicle alone displayed no significant pain-related behaviors. Similarly, in the CFA-injected knee joint, but not in the vehicle-injected knee joint, a remarkable increase was noted in the number of CD68+ macrophages, density of PECAM+ blood vessels, and density and formation of neuroma-like structures by CGRP+, NF200+, and TH+ nerve fibers in the synovium and periosteum. Conclusions Sensory and sympathetic nerve fibers that innervate the aged knee joint clearly maintain the capacity for robust nerve sprouting and formation of neuroma-like structures after inflammation/injury. Understanding the factors that drive this neuroplasticity, whether this pathologic reorganization of nerve fibers contributes to chronic joint pain, and how the phenotype of sensory and sympathetic nerves changes with age may provide pharmacologic insight and targets for better controlling aging-related joint pain.
Collapse
Affiliation(s)
- Juan M Jimenez-Andrade
- Department of Pharmacology, University of Arizona, 1501 N, Campbell Avenue, Tucson, AZ 85724, USA
| | | |
Collapse
|
47
|
Li XF, Wang SJ, Jiang LS, Dai LY. Gender- and region-specific variations of estrogen receptor α and β expression in the growth plate of spine and limb during development and adulthood. Histochem Cell Biol 2011; 137:79-95. [PMID: 22057437 DOI: 10.1007/s00418-011-0877-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 11/25/2022]
Abstract
Although estrogen action is indispensable for normal bone growth in both genders, the roles of estrogen receptors (ERs) in mediating bone growth are not fully understood. The effects of ER inactivation on bone growth are sex and age dependent, and may differ between the axial and appendicular regions. In this study, the spatial and temporal expression of ERα and β in the tibial and spinal growth plates of the female and male rats during postnatal development was examined to explore the possible mechanisms. The level of mRNA was examined and compared with quantitative real-time PCR. The spatial location was determined by immunohistochemical analysis. The 1-, 4-, 7-, 12- and 16-week age stages correspond to early life, puberty and early adulthood after puberty, respectively. Gender- and region-specific differences in ERα and β expression were shown in the growth plates. Mainly nuclear staining of ERα and β immunoreactivity was demonstrated in the spinal and tibial growth plate chondrocytes for both genders. Moreover, our study indicated significant effect of gender on temporal ERα and β expression and of region on temporal ERα/ERβ expression ratio. However, spatial differences of region-related ERα and β expression were not observed. Gender-related spatial changes were detected only at 16 weeks of both spine and limb growth plates. ERα and β immunoreactivity was detected in the resting, proliferative and prehypertrophic chondrocytes in the early life stage and during puberty. After puberty, ERα expression was mainly located in the late proliferative and hypertrophic chondrocytes in female, whereas the expression still extended from the resting to hypertrophic chondrocytes in males. Gender- and region-specific expression patterns of ERα and β gene might be one possible reason for differences in sex- and region-related body growth phenotypes. Gender, age and region differences should be taken into consideration when the roles of ERs in the growth plate are investigated.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, 200092 Shanghai, China
| | | | | | | |
Collapse
|
48
|
Unglaub F, Wolf MB, Kroeber MW, Dragu A, Schwarz S, Mittlmeier T, Kloeters O, Horch RE. Expression of leptin, leptin receptor, and connective tissue growth factor in degenerative disk lesions in the wrist. Arthroscopy 2011; 27:755-60. [PMID: 21550759 DOI: 10.1016/j.arthro.2011.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to identify whether leptin and connective tissue growth factor (CTGF) occur in the degenerative fibrocartilage disk and whether cartilage cells express leptin receptors. METHODS The study included 23 patients diagnosed with degenerative articular disk tears of the triangular fibrocartilage (TFC) (Palmer type 2C). Patients were divided into 2 groups based on ulna length: 1 group consisted of patients with an ulna-positive variance (group A), and the other group included patients with ulna-negative or -neutral variance (group B). After arthroscopic debridement of the TFC, histologic sections of biopsy specimens were prepared. The biopsy specimens were immunohistochemically analyzed, and the quantity of leptin-, CTGF-, and leptin receptor-positive cells was assessed. RESULTS Cells positive for leptin, leptin receptor, and CTGF were found. The number of cells positive for leptin was significantly increased in specimens of patients with an ulna-negative variance (group B). In contrast, no significant difference was found for leptin receptor and CTGF in biopsy specimens of patients with ulna-positive or ulna-negative/neutral variance. The inner, middle, and outer zones of the disk do not express significantly different quantities of marker-positive cells. CONCLUSIONS Degenerative fibrocartilage disk tissue cells exhibit leptin receptors and are exposed to the markers leptin and CTGF, providing evidence of a local paracrine system and regenerative processes. Cells of disks from patients with an ulna-neutral/negative length express significantly higher numbers of leptin-positive cells. LEVEL OF EVIDENCE Level II, diagnostic study.
Collapse
Affiliation(s)
- Frank Unglaub
- Department of Plastic and Hand Surgery, University of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao CQ, Zhang YH, Jiang SD, Li H, Jiang LS, Dai LY. ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture. J Orthop Res 2011; 29:718-25. [PMID: 21437951 DOI: 10.1002/jor.21285] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 09/21/2010] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are known to be involved in IVD degeneration by hydrolyzing the extracellular matrix (ECM), especially the collagens. The degradation of proteoglycans, which is another main ECM component in the IVD, however, has not been extensively investigated. This study aimed to determine the expression of ADAMTS-5 in human herniated intervertebral disc (IVD) tissues and to investigate whether interleukin-1β (IL-1β)-induced expression of ADAMTS-5 is mediated by nitric oxide (NO). Forty-five herniated IVDs were harvested and immunostained to determine the distribution and type of ADAMTS-5 expressing cells. Rat NP cells maintained in alginate beads were treated with IL-1β, accumulation of NO was detected by Griess reaction, the expression of ADAMTS-5 and inducible nitric oxide synthase (iNOS) was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR), the content of proteoglycans in alginate beads was visualized by alcian blue staining, and the effect of aminoguanidine on the changes in alginate beads induced by IL-1β treatment were also examined. Immunohistochemical results from 45 herniated discs showed that ADAMTS-5-positive cells are commonly seen in cell clusters, that the percentage of ADAMTS-5-positive cells was higher in uncontained herniated discs than in contained ones, and that the percentage of ADAMTS-5-positive cells correlated with the age of the patients. IL-1β treatment resulted in increased accumulation of NO, increased expression of ADAMTS-5 and iNOS, whereas the accumulation of proteoglycan in alginate beads decreased. Aminoguanidine significantly reversed the changes in alginate beads induced by IL-1β treatment. We thus suggested that ADAMTS-5 is probably involved in the process of IVD degeneration, and that IL-1β-induced expression of ADAMTS-5 is mediated by NO.
Collapse
Affiliation(s)
- Chang-Qing Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, 200092 Shanghai, China
| | | | | | | | | | | |
Collapse
|
50
|
Li XF, Yan J, Jiang LS, Dai LY. Age-related variations of leptin receptor expression in the growth plate of spine and limb: gender- and region-specific changes. Histochem Cell Biol 2011; 135:487-97. [PMID: 21452040 DOI: 10.1007/s00418-011-0805-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 01/17/2023]
Abstract
Leptin is a potent growth-stimulating factor of bone. The effects of leptin on bone growth differ significantly between axial and appendicular regions. Gender differences of leptin function have also been suggested in normal pubertal development. To explore the mechanisms underlying these effects, we investigated the spatial and temporal expressions of the active form of the leptin receptor (Ob-Rb) in the tibial and spinal growth plates of the female and male rats during postnatal development. The 1-, 4-, 7-, 12- and 16-week age stages are representative for early life, puberty and early adulthood after puberty, respectively. Quantitative real-time PCR was used for Ob-Rb mRNA examination and comparison. The spatial location of Ob-Rb was determined by immunohistochemical analysis. There were gender- and region-specific differences in Ob-Rb mRNA expression in the growth plate. Mainly cytoplasm staining of Ob-Rb immunoreactivity was observed in the spinal and tibial growth plate chondrocytes of both genders. Spatial differences of region- and gender-related Ob-Rb expression were not observed. Ob-Rb immunoreactivity was detected in the resting, proliferative and prehypertrophic chondrocytes in early life stage and during puberty. After puberty, staining was mainly located in the late proliferative and hypertrophic chondrocytes. The results of Ob-Rb HSCORE analysis were similar to those obtained from quantitative real-time PCR. Our study indicated direct effects on the chondrocytes of the growth plate in different development stages. The region-specific expression patterns of Ob-Rb gene might be one possible reason for contrasting phenotypes in limb and spine. Different Ob-Rb expression patterns might partly contribute to age- and gender- related differences in trabecular bone mass.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
| | | | | | | |
Collapse
|