1
|
Smith MW, Ith A, Carragee EJ, Cheng I, Alamin TF, Golish SR, Mitsunaga K, Scuderi GJ, Smuck M. Does the presence of the fibronectin-aggrecan complex predict outcomes from lumbar discectomy for disc herniation? Spine J 2019; 19:e28-e33. [PMID: 24239034 DOI: 10.1016/j.spinee.2013.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/10/2013] [Accepted: 06/20/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Protein biomarkers associated with lumbar disc disease have been studied as diagnostic indicators and therapeutic targets. Recently, a cartilage degradation product, the fibronectin-aggrecan complex (FAC) identified in the epidural space, has been shown to predict response to lumbar epidural steroid injection in patients with radiculopathy from herniated nucleus pulposus (HNP). PURPOSE Determine the ability of FAC to predict response to microdiscectomy for patients with radiculopathy due to lumbar disc herniation STUDY DESIGN/SETTING: Single-center prospective consecutive cohort study. PATIENT SAMPLE Patients with radiculopathy from HNP with concordant symptoms to MRI who underwent microdiscectomy. OUTCOMES MEASURES Oswestry disability index (ODI) and visual analog scores (VAS) were noted at baseline and at 3-month follow-up. Primary outcome of clinical improvement was defined as patients with both a decrease in VAS of at least 3 points and ODI >20 points. METHODS Intraoperative sampling was done via lavage of the excised fragment by ELISA for presence of FAC. Funding for the ELISA was provided by Cytonics, Inc. RESULTS Seventy-five patients had full complement of data and were included in this analysis. At 3-month follow-up, 57 (76%) patents were "better." There was a statistically significant association of the presence of FAC and clinical improvement (p=.017) with an 85% positive predictive value. Receiver-operating-characteristic (ROC) curve plotting association of FAC and clinical improvement demonstrates an area under the curve (AUC) of 0.66±0.08 (p=.037). Subset analysis of those with weakness on physical examination (n=48) plotting the association of FAC and improvement shows AUC on ROC of 0.81±0.067 (p=.002). CONCLUSIONS Patients who are "FAC+" are more likely to demonstrate clinical improvement following microdiscectomy. The data suggest that the inflammatory milieu plays a significant role regarding improvement in patients undergoing discectomy for radiculopathy in lumbar HNP, even in those with preoperative weakness. The FAC represents a potential target for treatment in HNP.
Collapse
Affiliation(s)
- Micah W Smith
- Orthopaedics Northeast, 5050 N. Clinton St. Fort Wayne, IN 46825, USA.
| | - Agnes Ith
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Eugene J Carragee
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Ivan Cheng
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Todd F Alamin
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - S Raymond Golish
- Department of Orthopedics, Peace Health Oregon St. John- Orthopedics, 1615 Delaware St, Longview, WA 98632, USA
| | - Kyle Mitsunaga
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Gaetano J Scuderi
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| | - Matthew Smuck
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St, Redwood City, CA 94063, USA
| |
Collapse
|
2
|
Du S, Sun Y, Zhao B. Interleukin-6 Serum Levels Are Elevated in Individuals with Degenerative Cervical Myelopathy and Are Correlated with Symptom Severity. Med Sci Monit 2018; 24:7405-7413. [PMID: 30327453 PMCID: PMC6201703 DOI: 10.12659/msm.912868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Few studies have investigated systemic inflammation levels in degenerative cervical myelopathy (DCM). This study evaluated the concentration of inflammatory cytokines in DCM patients and assessed whether they can predict symptom severity. Material/Methods A total of 40 consecutive DCM patients and 10 healthy volunteers were included in this study. Concentrations of interleukin (IL)-1β, IL-6, interferon-γ, and tumor necrosis factor-α were compared between DCM patients and normal controls. Spearman’s correlation coefficient was used to examine relationships of cytokines with age, body mass index (BMI), symptom duration, and symptom severity. A DCM compression rat model was established to examine the levels of inflammatory cytokines in serum and cerebrospinal fluid (CSF). Results Serum level of IL-6 is significantly higher in DCM patients compared with normal people (0.8±0.5 pg/ml vs. 0.5±0.3 pg/ml, P=0.036). Positive correlations were found between IL-6 levels with BMI (ρ=0.519; P=0.001) and symptom severity (ρ=−0.556, P<0.001). In DCM compression model rats, IL-6 was elevated in CSF (40.5±3.3 vs. 13.2±2.4 pg/ml, P<0.001) and serum (7.1±1.7 vs. 2.9±1.6 pg/ml, P<0.001) samples from rats in the compression operation group compared with the sham operation group. Infusion of IL-6 in rats receiving the sham operation also led to motor function damage and mechanical allodynia threshold decline. Conclusions Serum IL-6 level was elevated in DCM patients and its concentration can predict symptom severity. Local infusion of IL-6 led to myelopathy symptoms in model rats, which suggests that anti-inflammation can effectively treat DCM.
Collapse
Affiliation(s)
- Shengchao Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Yuan Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Bizeng Zhao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
3
|
Hung AL, Lim M, Doshi TL. Targeting cytokines for treatment of neuropathic pain. Scand J Pain 2017; 17:287-293. [PMID: 29229214 DOI: 10.1016/j.sjpain.2017.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropathic pain is a challenging condition often refractory to existing therapies. An increasing number of studies have indicated that the immune system plays a crucial role in the mediation of neuropathic pain. Exploration of the various functions of individual cytokines in neuropathic pain will provide greater insight into the mechanisms of neuropathic pain and suggest potential opportunities to expand the repertoire of treatment options. METHODS A literature review was performed to assess the role of pro-inflammatory and anti-inflammatory cytokines in the development of neuropathic pain. Both direct and indirect therapeutic approaches that target various cytokines for pain were reviewed. The current understanding based on preclinical and clinical studies is summarized. RESULTS AND CONCLUSIONS In both human and animal studies, neuropathic pain has been associated with a pro-inflammatory state. Analgesic therapies involving direct manipulation of various cytokines and indirect methods to alter the balance of the immune system have been explored, although there have been few large-scale clinical trials evaluating the efficacy of immune modulators in the treatment of neuropathic pain. TNF-α is perhaps the widely studied pro-inflammatory cytokine in the context of neuropathic pain, but other pro-inflammatory (IL-1β, IL-6, and IL-17) and anti-inflammatory (IL-4, IL-10, TGF-β) signaling molecules are garnering increased interest. With better appreciation and understanding of the interaction between the immune system and neuropathic pain, novel therapies may be developed to target this condition.
Collapse
Affiliation(s)
- Alice L Hung
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Bowles RD, Karikari IO, VanDerwerken DN, Sinclair MS, Bell RD, Riebe KJ, Huebner JL, Kraus VB, Sempowski GD, Setton LA. In vivo luminescent imaging of NF-κB activity and NF-κB-related serum cytokine levels predict pain sensitivities in a rodent model of peripheral neuropathy. Eur J Pain 2015; 20:365-76. [PMID: 26032161 DOI: 10.1002/ejp.732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Methods for the detection of the temporal and spatial generation of painful symptoms are needed to improve the diagnosis and treatment of painful neuropathies and to aid preclinical screening of molecular therapeutics. METHODS In this study, we utilized in vivo luminescent imaging of NF-κB activity and serum cytokine measures to investigate relationships between the NF-κB regulatory network and the presentation of painful symptoms in a model of neuropathy. RESULTS The chronic constriction injury model led to temporal increases in NF-κB activity that were strongly and non-linearly correlated with the presentation of pain sensitivities (i.e. mechanical allodynia and thermal hyperalgesia). The delivery of NEMO-binding domain peptide reduced pain sensitivities through the inhibition of NF-κB activity in a manner consistent with the demonstrated non-linear relationship. Importantly, the combination of non-invasive measures of NF-κB activity and NF-κB-regulated serum cytokines produced a highly predictive model of both mechanical (R(2) = 0.86) and thermal (R(2) = 0.76) pain centred on the NF-κB regulatory network (NF-κB, IL-6, CXCL1). CONCLUSIONS Using in vivo luminescent imaging of NF-κB activity and serum cytokine measures, this work establishes NF-κB and NF-κB-regulated cytokines as novel multivariate biomarkers of pain-related sensitivity in this model of neuropathy that may be useful for the rapid screening of novel molecular therapeutics.
Collapse
Affiliation(s)
- R D Bowles
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - I O Karikari
- Department of Neurosurgery, Duke University Medical Center, Durham, USA
| | | | - M S Sinclair
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - R D Bell
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - K J Riebe
- Department of Medicine and Human Vaccine Institute, Duke University, Durham, USA
| | - J L Huebner
- Department of Medicine, Division of Rheumatology and the Duke Molecular Physiology Institute, Durham, USA
| | - V B Kraus
- Department of Medicine, Division of Rheumatology and the Duke Molecular Physiology Institute, Durham, USA
| | - G D Sempowski
- Department of Medicine and Human Vaccine Institute, Duke University, Durham, USA
| | - L A Setton
- Department of Biomedical Engineering, Duke University, Durham, USA
| |
Collapse
|
5
|
Moser C, Thiel HJ, Grönemeyer D. [Biotechnological therapies for the treatment of back pain: alternatives to corticosteroids]. DER ORTHOPADE 2013; 42:1054-61. [PMID: 24201832 DOI: 10.1007/s00132-013-2197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In recent years, it is increasingly clear that back pain is not only caused by biomechanical problems. Currently, biologically-based local therapy concepts for the treatment of affected spinal regions as an alternative to the standard treatment with steroids are in development or in early stages of clinical application. The common features of these new therapies are to intervene in the regulation of homeostasis at various key points at the affected region and specifically to suppress or block catabolic influences as well as to provide with anti-inflammatory substances and growth factors. These include on one hand the genetically produced Biologicals such as TNF-α inhibitors and cytokine antagonists and on the other hand therapies with autologous blood preparations (Autologous Conditioned Serum [ACS], and Platelet Rich Plasma formulations [PRP]). This article presents the individual methods, gives an overview of developments and results of various studies and discusses current recommendations.
Collapse
Affiliation(s)
- C Moser
- Grönemeyer Institut für Mikrotherapie; Lehrstuhl für Radiologie und Mikrotherapie, Universität Witten/Herdecke, Universitätsstr. 142, 44799, Bochum, Deutschland,
| | | | | |
Collapse
|
6
|
Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol 2013; 49:536-46. [PMID: 23990376 DOI: 10.1007/s12035-013-8537-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/15/2013] [Indexed: 11/26/2022]
Abstract
There are still no approved treatments for the prevention or of cure of diabetic neuropathy, and only symptomatic pain therapies of variable efficacy are available. Inflammation is a cardinal pathogenic mechanism of diabetic neuropathy. The relationships between inflammation and the development of diabetic neuropathy involve complex molecular networks and processes. Herein, we review the key inflammatory molecules (inflammatory cytokines, adhesion molecules, chemokines) and pathways (nuclear factor kappa B, JUN N-terminal kinase) implicated in the development and progression of diabetic neuropathy. Advances in the understanding of the roles of these key inflammatory molecules and pathways in diabetic neuropathy will facilitate the discovery of the potential of anti-inflammatory approaches for the inhibition of the development of neuropathy. Specifically, many anti-inflammatory drugs significantly inhibit the development of different aspects of diabetic neuropathy in animal models and clinical trials.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China,
| | | |
Collapse
|
7
|
Galloway C, Chattopadhyay M. RETRACTED: Increases in inflammatory mediators in DRG implicate in the pathogenesis of painful neuropathy in Type 2 diabetes. Cytokine 2013; 63:1-5. [PMID: 23664770 DOI: 10.1016/j.cyto.2013.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Image duplication has been observed within Figure 1g-h. The corresponding author has been asked to provide an acceptable explanation for this duplication but has not been able to do so neither have the original source files been supplied.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Cells, Cultured
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Hyperalgesia/complications
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Inflammation/complications
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- NAV1.7 Voltage-Gated Sodium Channel/metabolism
- Rats
- Rats, Zucker
Collapse
Affiliation(s)
- Christina Galloway
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Munmun Chattopadhyay
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Jaumard NV, Welch WC, Winkelstein BA. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng 2011; 133:071010. [PMID: 21823749 DOI: 10.1115/1.4004493] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The facet joint is a crucial anatomic region of the spine owing to its biomechanical role in facilitating articulation of the vertebrae of the spinal column. It is a diarthrodial joint with opposing articular cartilage surfaces that provide a low friction environment and a ligamentous capsule that encloses the joint space. Together with the disc, the bilateral facet joints transfer loads and guide and constrain motions in the spine due to their geometry and mechanical function. Although a great deal of research has focused on defining the biomechanics of the spine and the form and function of the disc, the facet joint has only recently become the focus of experimental, computational and clinical studies. This mechanical behavior ensures the normal health and function of the spine during physiologic loading but can also lead to its dysfunction when the tissues of the facet joint are altered either by injury, degeneration or as a result of surgical modification of the spine. The anatomical, biomechanical and physiological characteristics of the facet joints in the cervical and lumbar spines have become the focus of increased attention recently with the advent of surgical procedures of the spine, such as disc repair and replacement, which may impact facet responses. Accordingly, this review summarizes the relevant anatomy and biomechanics of the facet joint and the individual tissues that comprise it. In order to better understand the physiological implications of tissue loading in all conditions, a review of mechanotransduction pathways in the cartilage, ligament and bone is also presented ranging from the tissue-level scale to cellular modifications. With this context, experimental studies are summarized as they relate to the most common modifications that alter the biomechanics and health of the spine-injury and degeneration. In addition, many computational and finite element models have been developed that enable more-detailed and specific investigations of the facet joint and its tissues than are provided by experimental approaches and also that expand their utility for the field of biomechanics. These are also reviewed to provide a more complete summary of the current knowledge of facet joint mechanics. Overall, the goal of this review is to present a comprehensive review of the breadth and depth of knowledge regarding the mechanical and adaptive responses of the facet joint and its tissues across a variety of relevant size scales.
Collapse
Affiliation(s)
- Nicolas V Jaumard
- Dept. of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
9
|
Acharjee S, Zhu Y, Maingat F, Pardo C, Ballanyi K, Hollenberg MD, Power C. Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. ACTA ACUST UNITED AC 2011; 134:3209-21. [PMID: 22021895 DOI: 10.1093/brain/awr242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Distal sensory polyneuropathy is a frequent complication of lentivirus infections of the peripheral nervous system including both human immunodeficiency virus and feline immunodeficiency virus. Proteinase-activated receptors are G protein-coupled receptors implicated in the pathogenesis of neuroinflammation and neurodegeneration. Proteinase-activated receptor-1 is expressed on different cell types within the nervous system including neurons and glia, but little is known about its role in the pathogenesis of inflammatory peripheral nerve diseases, particularly lentivirus-related distal sensory polyneuropathy. Herein, the expression and functions of proteinase-activated receptor-1 in the peripheral nervous system during human immunodeficiency virus and feline immunodeficiency virus infections were investigated. Proteinase-activated receptor-1 expression was most evident in autopsied dorsal root ganglion neurons from subjects infected with human immunodeficiency virus, compared with the dorsal root ganglia of uninfected subjects. Human immunodeficiency virus or feline immunodeficiency virus infection of cultured human or feline dorsal root ganglia caused upregulation of interleukin-1β and proteinase-activated receptor-1 expression. In the human immunodeficiency virus- or feline immunodeficiency virus-infected dorsal root ganglia, interleukin-1β activation was principally detected in macrophages, while neurons showed induction of proteinase-activated receptor-1. Binding of proteinase-activated receptor-1 by the selective proteinase-activated receptor-1-activating peptide resulted in neurite retraction and soma atrophy in conjunction with cytosolic calcium activation in human dorsal root ganglion neurons. Interleukin-1β exposure to feline or human dorsal root ganglia caused upregulation of proteinase-activated receptor-1 in neurons. Exposure of feline immunodeficiency virus-infected dorsal root ganglia to the interleukin-1 receptor antagonist prevented proteinase-activated receptor-1 induction and neurite retraction. In vivo feline immunodeficiency virus infection was associated with increased proteinase-activated receptor-1 expression on neurons and interleukin-1β induction in macrophages. Moreover, feline immunodeficiency virus infection caused hyposensitivity to mechanical stimulation. These data indicated that activation and upregulation of proteinase-activated receptor-1 by interleukin-1β contributed to dorsal root ganglion neuronal damage during lentivirus infections leading to the development of distal sensory polyneuropathy and might also provide new targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Shaona Acharjee
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | | | | | |
Collapse
|