1
|
Cherif H, Li L, Snuggs J, Li X, Sammon C, Li J, Beckman L, Haglund L, Le Maitre CL. Injectable hydrogel induces regeneration of naturally degenerate human intervertebral discs in a loaded organ culture model. Acta Biomater 2024; 176:201-220. [PMID: 38160855 DOI: 10.1016/j.actbio.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc (IVD). This study investigates the ability of an injectable hydrogel (NPgel), to inhibit catabolic protein expression and promote matrix expression in human nucleus pulposus (NP) cells within a tissue explant culture model isolated from degenerate discs. Furthermore, the injection capacity of NPgel into naturally degenerate whole human discs, effects on mechanical function, and resistance to extrusion during loading were investigated. Finally, the induction of potential regenerative effects in a physiologically loaded human organ culture system was investigated following injection of NPgel with or without bone marrow progenitor cells. Injection of NPgel into naturally degenerate human IVDs increased disc height and Young's modulus, and was retained during extrusion testing. Injection into cadaveric discs followed by culture under physiological loading increased MRI signal intensity, restored natural biomechanical properties and showed evidence of increased anabolism and decreased catabolism with tissue integration observed. These results provide essential proof of concept data supporting the use of NPgel as an injectable therapy for disc regeneration. STATEMENT OF SIGNIFICANCE: Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc. This study investigated the potential regenerative properties of an injectable hydrogel system (NPgel) within human tissue samples. To mimic the human in vivo conditions and the unique IVD niche, a dynamically loaded intact human disc culture system was utilised. NPgel improved the biomechanical properties, increased MRI intensity and decreased degree of degeneration. Furthermore, NPgel induced matrix production and decreased catabolic factors by the native cells of the disc. This manuscript provides evidence for the potential use of NPgel as a regenerative biomaterial for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Hosni Cherif
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Li Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Joseph Snuggs
- Oncology and Metabolism Department, Medical School, & INSIGNEO Institute, University of Sheffield, Sheffield, UK; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Jianyu Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorne Beckman
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Christine L Le Maitre
- Oncology and Metabolism Department, Medical School, & INSIGNEO Institute, University of Sheffield, Sheffield, UK; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
2
|
Lazaro-Pacheco D, Mohseni M, Rudd S, Cooper-White J, Holsgrove TP. The role of biomechanical factors in models of intervertebral disc degeneration across multiple length scales. APL Bioeng 2023; 7:021501. [PMID: 37180733 PMCID: PMC10168717 DOI: 10.1063/5.0137698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Low back pain is the leading cause of disability, producing a substantial socio-economic burden on healthcare systems worldwide. Intervertebral disc (IVD) degeneration is a primary cause of lower back pain, and while regenerative therapies aimed at full functional recovery of the disc have been developed in recent years, no commercially available, approved devices or therapies for the regeneration of the IVD currently exist. In the development of these new approaches, numerous models for mechanical stimulation and preclinical assessment, including in vitro cell studies using microfluidics, ex vivo organ studies coupled with bioreactors and mechanical testing rigs, and in vivo testing in a variety of large and small animals, have emerged. These approaches have provided different capabilities, certainly improving the preclinical evaluation of these regenerative therapies, but challenges within the research environment, and compromises relating to non-representative mechanical stimulation and unrealistic test conditions, remain to be resolved. In this review, insights into the ideal characteristics of a disc model for the testing of IVD regenerative approaches are first assessed. Key learnings from in vivo, ex vivo, and in vitro IVD models under mechanical loading stimulation to date are presented alongside the merits and limitations of each model based on the physiological resemblance to the human IVD environment (biological and mechanical) as well as the possible feedback and output measurements for each approach. When moving from simplified in vitro models to ex vivo and in vivo approaches, the complexity increases resulting in less controllable models but providing a better representation of the physiological environment. Although cost, time, and ethical constraints are dependent on each approach, they escalate with the model complexity. These constraints are discussed and weighted as part of the characteristics of each model.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| | - Mina Mohseni
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | - Timothy Patrick Holsgrove
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
3
|
Tang SN, Bonilla AF, Chahine NO, Colbath AC, Easley JT, Grad S, Haglund L, Le Maitre CL, Leung V, McCoy AM, Purmessur D, Tang SY, Zeiter S, Smith LJ. Controversies in spine research: Organ culture versus in vivo models for studies of the intervertebral disc. JOR Spine 2022; 5:e1235. [PMID: 36601369 PMCID: PMC9799089 DOI: 10.1002/jsp2.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andres F. Bonilla
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Aimee C. Colbath
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | | | | | | | - Victor Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongHong KongSARChina
| | - Annette M. McCoy
- Department of Veterinary Clinical MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisSt LouisMissouriUSA
| | | | - Lachlan J. Smith
- Departments of Orthopaedic Surgery and NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Mainardi A, Cambria E, Occhetta P, Martin I, Barbero A, Schären S, Mehrkens A, Krupkova O. Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Front Bioeng Biotechnol 2022; 9:826867. [PMID: 35155416 PMCID: PMC8832503 DOI: 10.3389/fbioe.2021.826867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Discogenic back pain is one of the most diffused musculoskeletal pathologies and a hurdle to a good quality of life for millions of people. Existing therapeutic options are exclusively directed at reducing symptoms, not at targeting the underlying, still poorly understood, degenerative processes. Common intervertebral disc (IVD) disease models still do not fully replicate the course of degenerative IVD disease. Advanced disease models that incorporate mechanical loading are needed to investigate pathological causes and processes, as well as to identify therapeutic targets. Organs-on-chip (OoC) are microfluidic-based devices that aim at recapitulating tissue functions in vitro by introducing key features of the tissue microenvironment (e.g., 3D architecture, soluble signals and mechanical conditioning). In this review we analyze and depict existing OoC platforms used to investigate pathological alterations of IVD cells/tissues and discuss their benefits and limitations. Starting from the consideration that mechanobiology plays a pivotal role in both IVD homeostasis and degeneration, we then focus on OoC settings enabling to recapitulate physiological or aberrant mechanical loading, in conjunction with other relevant features (such as inflammation). Finally, we propose our view on design criteria for IVD-on-a-chip systems, offering a future perspective to model IVD mechanobiology.
Collapse
Affiliation(s)
- Andrea Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Arne Mehrkens
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
- Lepage Research Institute, University of Prešov, Prešov, Slovakia
| |
Collapse
|
5
|
Raines BT, Stannard JT, Stricklin OE, Stoker AM, Choma TJ, Cook JL. Effects of Caffeine on Intervertebral Disc Cell Viability in a Whole Organ Culture Model. Global Spine J 2022; 12:61-69. [PMID: 32935580 PMCID: PMC8965308 DOI: 10.1177/2192568220948031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
STUDY DESIGN Controlled laboratory study. OBJECTIVE To investigate the impact of exposure to physiologically relevant caffeine concentrations on intervertebral disc (IVD) cell viability and extracellular matrix composition (ECM) in a whole organ culture model as potential contributing mechanisms in development and progression of IVD disorders in humans. Primary outcome measures were IVD viable cell density (VCD) and ECM composition. METHODS A total of 190 IVD whole organ explants from tails of 16 skeletally mature rats-consisting of cranial body half, endplate, IVD, endplate, and caudal body half-were harvested. IVD explants were randomly assigned to 1 of 2 groups: uninjured (n = 90) or injured (20G needle disc puncture/aspiration method, n = 100). Explants from each group were randomly assigned to 1 of 3 treatment groups: low caffeine (LCAF: 5 mg/L), moderate caffeine (MCAF: 10 mg/L), and high caffeine (HCAF: 15 mg/L) concentrations. RESULTS Cell viability was significantly higher in the low-caffeine group compared with the high-caffeine group at day 7 (P = .037) and in the low-caffeine group compared with the medium- and high-caffeine groups at day 21 (P ≤ .004). Analysis of ECM showed that all uninjured and control groups had significantly higher (P < .05) glycosaminoglycan concentrations compared with all injured groups. Furthermore, we observed a temporal, downward trend in proteoglycan to collagen ratio for the caffeine groups. CONCLUSIONS Caffeine intake may be a risk factor for IVD degeneration, especially in conjunction with disc injury. Mechanisms for caffeine associated disc degeneration may involve cell and ECM, and further studies should elucidate mechanistic pathways and potential benefits for caffeine restriction.
Collapse
Affiliation(s)
- Benjamin T. Raines
- University of Missouri, Columbia, MO, USA,University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | - James L. Cook
- University of Missouri, Columbia, MO, USA,James L Cook, Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Avenue, Columbia, MO 65212, USA.
| |
Collapse
|
6
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
7
|
Zhan JW, Wang SQ, Feng MS, Gao JH, Wei X, Yu J, Yin XL, Yin H, Sun K, Chen M, Xie R, Zhang P, Zhu LG. Effects of Axial Compression and Distraction on Vascular Bud and VEGFA Expression in the Vertebral Endplate of an Ex Vivo Rabbit Spinal Motion Segment Culture Model. Spine (Phila Pa 1976) 2021; 46:421-432. [PMID: 33186278 DOI: 10.1097/brs.0000000000003816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An ex vivo study of the rabbit's vertebral endplate. OBJECTIVE The aim of this study was to assess the effect of axial compression and distraction on vascular buds and vascular endothelial growth factor (VEGFA) expression of the vertebral endplate (VEP). SUMMARY OF BACKGROUND DATA The abnormal load can lead to intervertebral disc degeneration (IDD), whereas axial distraction can delay this process. The effects of different mechanical loads on the intervertebral disc (IVD) have been hypothesized to be related to changes in the vascular buds of the VEP; moreover, the process that might involve the vascular endothelial growth factor (VEGF) within the VEP. METHODS Rabbit spinal segments (n = 40) were harvested and randomly classified into four groups: Control group, no stress was applied; Group A, a constant compressive load applied; Group B, compression load removed for a fixed time daily on a continuous basis, and substituted with a distraction load for 30 minutes; and Group C, compression removed for 30 minutes for a fixed period daily on a continuous basis. Tissue specimens were collected before the culture (day 0) and on day 14 post-culture of each group for analysis of IVDs' morphology, and protein and mRNA expression of Aggrecan, COL2al, VEGFA, and vascular endothelial growth factor receptor 2 of the VEPs. RESULTS Application of axial distraction and dynamic load compression significantly delayed time- and constant compression-mediated VEP changes and IDD. Moreover, the degree of degeneration was associated with loss of vascular buds, as well as the downregulation of VEGFA and its receptor. CONCLUSION The regulation of vascular buds and VEGF expression in the VEP represents one of the mechanisms of axial distraction and dynamic loading.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Jia-Wen Zhan
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Che YJ, Hou JJ, Guo JB, Liang T, Zhang W, Lu Y, Yang HL, Hao YF, Luo ZP. Low energy extracorporeal shock wave therapy combined with low tension traction can better reshape the microenvironment in degenerated intervertebral disc regeneration and repair. Spine J 2021; 21:160-177. [PMID: 32800896 DOI: 10.1016/j.spinee.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Low-tension traction is more effective than high-tension traction in restoring the height and rehydration of a degenerated disc and to some extent the bony endplate. This might better reshape the microenvironment for disc regeneration and repair. However, the repair of the combination of endplate sclerosis, osteophyte formation, and even collapse leading to partial or nearly complete occlusion of the nutrient channel is greatly limited. PURPOSE To evaluate the effectiveness of low-intensity extracorporeal shock wave therapy (ESWT) combined with low tension traction for regeneration and repair of moderately and severely degenerated discs; to explore the possible mechanism of action. STUDY DESIGN Animal study of a rat model of degenerated discs. METHODS A total of thirty-five 6-month old male Sprague-Dawley rats were randomly assigned to one of five groups (n=7, each group). In Group A (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) whereas Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group B (experimental control group), as in Group A, disc degeneration was successfully induced after which the fixed device was removed for 8 weeks of self-recovery. The remaining three groups of rats represented the intervention Groups (C-E): after successful generation of disc degeneration in Group C (com - 4w/tra - 4w) and Group D (com - 4w/ESWT), as described for group A, low-tension traction (in-situ traction) or low-energy ESWT was administered for 4 weeks (ESWT parameters: intensity: 0.15 Mpa; frequency: 1 Hz; impact: 1,000 each time; once/week, 4 times in total); Group E (com - 4w/tra - 4w/ESWT): disc degeneration as described for group A, low-tension traction combined with low-energy ESWT was conducted (ESWT parameters as Group D). After experimentation, caudal vertebrae were harvested and disc height, T2 signal intensity, disc morphology, total glycosaminoglycan (GAG) content, gene expression, structure of the Co8-Co9 bony endplates and elastic moduli of the discs were measured. RESULTS After continuous low-tension traction, low energy ESWT intervention or combined intervention, the degenerated discs effectively recovered their height and became rehydrated. However, the response in Group D was weaker than in the other intervention groups in terms of restoration of intervertebral disc (IVD) height, whereas Group E was superior in disc rehydration. Tissue regeneration was evident in Groups C to E using different interventions. No apparent tissue regeneration was observed in the experimental control group (Group B). The histological scores of the three intervention groups (Groups C-E) were lower than those of Groups A or B (p<.0001), and the scores of Groups C and E were significantly lower than those of Group D (p<.05), but not Group C versus Group E (p>.05). Compared with the intervention groups (Groups C-E), total GAG content of the nucleus pulposus (NP) in Group B did not increase significantly (p>.05). There was also no significant difference in the total GAG content between Groups A and B (p>.05). Of the three intervention groups, the recovery of NP GAG content was greatest in Group E. The expression of collagen I and II, and aggrecan in the annulus fibrosus (AF) was up-regulated (p<.05), whereas the expression of MMP-3, MMP-13, and ADAMTS-4 was down-regulated (p<.05). Of the groups, Group E displayed the greatest degree of regulation. The trend in regulation of gene expression in the NP was essentially consistent with that of the AF, of which Group E was the greatest. In the intervention groups (Groups C-E), compared with Group A, the pore structure of the bony endplate displayed clear changes. The number of pores in the endplate in Groups C to E was significantly higher than in Group A (p<.0001), among which Group C versus Group D (p=.9724), and Group C versus Group E (p=.0116). There was no significant difference between Groups A and B (p=.5261). In addition, the pore diameter also increased, the trend essentially the same as that of pore density. There was no significant difference between the three intervention groups (p=.7213). It is worth noting that, compared with Groups A and B, peripheral pore density and size in Groups D and E of the three intervention groups recovered significantly. The elastic modulus and diameter of collagen fibers in the AF and NP varied with the type of intervention. Low tension traction combined with ESWT resulted in the greatest impact on the diameter and modulus of collagen fibers. CONCLUSIONS Low energy ESWT combined with low tension traction provided a more stable intervertebral environment for the regeneration and repair of moderate and severe degenerative discs. Low energy ESWT promoted the regeneration of disc matrix by reducing MMP-3, MMP-13, and ADAMTS-4 resulting in inhibition of collagen degradation. Although axial traction promoted the recovery of height and rehydration of the IVD, combined with low energy ESWT, the micro-nano structure of the bony endplate underwent positive reconstruction, tension in the annulus of the AF and nuclear stress of the NP declined, and the biomechanical microenvironment required for IVD regeneration and repair was reshaped.
Collapse
Affiliation(s)
- Yan-Jun Che
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China; Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, People's Republic of China
| | - Jun-Jun Hou
- Department of Geriatrics, Xinghu Hospital, SuZhou industrial park, Suzhou, Jiangsu, People's Republic of China; Department of Endocrinology, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, People's Republic of China
| | - Jiang-Bo Guo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Ting Liang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Wen Zhang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, People's Republic of China
| | - Hui-Lin Yang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Yue Feng Hao
- Orthopedics and Sports medicine center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, Jiangsu, People's Republic of China
| | - Zong-Ping Luo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China.
| |
Collapse
|
9
|
Lee NN, Kramer JS, Stoker AM, Bozynski CC, Cook CR, Stannard JT, Choma TJ, Cook JL. Canine models of spine disorders. JOR Spine 2020; 3:e1109. [PMID: 33392448 PMCID: PMC7770205 DOI: 10.1002/jsp2.1109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neck and low back pain are common among the adult human population and impose large social and economic burdens on health care and quality of life. Spine-related disorders are also significant health concerns for canine companions with etiopathogeneses, clinical presentations, and diagnostic and therapeutic options that are very similar to their human counterparts. Historically, induced and spontaneous pathology in laboratory rodents, dogs, sheep, goats, pigs, and nonhuman primates have been used for study of human spine disorders. While each of these can serve as useful preclinical models, they all have inherent limitations. Spontaneously occurring spine disorders in dogs provide highly translatable data that overcome many of the limitations of other models and have the added benefit of contributing to veterinary healthcare as well. For this scoping review, peer-reviewed manuscripts were selected from PubMed and Google Scholar searches using keywords: "intervertebral disc," "intervertebral disc degeneration," "biomarkers," "histopathology," "canine," and "mechanism." Additional keywords such as "injury," "induced model," and "nucleus degeneration" were used to further narrow inclusion. The objectives of this review were to (a) outline similarities in key features of spine disorders between dogs and humans; (b) describe relevant canine models; and (c) highlight the applicability of these models for advancing translational research and clinical application for mechanisms of disease, diagnosis, prognosis, prevention, and treatment, with a focus on intervertebral disc degeneration. Best current evidence suggests that dogs share important anatomical, physiological, histological, and molecular components of spinal disorders in humans, such that induced and spontaneous canine models can be very effective for translational research. Taken together, the peer-reviewed literature supports numerous advantages for use of canine models for study of disorders of the spine when the potential limitations and challenges are addressed.
Collapse
Affiliation(s)
- Naomi N. Lee
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
- Comparative Medicine ProgramUniversity of MissouriColumbiaMissouriUSA
| | - Jacob S. Kramer
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Aaron M. Stoker
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Chantelle C. Bozynski
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Cristi R. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James T. Stannard
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - Theodore J. Choma
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| | - James L. Cook
- Department of Orthopaedic SurgeryUniversity of MissouriColumbiaMissouriUSA
- Thompson Laboratory for Regenerative OrthopaedicsUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
10
|
Cherif H, Bisson DG, Mannarino M, Rabau O, Ouellet JA, Haglund L. Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. eLife 2020; 9:54693. [PMID: 32821059 PMCID: PMC7442487 DOI: 10.7554/elife.54693] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a contributor to intervertebral disc (IVD) degeneration and low back pain. Here, we found that RG-7112, a potent mouse double-minute two protein inhibitor, selectively kills senescent IVD cells through apoptosis. Gene expression pathway analysis was used to compare the functional networks of genes affected by RG-7112, a pure synthetic senolytic with o-Vanillin a natural and anti-inflammatory senolytic. Both affected a functional gene network related to cell death and survival. O-Vanillin also affected networks related to cell cycle progression as well as connective tissue development and function. Both senolytics effectively decreased the senescence-associated secretory phenotype (SASP) of IVD cells. Furthermore, bioavailability and efficacy were verified ex vivo in the physiological environment of degenerating intact human discs where a single dose improved disc matrix homeostasis. Matrix improvement correlated with a reduction in senescent cells and SASP, supporting a translational potential of targeting senescent cells as a therapeutic intervention. Pain in the lower back affects about four in five people during their lifetime. Over time, the discs that provide cushioning between the vertebrae of the spine can degenerate, which can be one of the major causes of lower back pain. It has been shown that when the cells of these discs are exposed to different stress factors, they stop growing and become irreversibly dormant. Such ‘senescent’ cells release a range of proteins and small molecules that lead to painful inflammation and further degeneration of the discs. Moreover, it is thought that a high number of senescent cells may be linked to other degenerative diseases such as arthritis. Current treatments can only reduce the severity of the symptoms, but they cannot prevent the degeneration from progressing. Now, Cherif et al. set out to test the effects of two different compounds on human disc cells grown in the laboratory. One of the molecules studied, RG-7112, is a synthetic drug that has been approved for safety by the US Food and Drug Administration and has been shown to remove senescent cells. The other, o-Vanillin, is a natural compound that has anti-inflammatory and anti-senescence properties. The results showed that both compounds were able to trigger changes to that helped new, healthy cells to grow and at the same time kill senescent cells. They also reduced the production of molecules linked to inflammation and pain. Further analyses revealed that the compounds were able to strengthen the fibrous matrix that surrounds and supports the discs. Cherif et al. hope that this could form the basis for a new family of drugs for back pain to slow the degeneration of the discs and reduce pain. This may also have benefits for other similar degenerative diseases caused by cell senescence, such as arthritis.
Collapse
Affiliation(s)
- Hosni Cherif
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Daniel G Bisson
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Matthew Mannarino
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Oded Rabau
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| | - Jean A Ouellet
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| | - Lisbet Haglund
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| |
Collapse
|
11
|
Zhang GZ, Deng YJ, Xie QQ, Ren EH, Ma ZJ, He XG, Gao YC, Kang XW. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta 2020; 508:33-42. [PMID: 32348785 DOI: 10.1016/j.cca.2020.04.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which seriously reduces the quality of life of patients and places a heavy economic burden on their families. Cellular senescence is considered to be an important factor leading to IDD, and inflammatory response, oxidative stress, and mitochondrial dysfunction are closely related to intervertebral disc (IVD) senescence. Therefore, inhibition of the inflammatory response and oxidative stress, along with maintaining mitochondrial function, may be useful in treating IDD. The sirtuins are a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, which are the major molecules mediating life extension or delay of aging-related diseases. The sirtuin protein family consist of seven members (SIRT1 - 7), which are mainly involved in various aging-related diseases by regulating inflammation, oxidative stress, and mitochondrial function. Among them, SIRT1, SIRT2, SIRT3, and SIRT6 are closely related to IDD. In addition, some activators of sirtuin proteins, such as resveratrol, melatonin, magnolol, 1,4-dihydropyridine (DHP), SRT1720, and nicotinamide mononucleotide (NMN), have been evaluated in preclinical studies for their effects in preventing IDD. This review described the biological functions of sirtuins and the important roles of SIRT1, SIRT2, SIRT3, and SIRT6 in IDD by regulating oxidative stress, inflammatory response, and mitochondrial function. In addition, we introduce the status of some sirtuin activators in IDD preclinical studies. This review will provide a background for further clarification of the molecular mechanism underlying IDD and the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yi-Cheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China; The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China.
| |
Collapse
|
12
|
Liu JW, Piersma S, Tang SY. The age-dependent effect of high-dose X-ray radiation on NFκB signaling, structure, and mechanical behavior of the intervertebral disc. Connect Tissue Res 2020; 61:399-408. [PMID: 31875721 PMCID: PMC7190425 DOI: 10.1080/03008207.2019.1703963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Ionizing radiation damages tissue and provokes inflammatory responses in multiple organ systems. We investigated the effects of high-dose X-ray radiation on the molecular inflammation and mechanical function of the intervertebral disc (IVD).Methods: Functional spine units (FSUs) containing the vertebrae-IVDs-vertebrae structure extracted from 1-month, 6-month, and 16-month-old NFκB-luciferase reporter mice and from 6-month-old myeloid differentiation factor 88 (MyD88)-null mice. After a preconditioning period in culture, the FSUs were subjected a single dose of ionizing X-ray radiation at 20 Gys, and then NFκB expression was monitored. The IVDs were then subjected to mechanical testing using dynamic compression, glycosaminoglycan (GAG) quantification, and histological analyses.Results: In the 1-month-old FSUs, the NFκB-driven luciferase activity was significantly elevated for 1 day following the exposure to radiation. The 6-month-old FSUs showed increased NFκB activity for 3 days, while the 16-month-old FSUs sustained elevated levels of NFκB activity throughout the 10-day culture period. All irradiated groups showed significant loss of disc height, GAG content, mechanical function and changes in structure. Ablation of MyD88 blunted the radiation-mediated NFκB signaling, and preserved GAG content, and the IVDs' structure and mechanical performance.Conclusions: These results suggest that high-dose radiation affects the IVDs' NFκB-dependent inflammatory processes that subsequently lead to functional deterioration. Blocking the transactivation potential of NFκB via MyD88 ablation preserved the structure and mechanical function of the FSUs. The long-term effects of radiation on IVD homeostasis should be considered in individuals susceptible to occupational and medical exposure.
Collapse
Affiliation(s)
- Jennifer W. Liu
- Department of Biomedical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Orthopaedic Surgery, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| | - Sytse Piersma
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| | - Simon Y. Tang
- Department of Biomedical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Orthopaedic Surgery, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA,Department of Materials Science and Mechanical Engineering, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri, 63130, USA
| |
Collapse
|
13
|
Mesenchymal Stem Cell Homing Into Intervertebral Discs Enhances the Tie2-positive Progenitor Cell Population, Prevents Cell Death, and Induces a Proliferative Response. Spine (Phila Pa 1976) 2019; 44:1613-1622. [PMID: 31730570 PMCID: PMC6867676 DOI: 10.1097/brs.0000000000003150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study with human mesenchymal stem cells (MSCs) and intervertebral disc (IVD) tissue samples. OBJECTIVE This study aimed to characterize the effect of MSC homing on the Tie2-positive IVD progenitor cell population, IVD cell survival, and proliferation. SUMMARY OF BACKGROUND DATA Homing of human MSCs has been described as potential alternative to MSC injection, aiming to enhance the regenerative capacity of the IVD. IVD cells expressing Tie2 (also known as CD202b or Angiopoietin-1 receptor TEK tyrosine kinase) represent a progenitor cell population with discogenic differentiation potential. However, the fraction of Tie2-positive progenitor cells decreases with aging and degree of IVD degeneration, resulting in a potential loss of the IVD's regenerative capacity. METHODS Human MSCs, isolated from vertebral bone marrow aspirates, were labeled and seeded onto the endplate of bovine IVDs and human IVD tissue. Following MSC migration for 5 days, IVD cells were isolated by tissue digestion. The fractions of Tie2-positive, dead, apoptotic, and proliferative IVD cells were evaluated by flow cytometry and compared to untreated IVDs. For human IVDs, 3 groups were investigated: nondegenerated (organ donors), IVDs of patients suffering from spinal trauma, and degenerative IVD tissue samples. RESULTS MSC homing enhanced the fraction of Tie2-positive IVD cells in bovine and human IVD samples. Furthermore, a proliferative response and lower fraction of dead cells were observed after MSC homing in both bovine and human IVD tissues. CONCLUSION Our findings indicate that MSC homing enhances the survival and regenerative capability of IVD cells, which may be mediated by intercellular communication. MSC homing could represent a potential treatment strategy to prevent the onset of the degenerative cascade in IVDs at risk such as IVDs adjacent to a fused segment or IVDs after herniation. LEVEL OF EVIDENCE N/A.
Collapse
|
14
|
Pfannkuche JJ, Guo W, Cui S, Ma J, Lang G, Peroglio M, Richards RG, Alini M, Grad S, Li Z. Intervertebral disc organ culture for the investigation of disc pathology and regeneration - benefits, limitations, and future directions of bioreactors. Connect Tissue Res 2019; 61:304-321. [PMID: 31556329 DOI: 10.1080/03008207.2019.1665652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.
Collapse
Affiliation(s)
- Judith-Johanna Pfannkuche
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | - Gernot Lang
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
15
|
Urits I, Capuco A, Sharma M, Kaye AD, Viswanath O, Cornett EM, Orhurhu V. Stem Cell Therapies for Treatment of Discogenic Low Back Pain: a Comprehensive Review. Curr Pain Headache Rep 2019; 23:65. [PMID: 31359164 DOI: 10.1007/s11916-019-0804-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Discogenic low back pain (DLBP) stems from pathology in one or more intervertebral discs identified as the root cause of the pain. It is the most common type of chronic low back pain (LBP), representing 26-42% of attributable cases. RECENT FINDINGS The clinical presentation of DLBP includes increased pain when sitting, coughing, or sneezing, and experiencing relief when standing or ambulating. Dermatomal radiation of pain to the lower extremity and neurological symptoms including numbness, motor weakness, and urinary or fecal incontinence are signs of advanced disease with disc prolapse, nerve root compression, or spinal stenosis. Degenerative disc disease is caused by both a decrease in disc nutrient supply causing decreased oxygen, lowered pH, and lessened ability of the intervertebral disc (IVD) to respond to increased load or injury; moreover, changes in the extracellular matrix composition cause weakening of the tissue and skewing the extracellular matrix's (ECM) harmonious balance between catabolic and anabolic factors for cell turnover in favor of catabolism. Thus, the degeneration of the disc causes a shift from type II to type I collagen expression by NP cells and a decrease in aggrecan synthesis leads to dehydrated matrix cells ultimately with loss of swelling pressure needed for mechanical support. Cell-based therapies such as autologous nucleus pulposus cell re-implantation have in animal models and human trials shown improvements in LBP score, retention of hydration in IVD, and increased disc height. Percutaneously delivered multipotent mesenchymal stem cell (MSC) therapy has been proposed as a potential means to uniquely ameliorate discogenic LBP holistically through three mechanisms: mitigation of primary nociceptive disc pain, slow or reversal of the catabolic metabolism, and restoration of disc tissue. Embryonic stem cells (ESCs) can differentiate into cells of all three germ layers in vitro, but their use is hindered related to ethical concerns, potential for immune rejection after transplantation, disease, and teratoma formation. Another similar approach to treating back pain is transplantation of the nucleus pulposus, which, like stem cell therapy, seeks to address the underlying cause of intervertebral disc degeneration by aiming to reverse the destructive inflammatory process and regenerate the proteoglycans and collagen found in healthy disc tissue. Preliminary animal models and clinical studies have shown mesenchymal stem cell implantation as a potential therapy for IVD regeneration and ECM restoration via a shift towards favorable anabolic balance and reduction of pain.
Collapse
Affiliation(s)
- Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | | | - Medha Sharma
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Vwaire Orhurhu
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Thorpe AA, Bach FC, Tryfonidou MA, Le Maitre CL, Mwale F, Diwan AD, Ito K. Leaping the hurdles in developing regenerative treatments for the intervertebral disc from preclinical to clinical. JOR Spine 2018; 1:e1027. [PMID: 31463447 PMCID: PMC6686834 DOI: 10.1002/jsp2.1027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic back and neck pain is a prevalent disability, often caused by degeneration of the intervertebral disc. Because current treatments for this condition are less than satisfactory, a great deal of effort is being applied to develop new solutions, including regenerative strategies. However, the path from initial promising idea to clinical use is fraught with many hurdles to overcome. Many of the keys to success are not necessarily linked to science or innovation. Successful translation to clinic will also rely on planning and awareness of the hurdles. It will be essential to plan your entire path to clinic from the outset and to do this with a multidisciplinary team. Take advice early on regulatory aspects and focus on generating the proof required to satisfy regulatory approval. Scientific demonstration and societal benefits are important, but translation cannot occur without involving commercial parties, which are instrumental to support expensive clinical trials. This will only be possible when intellectual property can be protected sufficiently to support a business model. In this manner, commercial, societal, medical, and scientific partners can work together to ultimately improve patient health. Based on literature surveys and experiences of the co-authors, this opinion paper presents this pathway, highlights the most prominent issues and hopefully will aid in your own translational endeavors.
Collapse
Affiliation(s)
- Abbey A. Thorpe
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | | | - Fackson Mwale
- Department of SurgeryMcGill UniversityMontrealCanada
| | - Ashish D. Diwan
- Spine Service, Department of Orthopaedic SurgerySt. George & Sutherland Clinical School, University of New South WalesSydneyAustralia
| | - Keita Ito
- Orthopaedic Biomechanics Division, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Department of OrthopedicsUniversity Medical Centre UtrechtUtrechtthe Netherlands
| |
Collapse
|
17
|
Navone SE, Peroglio M, Guarnaccia L, Beretta M, Grad S, Paroni M, Cordiglieri C, Locatelli M, Pluderi M, Rampini P, Campanella R, Alini M, Marfia G. Mechanical loading of intervertebral disc modulates microglia proliferation, activation, and chemotaxis. Osteoarthritis Cartilage 2018; 26:978-987. [PMID: 29723636 DOI: 10.1016/j.joca.2018.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the study is to assess the effects of the neuroinflammatory microenvironment of a mechanically-induced degenerating intervertebral disc (IVD) on neuroinflammatory like cells such as microglia, in order to comprehend the role of microglial cells in degenerative disc disease. METHODS Bovine caudal IVDs were kept in culture in an ex vivo bioreactor under high frequency loading and limited nutrition or in free swelling conditions as control samples. Conditioned media (CM) were collected, analysed for cytokine and neurotrophin content and applied to microglial cells for neuroinflammatory activation assessment. RESULTS Degenerative conditioned medium (D-CM) induced a higher production of interleukin (IL)-8, nerve growth factor (NGF), interferon (IFN)-γ, IL-17 from IVD cells than unloaded control conditioned medium (U-CM). Upon 48 h of co-incubation with microglia, D-CM stimulated microglia proliferation, activation, with increased expression of ionized calcium binding adaptor molecule 1 (IBA1) and CD68, and chemotaxis. Moreover, an increment of nitrite production was observed. Interestingly, D-CM caused an upregulation of IL-1β, IL-6, tumour necrosis factor α (TNFα), inducible NO synthase (iNOS), IBA1, and vascular endothelial growth factor (VEGF) genes in microglia. Similar results were obtained when microglia were treated with the combination of the measured cytokines. CONCLUSIONS Our findings show that in IVD degenerative microenvironment, IL-8, NGF, IFN-γ, IL-17 drive activation of microglia in the spinal cord and increase upregulation of neuroinflammatory markers. This, in turn, enhances the inflammatory milieu within IVD tissues and in the peridiscal space, aggravating the cascade of degenerative events. This study provides evidence for an important role of microglia in maintaining IVD neuroinflammatory microenvironment and probably inducing low back pain.
Collapse
Affiliation(s)
- S E Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Peroglio
- AO Research Institute Davos, Davos, Switzerland
| | - L Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Beretta
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - S Grad
- AO Research Institute Davos, Davos, Switzerland
| | - M Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - C Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - M Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Pluderi
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - P Rampini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - R Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Alini
- AO Research Institute Davos, Davos, Switzerland
| | - G Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Krupkova O, Cambria E, Besse L, Besse A, Bowles R, Wuertz‐Kozak K. The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine 2018; 1:e1003. [PMID: 31463435 PMCID: PMC6686831 DOI: 10.1002/jsp2.1003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas9 system has emerged as a powerful tool for mammalian genome engineering. In basic and translational intervertebral disc (IVD) research, this technique has remarkable potential to answer fundamental questions on pathway interactions, to simulate IVD pathologies, and to promote drug development. Furthermore, the precisely targeted CRISPR/Cas9 gene therapy holds promise for the effective and targeted treatment of degenerative disc disease and low back pain. In this perspective, we provide an overview of recent CRISPR/Cas9 advances stemming from/with transferability to IVD research, outline possible treatment approaches for degenerative disc disease, and discuss current limitations that may hinder clinical translation.
Collapse
Affiliation(s)
- Olga Krupkova
- Department of Health Sciences and TechnologyInstitute for BiomechanicsETH ZurichSwitzerland
| | - Elena Cambria
- Department of Health Sciences and TechnologyInstitute for BiomechanicsETH ZurichSwitzerland
| | - Lenka Besse
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | - Andrej Besse
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | - Robert Bowles
- Department of BioengineeringUniversity of UtahSalt Lake CityUtah
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtah
| | - Karin Wuertz‐Kozak
- Department of Health Sciences and TechnologyInstitute for BiomechanicsETH ZurichSwitzerland
- Spine CenterSchön Klinik München HarlachingMunichGermany
- Academic Teaching Hospital and Spine Research InstituteParacelsus Private Medical University SalzburgSalzburgAustria
- Department of Health SciencesUniversity of PotsdamPotsdamGermany
| |
Collapse
|
19
|
Peroglio M, Gaspar D, Zeugolis DI, Alini M. Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. J Orthop Res 2018; 36:10-21. [PMID: 28718947 DOI: 10.1002/jor.23655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|
20
|
Toll-like Receptor Activation Induces Degeneration of Human Intervertebral Discs. Sci Rep 2017; 7:17184. [PMID: 29215065 PMCID: PMC5719358 DOI: 10.1038/s41598-017-17472-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLR) are activated by endogenous alarmins such as fragmented extracellular matrix compounds found in the degenerating disc. TLRs regulate cytokine, neurotrophin, and protease expression in human disc cells in vitro, and thus control key factors in disc degeneration. However, whether TLR activation leads to degenerative changes in intact human discs is unclear. Nucleus pulposus (NP) cells isolated from non-degenerating discs increase IL-1β and nerve growth factor gene expression following treatment with Pam2CSK4 (TLR2/6 agonist) but not Pam3CSK4 (TLR1/2 agonist). Challenging NP cells with Pam2CSK4 or 30 kDa fibronectin fragments (FN-f, an endogenous TLR2 and TLR4 alarmin) increased secretion of proinflammatory cytokines. We then investigated the effect of TLR activation in intact, non-degenerate, ex vivo human discs. Discs were injected with PBS, Pam2CSK4 and FN-f, and cultured for 28 days. TLR activation increased proteoglycan and ECM protein release into the culture media and decreased proteoglycan content in the NP. Proteases, including MMP3, 13 and HTRA1, are secreted at higher levels following TLR activation. In addition, proinflammatory cytokine levels, including IL-6, TNFα and IFNγ, increased following TLR activation. These results indicate that TLR activation induces degeneration in human discs. Therefore, TLRs are potential disease-modifying therapeutic targets to slow disc degeneration.
Collapse
|
21
|
Enhancement of Energy Production of the Intervertebral Disc by the Implantation of Polyurethane Mass Transfer Devices. Ann Biomed Eng 2017; 45:2098-2108. [PMID: 28612187 DOI: 10.1007/s10439-017-1867-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
Insufficient nutrient supply has been suggested to be one of the etiologies for intervertebral disc (IVD) degeneration. We are investigating nutrient transport into the IVD as a potential treatment strategy for disc degeneration. Most cellular activities in the IVD (e.g., cell proliferation and extracellular matrix production) are mainly driven by adenosine-5'-triphosphate (ATP) which is the main energy currency. The objective of this study was to investigate the effect of increased mass transfer on ATP production in the IVD by the implantation of polyurethane (PU) mass transfer devices. In this study, the porcine functional spine units were used and divided into intact, device and surgical groups. For the device and surgical groups, two puncture holes were created bilaterally at the dorsal side of the annulus fibrosus (AF) region and the PU mass transfer devices were only implanted into the holes in the device group. Surgical groups were observed for the effects of placing the holes through the AF only. After 7 days of culture, the surgical group exhibited a significant reduction in the compressive stiffness and disc height compared to the intact and device groups, whereas no significant differences were found in compressive stiffness, disc height and cell viability between the intact and device groups. ATP, lactate and the proteoglycan contents in the device group were significantly higher than the intact group. These results indicated that the implantation of the PU mass transfer device can promote the nutrient transport and enhance energy production without compromising mechanical and cellular functions in the disc. These results also suggested that compromise to the AF has a negative impact on the IVD and must be addressed when treatment strategies are considered. The results of this study will help guide the development of potential strategies for disc degeneration.
Collapse
|
22
|
Srivastava A, Isa ILM, Rooney P, Pandit A. Bioengineered three-dimensional diseased intervertebral disc model revealed inflammatory crosstalk. Biomaterials 2017; 123:127-141. [DOI: 10.1016/j.biomaterials.2017.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 12/29/2022]
|
23
|
Zhu LG, Feng MS, Zhan JW, Zhang P, Yu J. Effect of Static Load on the Nucleus Pulposus of Rabbit Intervertebral Disc Motion Segment in Ex vivo Organ Culture. Chin Med J (Engl) 2017; 129:2338-46. [PMID: 27647194 PMCID: PMC5040021 DOI: 10.4103/0366-6999.190666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: The development of mechanically active culture systems helps increase the understanding of the role of mechanical stress in intervertebral disc (IVD) degeneration. Motion segment cultures allow for preservation of the native IVD structure, and adjacent vertebral bodies facilitate the application and control of mechanical loads. The purpose of this study was to establish loading and organ culture methods for rabbit IVD motion segments to study the effect of static load on the whole disc organ. Methods: IVD motion segments were harvested from rabbit lumbar spines and cultured in no-loading 6-well plates (control conditions) or custom-made apparatuses under a constant, compressive load (3 kg, 0.5 MPa) for up to 14 days. Tissue integrity, matrix synthesis, and the matrix gene expression profile were assessed after 3, 7, and 14 days of culturing and compared with those of fresh tissues. Results: The results showed that ex vivo culturing of motion segments preserved tissue integrity under no-loading conditions for 14 days whereas the static load gradually destroyed the morphology after 3 days. Proteoglycan contents were decreased under both conditions, with a more obvious decrease under static load, and proteoglycan gene expression was also downregulated. However, under static load, immunohistochemical staining intensity and collagen Type II alpha 1 (COL2A1) gene expression were significantly enhanced (61.54 ± 5.91, P = 0.035) and upregulated (1.195 ± 0.040, P = 0.000), respectively, compared with those in the controls (P < 0.05). In contrast, under constant compression, these trends were reversed. Our initial results indicated that short-term static load stimulated the synthesis of collagen Type II alpha 1; however, sustained constant compression led to progressive degeneration and specifically to a decreased proteoglycan content. Conclusions: A loading and organ culture system for ex vivo rabbit IVD motion segments was developed. Using this system, we were able to study the effects of mechanical stimulation on the biology of IVDs, as well as the pathomechanics of IVD degeneration.
Collapse
Affiliation(s)
- Li-Guo Zhu
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102; Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Min-Shan Feng
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102; Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Jia-Wen Zhan
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102; General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Jie Yu
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
24
|
Li P, Gan Y, Wang H, Xu Y, Li S, Song L, Zhang C, Ou Y, Wang L, Zhou Q. Role of the ERK1/2 pathway in osmolarity effects on nucleus pulposus cell apoptosis in a disc perfusion culture. J Orthop Res 2017; 35:86-92. [PMID: 27035885 DOI: 10.1002/jor.23249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Osmolarity fluctuations are inevitable within the nucleus pulposus (NP). However, the effects of osmolarity on NP cell apoptosis within the organ-cultured disc remain unclear. The objective of this study was to investigate effects of different osmolarity levels (hypo-, iso-, and hyper-) and osmolarity modes (constant and cyclic) on NP cell apoptosis in a disc perfusion culture and to study the role of the ERK1/2 pathway in this regulatory process. Porcine discs were cultured for 7 days in different osmotic medium, including constant hypo-, iso-, and hyper-osmolarity (330, 430, and 550 mOsm/L, respectively) and cyclic-osmolarity (430 mOsm/L for 8 h, followed by 550 mOsm/L for 16 h). The role of the ERK1/2 pathway was investigated by using the pharmacological inhibitor U0126. NP cell apoptosis was analyzed by TUNEL staining, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3 and protein expression of cleaved caspase-3, and cleaved PARP. Our results showed that NP cell apoptosis was increased in hypo- and hyper-osmolarity cultures compared to iso- or cyclic-osmolarity culture, whereas the level of apoptosis in the iso-osmolarity culture was lower than that in the cyclic-osmolarity culture. When the ERK1/2 pathway was inhibited in the iso- and cyclic-osmolarity cultures, the level of NP cell apoptosis was significantly increased. In conclusion, the effects of osmolarity on NP cell apoptosis depend on the osmolarity level (hypo-, iso-, or hyper-) and osmolarity mode (constant or cyclic). Futhermore, inhibition of the ERK1/2 pathway promotes NP cell apoptosis in this process. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:86-92, 2017.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Haoming Wang
- Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Songtao Li
- Department of Orthopedic Surgery, No. 181 Hospital of PLA, Guilin, Guangxi 541002, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Yangbin Ou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| |
Collapse
|
25
|
Gawri R, Shiba T, Pilliar R, Kandel R. Inorganic polyphosphates enhances nucleus pulposus tissue formation in vitro. J Orthop Res 2017; 35:41-50. [PMID: 27164002 DOI: 10.1002/jor.23288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
Disc degeneration is associated with low back pain for which currently there is no optimal therapy so there is a great need to identify new treatment approaches. Inorganic polyphosphates (polyP) are linear polymers of orthophosphate units varying in chain length and present in many cell types. As polyP has anabolic effects on chondrocytes, we hypothesized that polyP treatment would enhance matrix accumulation by nucleus pulposus (NP) cells. NP cells isolated from bovine caudal discs were grown in 3D culture under normoxic or in select experiments under hypoxic conditions, in the presence or absence of various concentrations and sizes of polyP. Gene expression was determined using RT-PCR. Matrix accumulation was quantified by measuring proteoglycan and collagen contents. DAPI fluorescence shift was used to stain for polyP in tissue. DAPI staining showed polyP present predominantly in the pericellular region of in vitro formed tissue. PolyP treatment enhanced matrix accumulation in a concentration and chain length dependant manner. NP cells exposed to polyP-22 (22 phosphate units length) showed an increase in gene expression of aggrecan, Collagen II, Sox 9, and MMP-13 which was maintained for the 14 days of culture. This suggests that polyP may enhance NP tissue formation in vitro by upregulating the expression of matrix genes. As polyP enhances proteoglycan accumulation even under hypoxic conditions, this raises the possibility that polyP may be a novel treatment to induce NP regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:41-50, 2017.
Collapse
Affiliation(s)
- Rahul Gawri
- Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Toshikazu Shiba
- Regenetiss Inc., Kunitachi, Tokyo, Japan.,Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Robert Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Faculty of Dentistry, University of Toronto, Canada
| | - Rita Kandel
- Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Suite 6-500, Toronto, Ontario, Canada, M5G 1X5
| |
Collapse
|
26
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE Evaluate the effect of substance P (SP) on an intervertebral disc rat organ culture model. SUMMARY OF BACKGROUND DATA Monolayer cell experiments have demonstrated that exposure intervertebral disc tissue cells to SP leads to upregulation in inflammatory cytokine expression; however, this has not been evaluated in a more complex organ culture model. METHODS Forty-eight intervertebral discs from eight rats were used in an organ culture model. Intervertebral discs were divided into three groups: control, SP-treated group, and a group treated with an SP antagonist followed by SP. Cytokine antibody array was used to quantify expression patterns, which were confirmed using ELISA and real-time polymerase chain reaction. RESULTS The cytokine array demonstrated a 3.40 ± 0.59-fold increase in interleukin 6 (IL-6) expression in the SP group (P = 0.004), and the effect of SP was mitigated by the SP antagonist (P = 0.03). These results were verified as ELISA demonstrated a significant difference in the IL-6 level between the control group and SP group (0.73 vs. 5.80 ng/mL, P < 0.001), and there was a significant difference in the IL-6 level between the SP and the SP antagonist group (5.80 vs. 4.02 ng/mL, P = 0.01). Similarly, the real-time polymerase chain reaction demonstrated that the discs treated with SP had a 4.77-fold increase in IL-6 levels (P = 0.01) compared to controls, and a significantly greater increase in IL-6 levels between the intervertebral discs in the SP group and those in the SP antagonist group versus control (4.77 vs. 1.57, P = 0.02). CONCLUSION SP lead to the activation of an inflammatory pathway by increasing expression of IL-6 in an intervertebral disc organ culture model. These results provide evidence that SP may be an important factor in the link between intervertebral disc degeneration and low back pain. LEVEL OF EVIDENCE N/A.
Collapse
|
27
|
Effect of Static Load on the Nucleus Pulposus of Rabbit Intervertebral Disc Motion Segment in an Organ Culture. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2481712. [PMID: 27872846 PMCID: PMC5107879 DOI: 10.1155/2016/2481712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/06/2016] [Accepted: 08/21/2016] [Indexed: 01/07/2023]
Abstract
The development of mechanically active culture systems helps in understanding of the role of mechanical stress in intervertebral disc (IVD) degeneration. Motion segment cultures facilitate the application and control of mechanical loads. The purpose of this study was to establish a culturing method for rabbit IVD motion segments to observe the effect of static load on the whole disc organ. Segments were cultured in custom-made apparatuses under a constant, compressive load (3 kg) for 2 weeks. Tissue integrity, matrix synthesis, and matrix gene expression profile were assessed and compared with fresh one. The results showed ex vivo culturing of samples gradually destroyed the morphology. Proteoglycan contents and gene expression were decreased and downregulated obviously. However, immunohistochemical staining intensity and collagen type II gene expression were significantly enhanced and upregulated. In contrast, these trends were reversed under constant compression. These results indicated short-term static load stimulated the synthesis of type II collagen; however, constant compression led to progressive degeneration and specifically to proteoglycan. Through this study a loading and organ-culturing system for ex vivo rabbit IVD motion segments was developed, which can be used to study the effects of mechanical stimulation on the biology of IVDs and the pathomechanics of IVD degeneration.
Collapse
|
28
|
Long RG, Torre OM, Hom WW, Assael DJ, Iatridis JC. Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair. J Biomech Eng 2016; 138:021007. [PMID: 26720265 DOI: 10.1115/1.4032353] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 02/02/2023]
Abstract
There is currently a lack of clinically available solutions to restore functionality to the intervertebral disk (IVD) following herniation injury to the annulus fibrosus (AF). Microdiscectomy is a commonly performed surgical procedure to alleviate pain caused by herniation; however, AF defects remain and can lead to accelerated degeneration and painful conditions. Currently available AF closure techniques do not restore mechanical functionality or promote tissue regeneration, and have risk of reherniation. This review determined quantitative design requirements for AF repair materials and summarized currently available hydrogels capable of meeting these design requirements by using a series of systematic PubMed database searches to yield 1500+ papers that were screened and analyzed for relevance to human lumbar in vivo measurements, motion segment behaviors, and tissue level properties. We propose a testing paradigm involving screening tests as well as more involved in situ and in vivo validation tests to efficiently identify promising biomaterials for AF repair. We suggest that successful materials must have high adhesion strength (∼0.2 MPa), match as many AF material properties as possible (e.g., approximately 1 MPa, 0. 3 MPa, and 30 MPa for compressive, shear, and tensile moduli, respectively), and have high tensile failure strain (∼65%) to advance to in situ and in vivo validation tests. While many biomaterials exist for AF repair, few undergo extensive mechanical characterization. A few hydrogels show promise for AF repair since they can match at least one material property of the AF while also adhering to AF tissue and are capable of easy implantation during surgical procedures to warrant additional optimization and validation.
Collapse
|
29
|
Krupkova O, Hlavna M, Amir Tahmasseb J, Zvick J, Kunz D, Ito K, Ferguson SJ, Wuertz-Kozak K. An Inflammatory Nucleus Pulposus Tissue Culture Model to Test Molecular Regenerative Therapies: Validation with Epigallocatechin 3-Gallate. Int J Mol Sci 2016; 17:ijms17101640. [PMID: 27689996 PMCID: PMC5085673 DOI: 10.3390/ijms17101640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
Organ cultures are practical tools to investigate regenerative strategies for the intervertebral disc. However, most existing organ culture systems induce severe tissue degradation with only limited representation of the in vivo processes. The objective of this study was to develop a space- and cost-efficient tissue culture model, which represents degenerative processes of the nucleus pulposus (NP). Intact bovine NPs were cultured in a previously developed system using Dyneema jackets. Degenerative changes in the NP tissue were induced either by the direct injection of chondroitinase ABC (1-20 U/mL) or by the diffusion of interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) (both 100 ng/mL) from the culture media. Extracellular matrix composition (collagens, proteoglycans, water, and DNA) and the expression of inflammatory and catabolic genes were analyzed. The anti-inflammatory and anti-catabolic compound epigallocatechin 3-gallate (EGCG, 10 µM) was employed to assess the relevance of the degenerative NP model. Although a single injection of chondroitinase ABC reduced the proteoglycan content in the NPs, it did not activate cellular responses. On the other hand, IL-1β and TNF-α significantly increased the mRNA expression of inflammatory mediators IL-6, IL-8, inducible nitric oxide synthase (iNOS), prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinases (MMP1, MMP3, and MMP13). The cytokine-induced gene expression in the NPs was ameliorated with EGCG. This study provides a proof of concept that inflammatory NP cultures, with appropriate containment, can be useful for the discovery and evaluation of molecular therapeutic strategies against early degenerative disc disease.
Collapse
Affiliation(s)
- Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
| | - Marian Hlavna
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
| | - Julie Amir Tahmasseb
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
| | - Joel Zvick
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
| | - Dominik Kunz
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
- Health Department, ZHAW-Zurich University of Applied Sciences, Technikumstrasse 71, CH-8401 Winterthur, Switzerland.
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands.
| | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, CH-8093 Zurich, Switzerland.
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Sci Rep 2016; 6:33836. [PMID: 27652931 PMCID: PMC5031983 DOI: 10.1038/srep33836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment.
Collapse
|
31
|
Grant M, Epure LM, Salem O, AlGarni N, Ciobanu O, Alaqeel M, Antoniou J, Mwale F. Development of a Large Animal Long-Term Intervertebral Disc Organ Culture Model That Includes the Bony Vertebrae for Ex Vivo Studies. Tissue Eng Part C Methods 2016; 22:636-43. [PMID: 27216856 DOI: 10.1089/ten.tec.2016.0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain. Testing potential therapeutics in the regeneration of the disc requires the use of model systems. Although several animal models have been developed to investigate IVD degeneration, they are technically challenging to prepare, expensive, present with limitations when performing biomechanical studies on the disc, and are impractical in large-scale screening of novel anabolic and scaffolding agents. An IVD organ culture system offers an inexpensive alternative. In the current paradigm, the bony endplates are removed to allow for nutrient diffusion and maintenance of disc cell viability. Although this is an excellent system for testing biologics, it results in concave cartilage endplates and, as such, requires special platens for loading purposes in a bioreactor as flat ones can overload the annular disc region leading to improper loading. Furthermore, the absence of bone makes it unsuitable for applying complex cyclic loading, a topic of interest in the study of chronic progressive degeneration, as multiaxial loading is more representative of daily forces encountered by the IVD. We have developed and validated a novel long-term IVD organ culture model that retains vertebral bone and is easy to prepare. Our model is ideal for testing potential drugs and alternate-based therapies, in addition to investigating the long-term effects of loading paradigms on disc degeneration and repair.
Collapse
Affiliation(s)
- Michael Grant
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Laura M Epure
- 2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Omar Salem
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Nizar AlGarni
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Ovidiu Ciobanu
- 2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Motaz Alaqeel
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - John Antoniou
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| | - Fackson Mwale
- 1 Department of Surgery, McGill University , Montreal, Canada .,2 Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada
| |
Collapse
|
32
|
Li Z, Lezuo P, Pattappa G, Collin E, Alini M, Grad S, Peroglio M. Development of an ex vivo cavity model to study repair strategies in loaded intervertebral discs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:2898-908. [PMID: 27037921 DOI: 10.1007/s00586-016-4542-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study was to compare two approaches for the delivery of biomaterials to partially nucleotomised intervertebral discs in whole organ culture under loading. Such models can help to bridge the gap between in vitro and in vivo studies by assessing (1) suitability of biomaterial delivery and defect closure methods, (2) effect of mechanical loading and (3) tissue response. METHODS Mechanical performance of bovine discs filled with a hyaluronan-based thermoreversible hydrogel delivered through the annulus fibrosus (AF) or the bony endplate (EP) was evaluated under cyclic axial loading in a bioreactor. The loading protocol was optimised to achieve physiological disc height changes in nucleotomised discs. A loading regime of 0.06 ± 0.02 MPa, 0.1 Hz, 6 h daily was applied on the nucleotomised discs. Disc height and stiffness were tracked for 5 days, followed by histological analyses. RESULTS Creation of a defect is less demanding for AF approach, while sealing is superior with the EP approach. Dynamic compressive stiffness is reduced following nucleotomy, with no significant difference between the two approaches. Disc height loss was higher, disc height recovery was lower and region around the defect with reduced cell viability was smaller for AF-approached than EP-approached discs. CONCLUSIONS Two alternative methods for biomaterial testing in whole organ culture under loading were developed. Such models bring insights on the ability of the biomaterial to restore the mechanical behaviour of the discs. From a clinical perspective, the cavity models can simulate treatment of nucleotomy after disc herniation in young patients, whereby the remaining nucleus pulposus is still functional and therefore at high risk of re-herniation, though the defect may differ from the clinical situation.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Patrick Lezuo
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Girish Pattappa
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Estelle Collin
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| |
Collapse
|
33
|
Li P, Shi R, Chen D, Gan Y, Xu Y, Song L, Li S, Zhou Q. Surgical removal and controlled trypsinization of the outer annulus fibrosus improves the bioactivity of the nucleus pulposus in a disc bioreactor culture. BMC Musculoskelet Disord 2016; 17:133. [PMID: 27000557 PMCID: PMC4802625 DOI: 10.1186/s12891-016-0990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The maintenance of nucleus pulposus (NP) viability in vitro is difficult. The annulus fibrosus (AF) pathway reflects one nutrient transport channel and may have an important effect on NP viability in disc organ cultures. The present study describes a feasible disc pre-treatment involving the AF and investigates its efficacy in improving NP bioactivity in an in vitro disc bioreactor culture. METHODS Rabbit discs that were randomly assigned to the experimental group (EG) were pretreated via the surgical removal and controlled trypsinization of the outer AF. The discs in the control group (CG) did not receive any special treatment. All discs were organ-cultured in a self-developed bioreactor. Solute transport into the central NP was measured using a methylene blue solution. On days 7 and 14, histological properties, cell viability, cell membrane damage, gene expression and matrix composition within the NP in these two groups were compared with each other and with the corresponding parameters of fresh NP samples. Additionally, the structures of the outer AF and the cartilage endplate (CEP) following pre-treatment were also assessed. RESULTS The outer AF in the EG became disorganized, but no specific changes occurred in the CEP or the inner AF following pre-treatment. The discs in the EG exhibited increased penetration of methylene blue into the central NP. On days 7 and 14, the NP bioactivity in the EG was improved compared with that of the CG in terms of cell viability, cell membrane damage, gene expression profile and matrix synthesis. Moreover, cell viability and matrix synthesis parameters in the EG were more similar to those of fresh samples than they were to the same parameters in the CG on day 14. CONCLUSIONS Using this disc pre-treatment, i.e., the surgical removal and controlled trypsinization of the outer AF, NP bioactivity was better maintained for up to 14 days in an in vitro disc bioreactor culture.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China
| | - Rongmao Shi
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Command, Kunming, Yunnan, 650032, China
| | - Daosen Chen
- The 91245 Troops of the Chinese People's Liberation Army, Huludao, Liaoning, 125000, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China
| | - Songtao Li
- Department of Orthopedic Surgery, No. 181 hospital of PLA, Guilin, Guangxi, 541002, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China.
| |
Collapse
|
34
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Stolworthy DK, Bowden AE, Roeder BL, Robinson TF, Holland JG, Christensen SL, Beatty AM, Bridgewater LC, Eggett DL, Wendel JD, Stieger-Vanegas SM, Taylor MD. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine. J Orthop Res 2015; 33:1776-83. [PMID: 26135031 DOI: 10.1002/jor.22968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/16/2015] [Indexed: 02/04/2023]
Abstract
Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Dean K Stolworthy
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah
| | - Anton E Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah
| | | | - Todd F Robinson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah
| | - Jacob G Holland
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - S Loyd Christensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Amanda M Beatty
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah
| | - Laura C Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Dennis L Eggett
- Department of Statistics, Brigham Young University, Provo, Utah
| | | | | | - Meredith D Taylor
- Department of Electrical Engineering, Brigham Young University, Provo, Utah
| |
Collapse
|
36
|
Teixeira GQ, Boldt A, Nagl I, Pereira CL, Benz K, Wilke HJ, Ignatius A, Barbosa MA, Gonçalves RM, Neidlinger-Wilke C. A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An Ex Vivo Model for Anti-inflammatory Drug and Cell Therapy. Tissue Eng Part C Methods 2015; 22:8-19. [PMID: 26565141 DOI: 10.1089/ten.tec.2015.0195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite for tissue regeneration and could possibly be achieved by strategies ranging from pharmacological to cell-based therapies. In this study, a proinflammatory disc organ culture model was established. Bovine caudal disc punches were needle punctured and additionally stimulated with lipopolysaccharide (10 μg/mL) or interleukin-1β (IL-1β, 10-100 ng/mL) for 48 h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an albumin/hyaluronan hydrogel. IL-1β-treated disc organ cultures showed a statistically significant upregulation of proinflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins (collagen II, aggrecan) were significantly downregulated. The injection of the anti-inflammatory drug, Df, was able to reduce the levels of proinflammatory cytokines and MMPs and surprisingly increase ECM protein levels. These results point the intradiscal application of anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the immunomodulatory role of MSCs on this model was also evaluated. Although a slight downregulation of IL-6 and IL-8 expression could be found, the variability among the five donors tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs to be further evaluated. The proinflammatory/degenerative IVD organ culture model established can be considered a suitable approach for testing novel therapeutic drugs, thus reducing the number of animals in in vivo experimentation. Moreover, this model can be used to address the cellular and molecular mechanisms that regulate inflammation in the IVD and their implications in tissue degeneration.
Collapse
Affiliation(s)
- Graciosa Q Teixeira
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany .,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Antje Boldt
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Ines Nagl
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Catarina Leite Pereira
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Karin Benz
- 5 Natural and Medical Sciences Institute (NMI), University of Tuebingen , Reutlingen, Germany
| | - Hans-Joachim Wilke
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Anita Ignatius
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Mário A Barbosa
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Raquel M Gonçalves
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Cornelia Neidlinger-Wilke
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| |
Collapse
|
37
|
Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus. Sci Rep 2015; 5:15662. [PMID: 26489762 PMCID: PMC4614807 DOI: 10.1038/srep15662] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
Low back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies fail to replace the normal disc in facilitating spinal movements and absorbing load. The focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 238 differentially expressed genes in the degenerative annulus fibrosus. Seventeen of the dysregulated molecular markers showed log2-fold changes greater than ±1.5. Various dysregulated cellular functions, including cell proliferation and inflammatory response, were identified. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon pathway. This study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation, which may affect cellular function in human degenerative disc.
Collapse
|
38
|
Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2015; 99:69-80. [PMID: 26384579 DOI: 10.1016/j.ymeth.2015.09.015] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/10/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023] Open
Abstract
Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.
Collapse
|
39
|
Stannard JT, Edamura K, Stoker AM, O'Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL. Development of a whole organ culture model for intervertebral disc disease. J Orthop Translat 2015; 5:1-8. [PMID: 30035069 PMCID: PMC5987001 DOI: 10.1016/j.jot.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/13/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Objective Whole organ in vitro intervertebral disc models have been associated with poor maintenance of cell viability. No previous studies have used a rotating wall vessel bioreactor for intervertebral disc explants culture. The purpose of this study was to develop and validate an in vitro model for the assessment of biological and biomechanical measures of intervertebral disc health and disease. Methods To this end, endplate-intervertebral disc-endplate whole organ explants were harvested from the tails of rats. For the injured group, the annulus fibrosus was penetrated with a 20G needle to the nucleus pulposus and aspirated. Explants were cultured in a rotating wall vessel bioreactor for 14 days. Results Cell viability and histologic assessments were performed at Day 0, Day 1, Day 7, and Day 14. Compressive mechanical properties of the intervertebral disc were assessed at Day 0 and Day 14. In the annulus fibrosus and nucleus pulposus cells, the uninjured group maintained high viability through 14 days of culture, whereas cell viability in annulus fibrosus and nucleus pulposus of the injured intervertebral discs was markedly lower at Day 7 and Day 14. Histologically, the uninjured intervertebral discs maintained cell viability and tissue morphology and architecture through 14 days, whereas the injured intervertebral discs showed areas of cell death, loss of extracellular matrix integrity, and architecture by Day 14. Stiffness values for uninjured intervertebral discs were similar at Day 0 and Day 14, whereas the stiffness for the injured intervertebral discs was approximately 2.5 times greater at Day 14. Conclusion These results suggest that whole organ intervertebral discs explants can be successfully cultured in a rotating wall vessel bioreactor to maintain cell viability and tissue architecture in both annulus fibrosus and nucleus pulposus for at least 14 days. In addition, the injury used produced pathologic changes consistent with those seen in degenerative intervertebral disc disease in humans. This model will permit further study into potential future treatments and other mechanisms of addressing intervertebral disc disease.
Collapse
Affiliation(s)
- James T. Stannard
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Kazuya Edamura
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Aaron M. Stoker
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Keiichi Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Clark T. Hung
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Theodore J. Choma
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Corresponding author. Comparative Orthopaedic Laboratory, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Walter BA, Illien-Jünger S, Nasser PR, Hecht AC, Iatridis JC. Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture. J Biomech 2014; 47:2095-101. [PMID: 24725441 DOI: 10.1016/j.jbiomech.2014.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48h of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.
Collapse
Affiliation(s)
- B A Walter
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - S Illien-Jünger
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P R Nasser
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A C Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Krock E, Rosenzweig DH, Chabot-Doré AJ, Jarzem P, Weber MH, Ouellet JA, Stone LS, Haglund L. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors. J Cell Mol Med 2014; 18:1213-25. [PMID: 24650225 PMCID: PMC4508160 DOI: 10.1111/jcmm.12268] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/29/2014] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration (IVD) can result in chronic low back pain, a common cause of morbidity and disability. Inflammation has been associated with IVD degeneration, however the relationship between inflammatory factors and chronic low back pain remains unclear. Furthermore, increased levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are both associated with inflammation and chronic low back pain, but whether degenerating discs release sufficient concentrations of factors that induce nociceptor plasticity remains unclear. Degenerating IVDs from low back pain patients and healthy, painless IVDs from human organ donors were cultured ex vivo. Inflammatory and nociceptive factors released by IVDs into culture media were quantified by enzyme-linked immunosorbent assays and protein arrays. The ability of factors released to induce neurite growth and nociceptive neuropeptide production was investigated. Degenerating discs release increased levels of tumour necrosis factor-α, interleukin-1β, NGF and BDNF. Factors released by degenerating IVDs increased neurite growth and calcitonin gene-related peptide expression, both of which were blocked by anti-NGF treatment. Furthermore, protein arrays found increased levels of 20 inflammatory factors, many of which have nociceptive effects. Our results demonstrate that degenerating and painful human IVDs release increased levels of NGF, inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse to induce neo-innervation and pain in vivo.
Collapse
Affiliation(s)
- Emerson Krock
- Orthopeadic Research Laboratory, Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada; McGill Scoliosis and Spine Research Group, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gawri R, Rosenzweig DH, Krock E, Ouellet JA, Stone LS, Quinn TM, Haglund L. High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Res Ther 2014; 16:R21. [PMID: 24457003 PMCID: PMC3979109 DOI: 10.1186/ar4449] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/13/2014] [Indexed: 02/02/2023] Open
Abstract
Introduction Excessive mechanical loading of intervertebral discs (IVDs) is thought to alter matrix properties and influence disc cell metabolism, contributing to degenerative disc disease and development of discogenic pain. However, little is known about how mechanical strain induces these changes. This study investigated the cellular and molecular changes as well as which inflammatory receptors and cytokines were upregulated in human intervertebral disc cells exposed to high mechanical strain (HMS) at low frequency. The impact of these metabolic changes on neuronal differentiation was also explored to determine a role in the development of disc degeneration and discogenic pain. Methods Isolated human annulus fibrosus (AF) and nucleus pulposus (NP) cells were exposed to HMS (20% cyclical stretch at 0.001 Hz) on high-extension silicone rubber dishes coupled to a mechanical stretching apparatus and compared to static control cultures. Gene expression of Toll-like receptors (TLRs), neuronal growth factor (NGF) and tumour necrosis factor α (TNFα) was assessed. Collected conditioned media were analysed for cytokine content and applied to rat pheocromocytoma PC12 cells for neuronal differentiation assessment. Results HMS caused upregulation of TLR2, TLR4, NGF and TNFα gene expression in IVD cells. Medium from HMS cultures contained elevated levels of growth-related oncogene, interleukin 6 (IL-6), IL-8, IL-15, monocyte chemoattractant protein 1 (MCP-1), MCP-3, monokine induced by γ interferon, transforming growth factor β1, TNFα and NGF. Exposure of PC12 cells to HMS-conditioned media resulted in both increased neurite sprouting and cell death. Conclusions HMS culture of IVD cells in vitro drives cytokine and inflammatory responses associated with degenerative disc disease and low-back pain. This study provides evidence for a direct link between cellular strain, secretory factors, neoinnervation and potential degeneration and discogenic pain in vivo.
Collapse
|
43
|
Gilbert HTJ, Hoyland JA, Richardson SM. Stem Cell Regeneration of Degenerated Intervertebral Discs: Current Status (Update). Curr Pain Headache Rep 2013; 17:377. [DOI: 10.1007/s11916-013-0377-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Rheological and dynamic integrity of simulated degenerated disc and consequences after cross-linker augmentation. Spine (Phila Pa 1976) 2013; 38:E1446-53. [PMID: 23873230 DOI: 10.1097/brs.0b013e3182a3d09d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in situ study using whole-organ culture system. OBJECTIVE To study the effect of disc degeneration at different stages on its rheological and dynamic properties and to investigate the efficacy of exogenous cross-linking therapy. SUMMARY OF BACKGROUND DATA Disc degeneration can involve protein denaturation or microdefects to the disc's collagen fiber network. A disc degeneration model using whole-organ culture technique can be effectively used for the screening of treatments of degenerated discs. Exogenous cross-linking therapy has been shown to enhance the mechanical properties of the disc by cross-linking collagen. However, the efficacy of this therapy on the degenerated disc is unclear. METHODS A total of 40 porcine thoracic discs were assigned to 5 groups: intact discs, moderately degenerated discs, moderately degenerated discs with cross-linker augmentation, severely degenerated discs, and severely degenerated discs with cross-linker augmentation. The disc degeneration was simulated by trypsin digestion and mechanical fatigue loading. Rheological properties, dynamic properties, water content, and histological analysis were conducted after a 7-day incubation. RESULTS The mechanical properties of moderate degenerated discs significantly decrease both in rheological and dynamic properties, and laminate structure disorganization was observed. Mechanical defects of severely degenerated discs resulted in disc height loss, an increase in the aggregate modulus and stiffness modulus, and a decrease in the damping coefficient, hydraulic permeability, and water content. Cross-linker augmentation significantly recovered mechanical properties of moderately degenerated discs and restored the water content compared with the intact disc. However, the augmentation did not fully repair the severely degenerated discs. CONCLUSION Trypsin-induced extracellular matrix damage resulted in a change of the disc's biomechanics. Cross-linker augmentation recovers the rheological and dynamic properties of moderately degenerated discs but not of the severely degenerated discs. The genipin cross-linker may be able to improve the proteoglycan depletion effect in the nucleus pulposus but may not be effective to restore the structural damage in the collagen molecule of the anulus fibrosus.
Collapse
|
45
|
Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS One 2013; 8:e72489. [PMID: 24013824 PMCID: PMC3755972 DOI: 10.1371/journal.pone.0072489] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT)] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.
Collapse
|
46
|
Hudson KD, Alimi M, Grunert P, Härtl R, Bonassar LJ. Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr Opin Biotechnol 2013; 24:872-9. [PMID: 23773764 DOI: 10.1016/j.copbio.2013.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/04/2023]
Abstract
Advanced intervertebral disc (IVD) degeneration, a major cause of back pain in the United States, is treated using invasive surgical intervention which may cause further degeneration is the future. Because of the limitations of traditional solutions, tissue engineering therapies have become increasingly popular. IVDs have two distinct regions, the inner nucleus pulposus (NP) which is jelly-like and rich in glycosaminoglycans (GAGs) and the outer annulus fibrosus (AF) which is organized into highly collagenous lamellae. Tissue engineered scaffolds, as well as whole organ culture systems have been developed. These culture systems may help elucidate the initial causes of disc degeneration. To create an effective tissue engineered therapy, researchers have focused on designing materials that mimic the properties of these two regions to be used independently or in concert. The few in vivo studies show promise in retaining disc height and MRI T2 signal intensity, the gold standard in determining disc health.
Collapse
Affiliation(s)
- Katherine D Hudson
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | | | | | | | | |
Collapse
|
47
|
Gruber HE, Rhyne AL, Hansen KJ, Phillips RC, Hoelscher GL, Ingram JA, Norton HJ, Hanley EN. Deleterious effects of discography radiocontrast solution on human annulus cell in vitro: changes in cell viability, proliferation, and apoptosis in exposed cells. Spine J 2012; 12:329-35. [PMID: 22424848 DOI: 10.1016/j.spinee.2012.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 11/18/2011] [Accepted: 02/07/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Carragee et al. have recently shown that modern discography injections are associated with subsequent acceleration of disc degeneration, herniation, and loss of disc height. Although needle puncture and pressurization are known trauma events that can create disc degeneration in animal models, another likely culprit in clinical discography-associated degeneration is a direct effect of the contrast agent itself on disc cells. PURPOSE To test the hypothesis that discography contrast solution would have a deleterious effect on human annulus cells in vitro. STUDY DESIGN An in vitro study using cultured human annulus cells to assay cell death, cell proliferation, and apoptosis. PATIENT SAMPLE Annulus cells from eight surgical disc specimens were evaluated (two Thompson Grade III discs and six Grade IV discs) for cell death and proliferation, and an additional five cultures were tested for apoptosis. OUTCOME MEASURES The proportion of dead and live cells, cell proliferation, and the proportion of apoptotic cells in control and experimental groups. METHODS After internal review board approval, experimental design used two sets of controls: untreated cells under our normal culture conditions (control) and a set with added glucose to adjust the osmolality to match respective Isovue radiocontrast solution treatments (glucose controls) using a freezing point osmometer. Treated cells received Isovue 200 (iopamidol, Isovue-M 200; Bracco Diagnostics, Inc., Princeton, NJ, USA) at 12.5, 25, 50, or 100 mg/mL. Twenty thousand cells/well were seeded in triplicate in 24 well plates, control or test media added, and incubated for 24 hours. At termination, dead cells were identified with trypan blue staining and percentage dead cells determined. Cells were also tested to determine the percentage of apoptotic cells after 50 or 100 mg/mL Isovue exposures. Proliferation assays used standard plate reader methods. Statistical analysis used repeated measures analysis of variance with SAS software (version 9.2; SAS Institute, Inc., Cary, NC, USA). RESULTS Analysis of cell death showed a significant increase in the percentage of dead cells with increasing Isovue concentrations compared with control cells (p=.018-.0008). Cell proliferation analyses showed significantly reduced division in Isovue-treated cells (p=.004), and apoptosis assays revealed a significantly higher proportion of apoptotic cells in cells exposed to 50 and 100 mg/mL Isovue (p=.016 and .0003, respectively). CONCLUSIONS Discography is used extensively in the evaluation of low back pain. Because the lifetime prevalence of disc degeneration and low back pain is high (80% in the general population), many patients may undergo this procedure. Data presented here show that cells exposed in vitro to a radiocontrast agent with adjustments for osmolality have significantly reduced proliferation, increased cell death, and increased programmed cell death (apoptosis). In light of the well-recognized age- and degeneration-related decrease in disc cell numbers, it is possible that radiocontrast exposure may be contributing significantly to disc cell loss with subsequent progression of disc degeneration. Findings presented here provide a plausible cell-based explanation for the previously reported disc degeneration in patients receiving discography contrast solutions.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Orthopaedic Research Biology, Cannon Research, Room 304, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Iatridis JC, Hecht AC. Commentary: Does needle injection cause disc degeneration? News in the continuing debate regarding pathophysiology associated with intradiscal injections. Spine J 2012; 12:336-8. [PMID: 22656311 PMCID: PMC3508515 DOI: 10.1016/j.spinee.2012.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/06/2012] [Indexed: 02/03/2023]
Affiliation(s)
- James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1188, New York, NY 10029-6574, USA.
| | | |
Collapse
|
49
|
Paul CPL, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, Helder MN, van Royen BJ, Mullender MG. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. PLoS One 2012; 7:e33147. [PMID: 22427972 PMCID: PMC3302815 DOI: 10.1371/journal.pone.0033147] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 02/09/2012] [Indexed: 01/07/2023] Open
Abstract
Low-back pain (LBP) is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD) is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions. In order to study mechanical loading effects, degeneration-associated processes and/or potential regenerative therapies in IVDs, it is imperative to maintain the IVDs' structural integrity. While in vivo models provide comprehensive insight in IVD biology, an accompanying organ culture model can focus on a single factor, such as loading and may serve as a prescreening model to reduce life animal testing. In the current study we examined the feasibility of organ culture of caprine lumbar discs, with the hypothesis that a simulated-physiological load will optimally preserve IVD properties. Lumbar caprine IVDs (n = 175) were cultured in a bioreactor up to 21 days either without load, low dynamic load (LDL), or with simulated-physiological load (SPL). IVD stiffness was calculated from measurements of IVD loading and displacement. IVD nucleus, inner- and outer annulus were assessed for cell viability, cell density and gene expression. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and total collagen content. IVD biomechanical properties did not change significantly with loading conditions. With SPL, cell viability, cell density and gene expression were preserved up to 21 days. Both unloaded and LDL resulted in decreased cell viability, cell density and significant changes in gene expression, yet no differences in ECM content were observed in any group. In conclusion, simulated-physiological loading preserved the native properties of caprine IVDs during a 21-day culture period. The characterization of caprine IVD response to culture in the LDCS under SPL conditions paves the way for controlled analysis of degeneration- and regeneration-associated processes in the future.
Collapse
Affiliation(s)
- Cornelis P. L. Paul
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - Hendrik A. Zuiderbaan
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Behrouz Zandieh Doulabi
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Faculty of Oral Cell Biology, Academic Centre of Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Albert J. van der Veen
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter M. van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Theo H. Smit
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco N. Helder
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Barend J. van Royen
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Margriet G. Mullender
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Ponnappan RK, Markova DZ, Antonio PJD, Murray HB, Vaccaro AR, Shapiro IM, Anderson DG, Albert TJ, Risbud MV. An organ culture system to model early degenerative changes of the intervertebral disc. Arthritis Res Ther 2011; 13:R171. [PMID: 22018279 PMCID: PMC3308106 DOI: 10.1186/ar3494] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 09/14/2011] [Accepted: 10/21/2011] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Back pain, a significant source of morbidity in our society, is related to the degenerative changes of the intervertebral disc. At present, the treatment of disc disease consists of therapies that are aimed at symptomatic relief. This shortcoming stems in large part from our lack of understanding of the biochemical and molecular events that drive the disease process. The goal of this study is to develop a model of early disc degeneration using an organ culture. This approach is based on our previous studies that indicate that organ culture closely models molecular events that occur in vivo in an ex vivo setting. METHODS To mimic a degenerative insult, discs were cultured under low oxygen tension in the presence of TNF-α, IL-1β and serum limiting conditions. RESULTS Treatment resulted in compromised cell survival and changes in cellular morphology reminiscent of degeneration. There was strong suppression in the expression of matrix proteins including collagen types 1, 2, 6 and 9, proteoglycans, aggrecan and fibromodulin. Moreover, a strong induction in expression of catabolic matrix metalloproteinases (MMP) 3, 9 and 13 with a concomitant increase in aggrecan degradation was seen. An inductive effect on NGF expression was also noticed. Although similar, nucleus pulposus and annulus fibrosus tissues showed some differences in their response to the treatment. CONCLUSIONS Results of this study show that perturbations in microenvironmental factors result in anatomical and gene expression change within the intervertebral disc that may ultimately compromise cell function and induce pathological deficits. This system would be a valuable screening tool to investigate interventional strategies aimed at restoring disc cell function.
Collapse
Affiliation(s)
- Ravi K Ponnappan
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|