1
|
Shi D, Wang B, Li H, Lian Y, Ma Q, Liu T, Cao M, Ma Y, Shi L, Yuan W, Shi J, Chu Y. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience 2024; 27:109265. [PMID: 38450158 PMCID: PMC10915626 DOI: 10.1016/j.isci.2024.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.
Collapse
Affiliation(s)
- Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Department of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Haoyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qiuyi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mutian Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
2
|
Wang B, Wang W, Li Q, Guo T, Yang S, Shi J, Yuan W, Chu Y. High Expression of Microtubule-associated Protein TBCB Predicts Adverse Outcome and Immunosuppression in Acute Myeloid Leukemia. J Cancer 2023; 14:1707-1724. [PMID: 37476188 PMCID: PMC10355208 DOI: 10.7150/jca.84215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/03/2023] [Indexed: 07/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating blood cancer with high heterogeneity and ill-fated outcome. Despite numerous advances in AML treatment, the prognosis remains poor for a significant proportion of patients. Consequently, it is necessary to accurately and comprehensively identify biomarkers as soon as possible to enhance the efficacy of diagnosis, prognosis and treatment of AML. In this study, we aimed to identify prognostic markers of AML by analyzing the cohorts from TCGA-LAML database and GEO microarray datasets. Interestingly, the transcriptional level of microtubule-associated protein TBCB in AML patients was noticeably increased when compared with normal individuals, and this was verified in two independent cohorts (GSE9476 and GSE13159) and with our AML patients. Furthermore, univariate and multivariate regression analysis revealed that high TBCB expression was an independent poor prognostic factor for AML. GO and GSEA enrichment analysis hinted that immune-related signaling pathways were enriched in up-regulated DEGs between two populations separated by the median expression level of TBCB. By constructing a protein-protein interaction network, we obtained six hub genes, all of which are immune-related molecules, and their expression levels were positively linked to that of TBCB. In addition, the high expression of three hub genes was significantly associated with a poor prognosis in AML. Moreover, we found that the tumor microenvironment in AML with high TBCB expression tended to be infiltrated by NK cells, especially CD56bright NK cells. The transcriptional levels of NK cell inhibitory receptors and their ligands were positively related to that of TBCB, and their high expression levels also predicted poor prognosis in AML. Notably, we found that the down-regulation of TBCB suppressed cell proliferation in AML cell lines by enhancing the apoptosis and cell cycle arrest. Finally, drug sensitivity prediction illustrated that cells with high TBCB expression were more responsive to ATRA and midostaurin but resistant to cytarabine, dasatinib, and imatinib. In conclusion, our findings shed light on the feasibility of TBCB as a potential predictor of poor outcome and to be an alternative target of treatment in AML.
Collapse
Affiliation(s)
- Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wenjun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qiaoli Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Regenerative Medicine Clinic, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
3
|
Hermouet S. Mutations, inflammation and phenotype of myeloproliferative neoplasms. Front Oncol 2023; 13:1196817. [PMID: 37284191 PMCID: PMC10239955 DOI: 10.3389/fonc.2023.1196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Knowledge on the myeloproliferative neoplasms (MPNs) - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) - has accumulated since the discovery of the JAK/STAT-activating mutations associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL and CALR mutations, found in ET and PMF. The intriguing lack of disease specificity of these mutations, and of the chronic inflammation associated with MPNs, triggered a quest for finding what precisely determines that MPN patients develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have been extensively studied, as well as the role played by these mutations in inflammation, and several pathogenic models have been proposed. In parallel, different types of drugs have been tested in MPNs (JAK inhibitors, interferons, hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review aims to present current, detailed knowledge on the pathogenic mechanisms specifically associated with PV, ET or PMF that may pave the way for the development of novel, curative therapies.
Collapse
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
4
|
Wang Z, Liu W, Wang D, Yang E, Li Y, Li Y, Sun Y, Wang M, Lv Y, Hu X. TET2 Mutation May Be More Valuable in Predicting Thrombosis in ET Patients Compared to PV Patients: A Preliminary Report. J Clin Med 2022; 11:jcm11226615. [PMID: 36431092 PMCID: PMC9699342 DOI: 10.3390/jcm11226615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Thrombosis is a common complication of myeloproliferative neoplasm (MPN), and it is a major cause of disability and death. With the development of next-generation gene-sequencing technology, the relationship between non-driver mutations and thrombotic risk factors has also attracted considerable attention. To analyze the risk factors of thrombosis in patients with essential thrombocythemia (ET) and polycythemia vera (PV), we retrospectively analyzed the clinical data of 125 MPN patients (75 ET and 50 PV) and performed a multivariate analysis of the risk factors of thrombosis using a Cox proportional risk model. Among the 125 patients, 35 (28.0%) had thrombotic events, and the incidence of thrombotic events was 21.3% and 38.0% in ET and PV patients, respectively. In ET patients, the multivariate analysis showed that a TET2 mutation and history of remote thrombosis were independent risk factors for thrombosis in ET patients, with an HR of 4.1 (95% CI: 1.40-12.01; p = 0.01) for TET2 mutation and 6.89 (95% CI: 1.45-32.68; p = 0.015) for a history of remote thrombosis. In PV patients, the multivariate analysis presented the neutrophil-to-lymphocyte ratio (NLR) (HR: 4.77, 95% CI: 1.33-17.16; p = 0.017) and a history of remote thrombosis (HR: 1.67, 95% CI: 1.03-1.32; p = 0.014) as independent risk factors for thrombosis, with no significant change in the risk of thrombosis in patients with TET2 mutations. A further analysis of the clinical characteristics and coagulation occurring in ET patients with a TET2 mutation revealed that the values of age and D-dimer were significantly higher and antithrombin III was significantly lower in TET2-mutated ET patients compared to TET2-unmutated patients. In summary, TET2 mutation may be more valuable in predicting thrombosis in ET patients than in PV patients. ET patients with a TET2 mutation are older and present differences in coagulation compared to TET2-unmutated patients.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Dehao Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Erpeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujin Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yumeng Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Sun
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Correspondence: (Y.L.); (X.H.)
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Correspondence: (Y.L.); (X.H.)
| |
Collapse
|
5
|
Nakauchi Y, Azizi A, Thomas D, Corces MR, Reinisch A, Sharma R, Cruz Hernandez D, Köhnke T, Karigane D, Fan A, Martinez-Krams D, Stafford M, Kaur S, Dutta R, Phan P, Ediriwickrema A, McCarthy E, Ning Y, Phillips T, Ellison CK, Guler GD, Bergamaschi A, Ku CJ, Levy S, Majeti R. The Cell Type-Specific 5hmC Landscape and Dynamics of Healthy Human Hematopoiesis and TET2-Mutant Preleukemia. Blood Cancer Discov 2022; 3:346-367. [PMID: 35532363 PMCID: PMC9338760 DOI: 10.1158/2643-3230.bcd-21-0143] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
The conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is a key step in DNA demethylation that is mediated by ten-eleven translocation (TET) enzymes, which require ascorbate/vitamin C. Here, we report the 5hmC landscape of normal hematopoiesis and identify cell type-specific 5hmC profiles associated with active transcription and chromatin accessibility of key hematopoietic regulators. We utilized CRISPR/Cas9 to model TET2 loss-of-function mutations in primary human hematopoietic stem and progenitor cells (HSPC). Disrupted cells exhibited increased colonies in serial replating, defective erythroid/megakaryocytic differentiation, and in vivo competitive advantage and myeloid skewing coupled with reduction of 5hmC at erythroid-associated gene loci. Azacitidine and ascorbate restored 5hmC abundance and slowed or reverted the expansion of TET2-mutant clones in vivo. These results demonstrate the key role of 5hmC in normal hematopoiesis and TET2-mutant phenotypes and raise the possibility of utilizing these agents to further our understanding of preleukemia and clonal hematopoiesis. SIGNIFICANCE We show that 5-hydroxymethylation profiles are cell type-specific and associated with transcriptional abundance and chromatin accessibility across human hematopoiesis. TET2 loss caused aberrant growth and differentiation phenotypes and disrupted 5hmC and transcriptional landscapes. Treatment of TET2 KO HSPCs with ascorbate or azacitidine reverted 5hmC profiles and restored aberrant phenotypes. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- University of California Irvine School of Medicine, Irvine, California
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
| | - M. Ryan Corces
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- University of California Irvine School of Medicine, Irvine, California
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Gladstone Institute of Neurological Disease, San Francisco, California
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rajiv Sharma
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - David Cruz Hernandez
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- MRC Molecular Haematology Unit and Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Daiki Karigane
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Amy Fan
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Daniel Martinez-Krams
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ritika Dutta
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Yuhong Ning
- Bluestar Genomics Inc., San Mateo, California
| | | | | | | | | | - Chin-Jen Ku
- Bluestar Genomics Inc., San Mateo, California
| | - Samuel Levy
- Bluestar Genomics Inc., San Mateo, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
6
|
Yang T, Liu X, Kumar SK, Jin F, Dai Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev 2021; 51:100872. [PMID: 34384602 DOI: 10.1016/j.blre.2021.100872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of DNA methylation in B cells has been observed during their neoplastic transformation and therefore closely associated with various B-cell malignancies including multiple myeloma (MM), a malignancy of terminally differentiated plasma cells. Emerging evidence has unveiled pronounced alterations in DNA methylation in MM, including both global and gene-specific changes that can affect genome stability and gene transcription. Moreover, dysregulated expression of DNA methylation-modifying enzymes has been related with myelomagenesis, disease progression, and poor prognosis. However, the functional roles of the epigenetic abnormalities involving DNA methylation in MM remain elusive. In this article, we review current understanding of the alterations in DNA methylome and DNA methylation modifiers in MM, particularly focusing on DNA methyltransferases (DNMTs) and tet methylcytosine dioxygenases (TETs). We also discuss how these DNA methylation modifiers may be regulated and function in MM cells, therefore providing a rationale for developing novel epigenetic therapies targeting DNA methylation in MM.
Collapse
Affiliation(s)
- Ting Yang
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| |
Collapse
|
7
|
Erratum: Loss of Tet2 affects platelet function but not coagulation in mice. BLOOD SCIENCE 2021; 3:103. [PMID: 35404368 PMCID: PMC8974943 DOI: 10.1097/bs9.0000000000000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
[This corrects the article DOI: 10.1097/BS9.0000000000000055.].
Collapse
|