1
|
Wang H, Qin K, Shi D, Wu P, Hao X, Liu H, Gao J, Li J, Wu Z, Li S. A new 68Ga-labeled ornithine derivative for PET imaging of ornithine metabolism in tumors. Amino Acids 2023:10.1007/s00726-023-03250-z. [PMID: 36809562 DOI: 10.1007/s00726-023-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Ornithine metabolism plays a vital role in tumorigenesis. For cancer cells, ornithine is mainly used as a substrate for ornithine decarboxylase (ODC) for the synthesis of polyamines. The ODC as a key enzyme of polyamine metabolism has become an important target for cancer diagnosis and treatment. To non-invasively detect the levels of ODC expression in malignant tumors, we have synthesized a novel 68Ga-labeled ornithine derivative ([68Ga]Ga-NOTA-Orn). The synthesis time of [68Ga]Ga-NOTA-Orn was about 30 min with a radiochemical yield of 45-50% (uncorrected), and the radiochemical purity was > 98%. [68Ga]Ga-NOTA-Orn was stable in saline and rat serum. Cellular uptake and competitive inhibition assays using DU145 and AR42J cells demonstrated that the transport pathway of [68Ga]Ga-NOTA-Orn was similar to that of L-ornithine, and it could interact with the ODC after transporting into the cell. Biodistribution and micro-positron emission tomography (Micro-PET) imaging studies showed that [68Ga]Ga-NOTA-Orn exhibited rapid tumor uptake and was rapidly excreted through the urinary system. All above results suggested that [68Ga]Ga-NOTA-Orn is a novel amino acid metabolic imaging agent with great potential of tumor diagnosis.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Kaixin Qin
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Dongmei Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xinzhong Hao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jie Gao
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Jianguo Li
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
2
|
Rojas-Luna L, Posadas-Modragón A, Avila-Trejo AM, Alcántara-Farfán V, Rodríguez-Páez LI, Santiago-Cruz JA, Pastor-Alonso MO, Aguilar-Faisal JL. Inhibition of chikungunya virus replication by N-ω-Chloroacetyl-L-Ornithine in C6/36, Vero cells and human fibroblast BJ. Antivir Ther 2023; 28:13596535231155263. [PMID: 36724136 DOI: 10.1177/13596535231155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Polyamines are involved in several cellular processes and inhibiting their synthesis affects chikungunya virus (CHIKV) replication and translation, and, therefore, reduces the quantity of infectious viral particles produced. In this study, we evaluated the inhibition of CHIKV replication by N-ω-chloroacetyl-L-ornithine (NCAO), a competitive inhibitor of ornithine decarboxylase, an enzyme which is key in the biosynthesis of polyamines (PAs). METHODS The cytotoxicity of NCAO was evaluated by MTT in cell culture. The inhibitory effect of CHIKV replication by NCAO was evaluated in Vero and C6/36 cells. The intracellular polyamines were quantified by HPLC in CHIKV-infected cells. We evaluated the yield of CHIKV in titres via the addition of PAs in Vero, C6/36 cells and human fibroblast BJ treated with NCAO. RESULTS We found that NCAO inhibits the replication of CHIKV in Vero and C6/36 cells in a dose-dependent manner, causing a decrease in the PFU/mL of at least 4 logarithms (p < 0.01) in both cell lines. Viral yields were restored by the addition of exogenous polyamines, mainly putrescine. The HPLC analyses showed that NCAO decreases the content of intracellular PAs, even though it is predominantly spermidines and spermines which are present in infected cells. Inhibition of CHIKV replication was observed in human fibroblast BJ treated with 100 μM NCAO 24 h before and 48 h after the infection at a MOI 1. CONCLUSIONS NCAO inhibits CHIKV replication by depleting the intracellular polyamines in Vero, C6/36 cells and human fibroblast BJ, suggesting that this compound is a possible antiviral agent for CHIKV.
Collapse
Affiliation(s)
- Lucero Rojas-Luna
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Posadas-Modragón
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - Amanda M Avila-Trejo
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Bioquímica Farmacológica, 61735Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Verónica Alcántara-Farfán
- Laboratorio de Bioquímica Farmacológica, 61735Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lorena I Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, 61735Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Angel Santiago-Cruz
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marvin O Pastor-Alonso
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| | - J Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
3
|
Zhang J, Tao B, Chong Y, Ma S, Wu G, Zhu H, Zhao Y, Zhao S, Niu M, Zhang S, Wang T, Yang S, Qiao W, Vuong AM, Li J, Zhu D, Tao W. Ornithine and breast cancer: a matched case-control study. Sci Rep 2020; 10:15502. [PMID: 32968187 PMCID: PMC7511971 DOI: 10.1038/s41598-020-72699-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
In vivo and vitro evidence indicates that ornithine and its related metabolic products play a role in tumor development. Whether ornithine is associated with breast cancer in humans is still unclear. We examined the association between circulating ornithine levels and breast cancer in females. This 1:1 age-matched case–control study identified 735 female breast cancer cases and 735 female controls without breast cancer. All cases had a pathological test to ascertain a breast cancer diagnosis. The controls were ascertained using pathologic testing, clinical examinations, and/or other tests. Fasting blood samples were used to measure ornithine levels. The average age for cases and controls were 49.6 years (standard deviation [SD] 8.7 years) and 48.9 years (SD 8.7 years), respectively. Each SD increase in ornithine levels was associated with a 12% reduction of breast cancer risk (adjusted odds ratio [OR] 0.88; 95% confidence interval [CI] 0.79–0.97). The association between ornithine and breast cancer did not differ by pathological stages of diagnosis or tumor grades (all P for trend > 0.1). We observed no effect measure modification by molecular subtypes (P for interaction = 0.889). In conclusion, higher ornithine levels were associated with lower breast cancer risk in females.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Baihui Tao
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Yiran Chong
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Shuang Ma
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Gang Wu
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Hailong Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Yi Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Shitao Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Mengmeng Niu
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Shutian Zhang
- General Surgery/Liver and Pancreas Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tianyi Wang
- General Surgery/Liver and Pancreas Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shuman Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Wenjing Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, USA
| | - Jincheng Li
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Demiao Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China
| | - Wei Tao
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, 5-2 Renmin Street, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
4
|
Bojarska J, Remko M, Breza M, Madura ID, Kaczmarek K, Zabrocki J, Wolf WM. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. Molecules 2020; 25:E1135. [PMID: 32138329 PMCID: PMC7179192 DOI: 10.3390/molecules25051135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.
Collapse
Affiliation(s)
- Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Milan Remko
- Remedika, Sustekova, 1 85104 Bratislava, Slovakia;
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovakia;
| | - Izabela D. Madura
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland;
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| |
Collapse
|