1
|
Koutsaviti A, Kvasnicová M, Gonzalez G, Štenclová T, Agusti S, Duarte CM, Rarová L, Strnad M, Roussis V, Ioannou E. Isolation and Bioactivity Evaluation of Sesquiterpenes from an Alcyonarian of the Genus Lemnalia from the Saudi Arabian Red Sea. Chem Biodivers 2024; 21:e202400235. [PMID: 38412304 DOI: 10.1002/cbdv.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024]
Abstract
Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated in vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compound 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.
Collapse
Affiliation(s)
- Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Marie Kvasnicová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Neurology, University Hospital in Olomouc, Zdravotníků 248/7, Olomouc, CZ-77900, Czech Republic
| | - Tereza Štenclová
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lucie Rarová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Neurology, University Hospital in Olomouc, Zdravotníků 248/7, Olomouc, CZ-77900, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
- Department of Neurology, University Hospital in Olomouc, Zdravotníků 248/7, Olomouc, CZ-77900, Czech Republic
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| |
Collapse
|
2
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Agrawal PK, Agrawal C, Blunden G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022; 27:3828. [PMID: 35744958 PMCID: PMC9231170 DOI: 10.3390/molecules27123828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/23/2022] Open
Abstract
As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
4
|
Ahmad I, Ali R, dos Santos Lopes MJ, Steinmetz CHD, Haq FU. Artemisia annua L. and Its Derivatives: Their Antiviral Effects on COVID-19 and Possible Mechanisms. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2022; 7:54-58. [DOI: 10.14218/jerp.2021.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
The Antimalaria Drug Artesunate Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication via Activating AMPK and Nrf2/HO-1 Signaling Pathways. J Virol 2021; 96:e0148721. [PMID: 34787456 DOI: 10.1128/jvi.01487-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes significant economic losses to the pork industry worldwide. Currently, vaccine strategies provide limited protection against PRRSV transmission, and no effective drug is commercially available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV pandemics. This study showed that artesunate (AS), one of the antimalarial drugs, potently suppressed PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs) at micromolar concentrations. Furthermore, we demonstrated that this suppression was closely associated with AS-activated AMPK (energy homeostasis) and Nrf2/HO-1 (inflammation) signaling pathways. AS treatment promoted p-AMPK, Nrf2 and HO-1 expression, and thus inhibited PRRSV replication in Marc-145 and PAM cells in a time- and dose-dependent manner. These effects of AS were reversed when AMPK or HO-1 gene was silenced by siRNA. In addition, we demonstrated that AMPK works upstream of Nrf2/HO-1 as its activation by AS is AMPK-dependent. Adenosine phosphate analysis showed that AS activates AMPK via improving AMP/ADP:ATP ratio rather than direct interaction with AMPK. Altogether, our findings indicate that AS could be a promising novel therapeutics for controlling PRRSV and that its anti-PRRSV mechanism, which involves the functional link between energy homeostasis and inflammation suppression pathways, may provide opportunities for developing novel antiviral agents. Importance Porcine reproductive and respiratory syndrome virus (PRRSV) infections have been continuously threatened the pork industry worldwide. Vaccination strategies provide very limited protection against PRRSV infection, and no effective drug is commercially available. We show that artesunate (AS), one of the antimalarial drugs, is a potent inhibitor against PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs). Furthermore, we demonstrate that AS inhibits PRRSV replication via activation of AMPK-dependent Nrf2/HO-1 signaling pathways, revealing a novel link between energy homeostasis (AMPK) and inflammation suppression (Nrf2/HO-1) during viral infection. Therefore, we believe that AS may be a promising novel therapeutics for controlling PRRSV, and its anti-PRRSV mechanism may provide a potential strategy to develop novel antiviral agents.
Collapse
|
6
|
Moon SJ, Jeong BC, Kim HJ, Lim JE, Kim HJ, Kwon GY, Jackman JA, Kim JH. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Am J Cancer Res 2021; 11:958-973. [PMID: 33391515 PMCID: PMC7738850 DOI: 10.7150/thno.51478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Aberrant androgen receptor (AR) signaling via full-length AR (AR-FL) and constitutively active AR variant 7 (AR-V7) plays a key role in the development of castration-resistant prostate cancer (CRPC) and resistance to hormone therapies. Simultaneous targeting of AR-FL and AR-V7 may be a promising strategy to overcome resistance to hormone therapy. This study aimed to identify novel drug candidates co-targeting AR-FL and AR-V7 activities and elucidate their molecular mechanism of anti-CRPC activities. Methods: Using a CRPC cell-based reporter assay system, we screened a small library of antimalarial agents to explore the possibility of repositioning them for CRPC treatment and identified bruceantin (BCT) as a potent anti-CRPC drug candidate. A series of cell-based, molecular, biochemical, and in vivo approaches were performed to evaluate the therapeutic potential and molecular mechanism of BCT in CRPC. These approaches include reporter gene assays, cell proliferation, RNA-seq, qRT-PCR, mouse xenografts, co-immunoprecipitation, GST pull-down, immobilized BCT pull-down, molecular modeling, and bioinformatic analyses. Results: We identified BCT as a highly potent inhibitor co-targeting AR-FL and AR-V7 activity. BCT inhibits the transcriptional activity of AR-FL/AR-V7 and downregulates their target genes in CRPC cells. In addition, BCT efficiently suppresses tumor growth and metastasis of CRPC cells. Mechanistically, BCT disrupts the interaction of HSP90 with AR-FL/AR-V7 by directly binding to HSP90 and inhibits HSP90 chaperone function, leading to degradation of AR-FL/AR-V7 through the ubiquitin-proteasome system. Clinically, HSP90 expression is upregulated and correlated with AR/AR-V7 levels in CRPC. Conclusion: Our findings suggest that BCT could serve as a promising therapeutic candidate against CRPC and highlight the potential benefit of targeting AR-FL/AR-V7-HSP90 axis to overcome resistance caused by aberrant AR-FL/AR-V7 signaling.
Collapse
|
7
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
8
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Lu BW, Xie LK. Potential applications of artemisinins in ocular diseases. Int J Ophthalmol 2019; 12:1793-1800. [PMID: 31741871 DOI: 10.18240/ijo.2019.11.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Artemisinin, also named qinghaosu, is a family of sesquiterpene trioxane lactone originally derived from the sweet wormwood plant (Artemisia annua), which is a traditional Chinese herb that has been universally used as anti-malarial agents for many years. Evidence has accumulated during the past few years which demonstrated the protective effects of artemisinin and its derivatives (artemisinins) in several other diseases beyond malaria, including cancers, autoimmune disorders, inflammatory diseases, viral and other parasite-related infections. Recently, this long-considered anti-malarial agent has been proved to possess anti-oxidant, anti-inflammatory, anti-apoptotic and anti-excitotoxic properties, which make it a potential treatment option for the ocular environment. In this review, we first described the overview of artemisinins, highlighting the activity of artemisinins to other diseases beyond malaria and the mechanisms of these actions. We then emphasized the main points of published results of using artemisinins in targeting ocular disorders, including uveitis, retinoblastoma, retinal neurodegenerative diseases and ocular neovascularization. To conclude, we believe that artemisinins could also be used as a promising therapeutic drug for ocular diseases, especially retinal vascular diseases in the near future.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100400, China
| | - Li-Ke Xie
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100400, China
| |
Collapse
|
10
|
Artemisinin Attenuated Hydrogen Peroxide (H 2O 2)-Induced Oxidative Injury in SH-SY5Y and Hippocampal Neurons via the Activation of AMPK Pathway. Int J Mol Sci 2019; 20:ijms20112680. [PMID: 31151322 PMCID: PMC6600327 DOI: 10.3390/ijms20112680] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress is believed to be one of the main causes of neurodegenerative diseases such as Alzheimer’s disease (AD). The pathogenesis of AD is still not elucidated clearly but oxidative stress is one of the key hypotheses. Here, we found that artemisinin, an anti-malarial Chinese medicine, possesses neuroprotective effects. However, the antioxidative effects of artemisinin remain to be explored. In this study, we found that artemisinin rescued SH-SY5Y and hippocampal neuronal cells from hydrogen peroxide (H2O2)-induced cell death at clinically relevant doses in a concentration-dependent manner. Further studies showed that artemisinin significantly restored the nuclear morphology, improved the abnormal changes in intracellular reactive oxygen species (ROS), reduced the mitochondrial membrane potential, and caspase-3 activation, thereby attenuating apoptosis. Artemisinin also stimulated the phosphorylation of the adenosine monophosphate -activated protein kinase (AMPK) pathway in SH-SY5Y cells in a time- and concentration-dependent manner. Inhibition of the AMPK pathway attenuated the protective effect of artemisinin. These data put together suggested that artemisinin has the potential to protect neuronal cells. Similar results were obtained in primary cultured hippocampal neurons. Cumulatively, these results indicated that artemisinin protected neuronal cells from oxidative damage, at least in part through the activation of AMPK. Our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.
Collapse
|
11
|
Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological Activities of Artemisinin Derivatives Beyond Malaria. Curr Top Med Chem 2019; 19:205-222. [DOI: 10.2174/1568026619666190122144217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Artemisinin is isolated from Artemisia annua L. with peroxide-containing sesquiterpene lactone structure. Because of its unique structural characteristics and promising anticancer, antivirus activities, it has recently received increasing attention. The aim of this review is to summarize recent discoveries of artemisinin's novel derivatives with new pharmaceutical effects beyond malaria with a focus on its antitumor and antivirus activity, as well as potential results of combination therapy with other clinical drugs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Guozheng Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Qingjie Zhao
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
Lin SP, Li W, Winters A, Liu R, Yang SH. Artemisinin Prevents Glutamate-Induced Neuronal Cell Death Via Akt Pathway Activation. Front Cell Neurosci 2018; 12:108. [PMID: 29731711 PMCID: PMC5919952 DOI: 10.3389/fncel.2018.00108] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Artemisinin is an anti-malarial drug that has been in use for almost half century. Recently, novel biological effects of artemisinin on cancer, inflammation-related disorders and cardiovascular disease were reported. However, neuroprotective actions of artemisinin against glutamate-induced oxidative stress have not been investigated. In the current study, we determined the effect of artemisinin against oxidative insult in HT-22 mouse hippocampal cell line. We found that pretreatment of artemisinin declined reactive oxygen species (ROS) production, attenuated the collapse of mitochondrial membrane potential induced by glutamate and rescued HT-22 cells from glutamate-induced cell death. Furthermore, our study demonstrated that artemisinin activated Akt/Bcl-2 signaling and that neuroprotective effect of artemisinin was blocked by Akt-specific inhibitor, MK2206. Taken together, our study indicated that artemisinin prevented neuronal HT-22 cell from glutamate-induced oxidative injury by activation of Akt signaling pathway.
Collapse
Affiliation(s)
- Shao-Peng Lin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Emergency, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|