1
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Manoharan S, Ying Ying L. Pyrimethamine reduced tumour growth in pre-clinical cancer models: a systematic review to identify potential pre-clinical studies for subsequent human clinical trials. Biol Methods Protoc 2024; 9:bpae021. [PMID: 38618181 PMCID: PMC11014785 DOI: 10.1093/biomethods/bpae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Pyrimethamine (PYR), a STAT3 inhibitor, has been shown to reduce tumour burden in mouse cancer models. It is unclear how much of a reduction occurred or whether the PYR dosages and route of administration used in mice were consistent with the FDA's recommendations for drug repurposing. Search engines such as ScienceDirect, PubMed/MEDLINE, and other databases, including Google Scholar, were thoroughly searched, as was the reference list. The systematic review includes fourteen (14) articles. The risk of bias (RoB) was assessed using SYRCLE's guidelines. Due to the heterogeneity of the data, no meta-analysis was performed. According to the RoB assessment, 13/14 studies fall into the moderate RoB category, with one study classified as high RoB. None adhered to the ARRIVE guideline for transparent research reporting. Oral (FDA-recommended) and non-oral routes of PYR administration were used in mice, with several studies reporting very high PYR dosages that could lead to myelosuppression, while oral PYR dosages of 30 mg/kg or less are considered safe. Direct human equivalent dose translation is probably not the best strategy for comparing whether the used PYR dosages in mice are in line with FDA-approved strength because pharmacokinetic profiles, particularly PYR's half-life (t1/2), between humans (t1/2 = 96 h) and mice (t1/2 = 6 h), must also be considered. Based on the presence of appropriate control and treatment groups, as well as the presence of appropriate clinically proven chemotherapy drug(s) for comparison purposes, only one study (1/14) involving liver cancer can be directed into a clinical trial. Furthermore, oesophageal cancer too can be directed into clinical trials, where the indirect effect of PYR on the NRF2 gene may suppress oesophageal cancer in patients, but this must be done with caution because PYR is an investigational drug for oesophageal cancer, and combining it with proven chemotherapy drug(s) is recommended.
Collapse
Affiliation(s)
- Sivananthan Manoharan
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Lee Ying Ying
- Department of Biomedical Sciences, Asia Metropolitan University, Johor Bahru 81750, Johor, Malaysia
| |
Collapse
|
3
|
Yue Y, Tao J, An D, Shi L. Three molecular subtypes and a five-gene signature for hepatocellular carcinoma based on m7G-related classification. J Gene Med 2024; 26:e3611. [PMID: 37847055 DOI: 10.1002/jgm.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The current research investigated the heterogeneity of hepatocellular carcinoma (HCC) based on the expression of N7-methylguanosine (m7G)-related genes as a classification model and developed a risk model predictive of HCC prognosis, key pathological behaviors and molecular events of HCC. METHODS The RNA sequencing data of HCC were extracted from The Cancer Genome Atlas (TCGA)-live cancer (LIHC) database, hepatocellular carcinoman database (HCCDB) and Gene Expression Omnibus database, respectively. According to the expression level of 29 m7G-related genes, a consensus clustering analysis was conducted. The least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression algorithm were applied to create a risk prediction model based on normalized expression of five characteristic genes weighted by coefficients. Tumor microenvironment (TME) analysis was performed using the MCP-Counter, TIMER, CIBERSORT and ESTIMATE algorithms. The Tumor Immune Dysfunction and Exclusion algorithm was applied to assess the responses to immunotherapy in different clusters and risk groups. In addition, patient sensitivity to common chemotherapeutic drugs was determined by the biochemical half-maximal inhibitory concentration using the R package pRRophetic. RESULTS Three molecular subtypes of HCC were defined based on the expression level of m7G-associated genes, each of which had its specific survival rate, genomic variation status, TME status and immunotherapy response. In addition, drug sensitivity analysis showed that the C1 subtype was more sensitive to a number of conventional oncolytic drugs (including paclitaxel, imatinib, CGP-082996, pyrimethamine, salubrinal and vinorelbine). The current five-gene risk prediction model accurately predicted HCC prognosis and revealed the degree of somatic mutations, immune microenvironment status and specific biological events. CONCLUSION In this study, three heterogeneous molecular subtypes of HCC were defined based on m7G-related genes as a classification model, and a five-gene risk prediction model was created for predicting HCC prognosis, providing a potential assessment tool for understanding the genomic variation, immune microenvironment status and key pathological mechanisms during HCC development.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Mohi-Ud-Din R, Chawla A, Sharma P, Mir PA, Potoo FH, Reiner Ž, Reiner I, Ateşşahin DA, Sharifi-Rad J, Mir RH, Calina D. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28:345. [PMID: 37710280 PMCID: PMC10500791 DOI: 10.1186/s40001-023-01275-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chemotherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A systematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to different therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promoting apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments and improve patient outcomes in a cost-effective manner.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, 190001, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Pooja Sharma
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Faheem Hyder Potoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 1982, 31441, Dammam, Saudi Arabia
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Reiner
- Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | | | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Cui W, Wang Y, Guo J, Zhang Z. Construction of a cuproptosis-associated long non-coding RNA risk prediction model for pancreatic adenocarcinoma based on the TCGA database. Medicine (Baltimore) 2023; 102:e32808. [PMID: 36749249 PMCID: PMC9901963 DOI: 10.1097/md.0000000000032808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cuproptosis is a recently identified controlled process of cell death that functions in tumor development and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that bind to transcription factors and regulate tumor invasion, penetration, metastasis, and prognosis. However, there are limited data on the function of cuproptosis-associated lncRNAs in pancreatic adenocarcinoma. Utilizing data retrieved from the cancer genome atlas database, we devised a risk prediction model of cuproptosis-associated lncRNAs in pancreatic adenocarcinoma, determined their prognostic significance and relationship with tumor immunity, and screened potential therapeutic drugs. Overall, 178 patients were randomized to a training or test group. We then obtained 6 characteristic cuproptosis-associated lncRNAs from the training group, based on which we constructed the risk prediction model, calculated the risk score, and verified the test group results. Subsequently, we performed differential gene analysis, tumor immunoassays, functional enrichment analysis, and potential drug screening. Finally, we found that the prediction model was highly reliable for the prognostic assessment of pancreatic adenocarcinoma patients. Generally, low risk patients had better outcomes than high risk patients. A tumor immunoassay showed that immunotherapy may benefit high risk patients more as there is a greater likelihood that the tumors could escape the immune system in low-risk patients. Through drug screening, we identified ten drugs that may have therapeutic effects on patients with pancreatic adenocarcinoma. In conclusion, this study constructed a risk prediction model of cuproptosis-associated lncRNAs, which can reliably predict the prognosis of pancreatic adenocarcinoma patients, provided a clinical reference for determining treatment approach, and provided some insights into the associations between lncRNAs and cuproptosis. This provides useful insight to aid in the development of therapeutic drugs for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Wenguang Cui
- Hebei North University, Zhangjiakou, Hebei Province, China
- * Correspondence: Wenguang Cui, Hebei North University, No.11, South Diamond Road, Zhangjiakou, Hebei Province 075000, China (e-mail: )
| | - Yaling Wang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jianhong Guo
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Zepeng Zhang
- Hebei North University, Zhangjiakou, Hebei Province, China
| |
Collapse
|
6
|
Pyrimethamine inhibits cell growth by inducing cell senescence and boosting CD8 + T-cell mediated cytotoxicity in colorectal cancer. Mol Biol Rep 2022; 49:4281-4292. [PMID: 35262820 PMCID: PMC9262800 DOI: 10.1007/s11033-022-07262-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The emergence of nonresponse or resistance to traditional chemotherapeutic agents is one of the main challenges of colorectal cancer (CRC) therapies. Thus, novel therapeutic drugs that can improve the clinical outcomes of CRC patients are urgently needed. The purpose of this study was to investigate the effects and mechanisms of pyrimethamine in CRC. METHODS AND RESULTS In this study, we assessed the role of pyrimethamine on CRC cell growth by cell counting kit-8 and colony formation assays. Cell cycle distribution and cellular senescence were determined by flow cytometry and senescence-associated β-galactosidase staining respectively. RNA-seq analysis and western blotting were used to investigate the potential pathways of pyrimethamine in CRC development. Moreover, animal experiments were performed to evaluate the effect of pyrimethamine in vivo. Our results demonstrated that pyrimethamine could inhibit cell growth by inducing S phase arrest followed by cellular senescence in CRC cells, and the p38MAPK-p53 axis was probably involved in that effect. In addition, pyrimethamine could also boost CD8+ T-cell mediated cytotoxicity and exert antitumor activity in vivo. CONCLUSION These results indicated that pyrimethamine may be a promising candidate agent for CRC treatment.
Collapse
|
7
|
Ramchandani S, Mohan CD, Mistry JR, Su Q, Naz I, Rangappa KS, Ahn KS. The multifaceted antineoplastic role of pyrimethamine against different human malignancies. IUBMB Life 2021; 74:198-212. [PMID: 34921584 DOI: 10.1002/iub.2590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Cancer accounted for nearly 10 million deaths in 2020 and is the second leading cause of death worldwide. The chemotherapeutic agents that are in clinical practice possess a broad range of severe adverse effects towards vital organs which emphasizes the importance of the discovery of new therapeutic agents or repurposing of existing drugs for the treatment of human cancers. Pyrimethamine is an antiparasitic drug used for the treatment of malaria and toxoplasmosis with a well-documented excellent safety profile. In the last five years, numerous efforts have been made to explore the anticancer potential of pyrimethamine in in vitro and in vivo preclinical models and to repurpose it as an anticancer agent. The studies have demonstrated that pyrimethamine inhibits oncogenic proteins such as STAT3, NF-κB, DX2, MAPK, DHFR, thymidine phosphorylase, telomerase, and many more in a different types of cancer models. Moreover, pyrimethamine has been reported to work in synergy with other anticancer agents, such as temozolomide, to induce apoptosis of tumor cells. Recently, the results of phase-1/2 clinical trials demonstrated that pyrimethamine administration reduces the expression of STAT3 signature genes in tumor tissues of chronic lymphocytic leukemia patients with a good therapeutic response. In the present article, we have reviewed most of the published papers related to the antitumor effects of pyrimethamine in malignancies of breast, liver, lung, skin, ovary, prostate, pituitary, and leukemia in in vitro and in vivo settings. We have also discussed the pharmacokinetic profile and results of clinical trials obtained after pyrimethamine treatment. From these studies, we believe that pyrimethamine has the potential to be repurposed as an anticancer drug. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology and Biochemistry, University of Melbourne, Parkville, VIC, Australia
| | | | - Jenaifer Rustom Mistry
- Jenaifer Rustom Mistry, Department of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Qi Su
- Qi Su, Department of Pharmacy, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Irum Naz
- Irum Naz, Qaid-i-Azam, University of Islamabad & Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University, Bahawalpur, Pakistan
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Wang L, Astone M, Alam SK, Zhu Z, Pei W, Frank DA, Burgess SM, Hoeppner LH. Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. Dis Model Mech 2021; 14:272222. [PMID: 34542605 PMCID: PMC8592016 DOI: 10.1242/dmm.049029] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury. Understanding temporal molecular regulation of VEGF-induced vascular permeability will facilitate developing therapeutics to inhibit vascular permeability, while preserving tissue-restorative angiogenesis. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. We show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9-generated Stat3 knockout zebrafish. Intercellular adhesion molecule 1 (ICAM-1) expression is transcriptionally regulated by STAT3, and VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse and human endothelium. Collectively, our findings suggest that VEGF/VEGFR-2/JAK2/STAT3 signaling regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability. This article has an associated First Person interview with the first author of the paper. Summary: Genetic STAT3 ablation in mice and VEGF-inducible zebrafish reveals that VEGF signals through STAT3 to promote vascular permeability. Pyrimethamine reduces VEGF-induced permeability in animal models.
Collapse
Affiliation(s)
- Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Matteo Astone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Zhang Z, Ji J, Liu H. Drug Repurposing in Oncology: Current Evidence and Future Direction. Curr Med Chem 2021; 28:2175-2194. [PMID: 33109032 DOI: 10.2174/0929867327999200820124111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug repurposing, the application of known drugs and compounds with a primary non-oncology purpose, might be an attractive strategy to offer more effective treatment options to cancer patients at a low cost and reduced time. METHODS This review described a total of 10 kinds of non-oncological drugs from more than 100 mechanical studies as well as evidence from population-based studies. The future direction of repurposed drug screening is discussed by using patient-derived tumor organoids. RESULTS Many old drugs showed previously unknown effects or off-target effects and can be intelligently applied for cancer chemoprevention and therapy. The identification of repurposed drugs needs to combine evidence from mechanical studies and population-based studies. Due to the heterogeneity of cancer, patient-derived tumor organoids can be used to screen the non-oncological drugs in vitro. CONCLUSION These identified old drugs could be repurposed in oncology and might be added as adjuvants and finally benefit patients with cancers.
Collapse
Affiliation(s)
- Zhenzhan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Sweden
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Wang L, Astone M, Alam SK, Zhu Z, Pei W, Frank DA, Burgess SM, Hoeppner LH. Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140053 PMCID: PMC7605565 DOI: 10.1101/2020.10.27.358374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression, and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, such as cancer, ischemic stroke, cardiovascular disease, retinal conditions, and COVID-19-associated pulmonary edema and sepsis, which often leads to acute lung injury, including acute respiratory distress syndrome. However, after initially stimulating permeability, VEGF subsequently mediates angiogenesis to repair damaged tissue. Consequently, understanding temporal molecular regulation of VEG-Finduced vascular permeability will facilitate developing therapeutics that achieve the delicate balance of inhibiting vascular permeability while preserving tissue repair. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. Specifically, we show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9 generated genomic STAT3 knockout zebrafish. Importantly, STAT3 deficiency does not impair vascular development and function in vivo. We identify intercellular adhesion molecule 1 (ICAM-1) as a STAT3-dependent transcriptional regulator and show VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse, and human endothelium. Indeed, pharmacologically targeting STAT3 increases vascular barrier integrity using two additional compounds, atovaquone and C188-9. Collectively, our findings suggest that the VEGF, VEGFR-2, JAK2, and STAT3 signaling cascade regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability in vertebrate models.
Collapse
Affiliation(s)
- Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Matteo Astone
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Anticancer Activity of Pyrimethamine via Ubiquitin Mediated Degradation of AIMP2-DX2. Molecules 2020; 25:molecules25122763. [PMID: 32549310 PMCID: PMC7355952 DOI: 10.3390/molecules25122763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
While aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) is a tumor suppressor, its exon 2-depleted splice variant (AIMP2-DX2 or shortly DX2) is highly expressed in human lung cancer, and the ratio of DX2 to AIMP2 increases according to the progression of lung cancer. In this study, pyrimethamine inhibited the level of DX2 (IC50 = 0.73 µM) in A549 cells expressing nanoluciferase-tagged DX2. In a panel of 5 lung cancer cell lines with various DX2 levels, pyrimethamine most potently suppressed the growth of H460 cells, which express high levels of DX2 (GI50 = 0.01 µM). An immunoblot assay in H460 cells showed that pyrimethamine decreased the DX2 level dose-dependently but did not affect the AIMP2 level. Further experiments confirmed that pyrimethamine resulted in ubiquitination-mediated DX2 degradation. In an in vivo mouse xenograft assay using H460 cells, intraperitoneal administration of pyrimethamine significantly reduced the tumor size and weight, comparable with the effects of taxol, without affecting body weight. Analysis of tumor tissue showed a considerably high concentration of pyrimethamine with a decreased levels of DX2. These results suggest that pyrimethamine, currently used as anti-parasite drug, could be repurposed to treat lung cancer patients expressing high level of DX2.
Collapse
|
12
|
Lu Q, Lin R, Du C, Meng Y, Yang M, Zenobi R, Hang W. Metal Probe Microextraction Coupled to Dielectric Barrier Discharge Ionization–Mass Spectrometry for Detecting Drug Residues in Organisms. Anal Chem 2020; 92:5921-5928. [DOI: 10.1021/acs.analchem.0c00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qiao Lu
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rongkun Lin
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chao Du
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Meng
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Manqing Yang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Renato Zenobi
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- ETH Zurich, Department of Chemistry and Applied Biosciences, 8093 Zurich, Switzerland
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|