1
|
Zhu X, Wang F, Wang M, Lv L, Fang L, Song J, Wang X, Ding F. Development of a breast cancer prognostic model based on vesicle-mediated transport-related genes to predict immune landscape and clinical drug therapy. Hum Mol Genet 2024; 33:553-562. [PMID: 38129105 DOI: 10.1093/hmg/ddad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Vesicle-mediated transport, vital for substance exchange and intercellular communication, is linked to tumor initiation and progression. This work was designed to study the role of vesicle-mediated transport-related genes (VMTRGs) in breast cancer (BC)prognosis. METHODS Univariate Cox analysis was utilized to screen prognosis-related VMTRGs. BC samples underwent unsupervised clustering based on VMTRGs to analyze survival, clinical factors, and immune cell abundance across different subtypes. We constructed a risk model using univariate Cox and LASSO regression analysis, with validation conducted using GEO datasets. Subsequently, we performed tumor mutational burden analysis, and immune landscape analysis on both groups. Ultimately, we conducted immunophenoscore (IPS) scoring to forecast immunotherapy and performed drug sensitivity analysis. RESULTS We identified 102 VMTRGs associated with BC prognosis. Using these 102 VMTRGs, BC patients were classified into 3 subtypes, with Cluster3 patients showing significantly better survival rates. We constructed a prognostic model for BC based on 12 VMTRGs that effectively predicted patient survival. Riskscore was an independent prognostic factor for BC patients. According to median risk score, high-risk group (HRG) had higher TMB values. The immune landscape of the HRG exhibited characteristics of cold tumor, with higher immune checkpoint expression levels and lower IPS scores, whereas Gemcitabine, Nilotinib, and Oxaliplatin were more suitable for treating low-risk group. CONCLUSION We classified BC subtypes and built a prognostic model based on VMTRGs. The genes in the prognostic model may serve as potential targets for BC therapy.
Collapse
Affiliation(s)
- Xiaotao Zhu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Fan Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Mingzhen Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Lin Lv
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Linghui Fang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Jialu Song
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Xiaohui Wang
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| | - Fengsheng Ding
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Rd, Jinhua, Zhejiang 321000, China
| |
Collapse
|
2
|
Barman SK, Sen MK, Mahns DA, Wu MJ, Malladi CS. Molecular Insights into the Breast and Prostate Cancer Cells in Response to the Change of Extracellular Zinc. JOURNAL OF ONCOLOGY 2024; 2024:9925970. [PMID: 38249992 PMCID: PMC10798840 DOI: 10.1155/2024/9925970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Zinc dyshomeostasis is manifested in breast and prostate cancer cells. This study attempted to uncover the molecular details prodded by the change of extracellular zinc by employing a panel of normal and cancerous breast and prostate cell lines coupled with the top-down proteomics with two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. The protein samples were generated from MCF-7 breast cancer cells, MCF10A normal breast cells, PC3 prostate cancer cells, and RWPE-1 normal prostate cells with or without exogenous zinc exposure in a time course (T0 and T120). By comparing the cancer cells vs respective normal epithelial cells without zinc treatment (T0), differentially expressed proteins (23 upregulated and 18 downregulated in MCF-7 cells; 14 upregulated and 30 downregulated in PC3 cells) were identified, which provides insights into the intrinsic differences of breast and prostate cancer cells. The dynamic protein landscapes in the cancer cells prodded by the extracellular zinc treatment reveal the potential roles of the identified zinc-responsive proteins (e.g., triosephosphate isomerase, S100A13, tumour proteins hD53 and hD54, and tumour suppressor prohibitin) in breast and prostate cancers. This study, for the first time, simultaneously investigated the two kinds of cancer cells related to zinc dyshomeostasis, and the findings shed light on the molecular understanding of the breast and prostate cancer cells in response to extracellular zinc variation.
Collapse
Affiliation(s)
- Shital K. Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Monokesh K. Sen
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, NSW, Australia
| | - David A. Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ming J. Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chandra S. Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Jiang Y, Zhu C, Huang H, Huang G, Fu B, Xi X. TUBA1C is a potential new prognostic biomarker and promotes bladder urothelial carcinoma progression by regulating the cell cycle. BMC Cancer 2023; 23:716. [PMID: 37528357 PMCID: PMC10391756 DOI: 10.1186/s12885-023-11209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND TUBA1C is an α-tubulin isoform involved in mitosis, and its dysregulation has been implicated in tumor progression. There is still no clear understanding of its role in bladder urothelial carcinoma (BLCA). METHODS This study examined the differential expression of TUBA1C and its prognostic significance in bladder cancer based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) and also assessed the correlation of TUBA1C expression level with immune cell infiltration and immune checkpoint gene expression levels and the half-inhibitory concentration (IC50) of different chemotherapeutic agents. Immunotherapy response was estimated using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We detected TUBA1C expression in BLCA cells using PCR and Western blotting. Functional assays, including CCK-8, colony formation, transwell, apoptosis and cell cycle assays, were also performed to assess the oncogenic role of TUBA1C in BLCA. RESULT In three independent public cohorts, TUBA1C was significantly upregulated in bladder tumor tissues, and high TUBA1C expression in bladder cancer was associated with a poorer outcome than low expression. TUBA1C was an independent prognostic risk factor for bladder cancer, and numerous immune checkpoint genes and infiltrating immune cells were associated with TUBA1C. TIDE analysis revealed that TUBA1C showed great potential for predicting the immunotherapy response in bladder cancer patients. In addition, drug sensitivity analysis revealed that high TUBA1C expression indicated sensitivity to multiple chemotherapeutic agents. Functional assays revealed that silencing TUBA1C significantly inhibited the proliferation, migration and invasion of BLCA cells and induced apoptosis and cell cycle arrest. CONCLUSION The overexpression of TUBA1C in bladder cancer predicts a poor prognosis and may also be a potential immunotherapeutic target. As a prognostic marker, TUBA1C influences tumor progression by regulating the cell cycle.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Zhu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haoxuan Huang
- Department of Urology, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Wang H, Cui H, Yang X, Peng L. TUBA1C: a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression. BMC Cancer 2023; 23:258. [PMID: 36941595 PMCID: PMC10026485 DOI: 10.1186/s12885-023-10707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The lack of obvious symptoms of early gastric cancer (GC) as well as the absence of sensitive and specific biomarkers results in poor clinical outcomes. Tubulin is currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders, however, its mechanism of action in gastric cancer is still unclear. Tubulin alpha-1 C (TUBA1C) is a subtype of α-tubulin, high TUBA1C expression has been shown to be closely related to a poor prognosis in various cancers, this study, for the first time, revealed the mechanism of TUBA1C promotes malignant progression of gastric cancer in vitro and in vivo. METHODS The expression of lncRNA EGFR-AS1 was detected in human GC cell lines by qRT-PCR. Mass spectrometry experiments following RNA pulldown assays found that EGFR-AS1 directly binds to TUBA1C, the CCK8, EdU, transwell, wound-healing, cell cycle assays and animal experiments were conducted to investigate the function of TUBA1C in GC. Combined with bioinformatics analyses, reveal interaction between Ki-67, E2F1, PCNA and TUBA1C by western blot. Rescue experiments furtherly demonstrated the relationship of EGFR-AS1and TUBA1C. RESULTS TUBA1C was proved to be a direct target of EGFR-AS1, and TUBA1C promotes gastric cancer proliferation, migration and invasion by accelerating the progression of the cell cycle from the G1 phase to the S phase and activating the expression of oncogenes: Ki-67, E2F1 and PCNA. CONCLUSION TUBA1C is a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression and could be a novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Haodong Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Huaiping Cui
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Xinjun Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Lipan Peng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China.
| |
Collapse
|
5
|
An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022; 212:358-369. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial, and free radical scavenging agents, where the come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques, and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.
Collapse
|
6
|
Hu X, Zhu H, Chen B, He X, Shen Y, Zhang X, Xu Y, Xu X. The oncogenic role of tubulin alpha-1c chain in human tumours. BMC Cancer 2022; 22:498. [PMID: 35513790 PMCID: PMC9074327 DOI: 10.1186/s12885-022-09595-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Tubulin alpha-1c chain (TUBA1C), a subtype of α-tubulin, has been shown to be involved in cell proliferation and cell cycle progression in several cancers and to influence cancer development and prognosis. However, a pancancer analysis of TUBA1C to reveal its immunological and prognostic roles has not been performed. In this study, we first downloaded raw data on TUBA1C expression in cancers from The Cancer Genome Atlas (TCGA) database and multiple other databases and analysed these data with R software to investigate the prognostic and immunological value of TUBA1C in cancers. Immunohistochemical analysis was performed in gliomas to further validate our findings. Overall, TUBA1C was overexpressed in most cancers, and overexpression of TUBA1C was linked to poor prognosis and higher tumour grade in patients. In addition, TUBA1C expression was associated with tumour mutation burden (TMB), microsatellite instability (MSI), the tumour microenvironment (TME) and the infiltration of immune cells. TUBA1C was also coexpressed with most immune-related genes and influenced immune-related pathways. Immunohistochemical analysis showed that TUBA1C expression was highest in glioblastoma (GBM) tissues, second highest in low-grade glioma (LGG) tissues and lowest in normal tissues. Our study indicated that TUBA1C might be a biomarker for predicting the immune status and prognosis of cancers, offering new ideas for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Biao Chen
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xiaoyu Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|