1
|
Kumar S, Ali I, Abbas F, Rana A, Pandey S, Garg M, Kumar D. In-silico design, pharmacophore-based screening, and molecular docking studies reveal that benzimidazole-1,2,3-triazole hybrids as novel EGFR inhibitors targeting lung cancer. J Biomol Struct Dyn 2024; 42:9416-9438. [PMID: 37646177 DOI: 10.1080/07391102.2023.2252496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Lung cancer is a complex and heterogeneous disease, which has been associated with various molecular alterations, including the overexpression and mutations of the epidermal growth factor receptor (EGFR). In this study, designed a library of 1843 benzimidazole-1,2,3-triazole hybrids and carried out pharmacophore-based screening to identify potential EGFR inhibitors. The 164 compounds were further evaluated using molecular docking and molecular dynamics simulations to understand the binding interactions between the compounds and the receptor. In-si-lico ADME and toxicity studies were also conducted to assess the drug-likeness and safety of the identified compounds. The results of this study indicate that benzimidazole-1,2,3-triazole hybrids BENZI-0660, BENZI-0125, BENZI-0279, BENZI-0415, BENZI-0437, and BENZI-1110 exhibit dock scores of -9.7, -9.6, -9.6, -9.6, -9.6, -9.6 while referencing molecule -7.9 kcal/mol for EGFR (PDB ID: 4HJO), respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of EGFR, indicating their potential as inhibitors. The in-silico ADME and toxicity studies showed that the compounds had favorable drug-likeness properties and low toxicity, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzimidazole-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. This research opens up a new avenue for the discovery and development of potent and selective EGFR inhibitors for the treatment of lung cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Anurag Rana
- Yogananda School of Artificial Intelligence, Computers, and Data Sciences, Shoolini University, Solan, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, Korea
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, India
| |
Collapse
|
2
|
Kumar S, Ali I, Abbas F, Shafiq F, Yadav AK, Ghate MD, Kumar D. In-silico identification and exploration of small molecule coumarin-1,2,3-triazole hybrids as potential EGFR inhibitors for targeting lung cancer. Mol Divers 2024:10.1007/s11030-024-10817-9. [PMID: 38470555 DOI: 10.1007/s11030-024-10817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Globally, lung cancer is a significant public health concern due to its role as the leading cause of cancer-related mortalities. The promising target of EGFR for lung cancer treatment has been identified, providing a potential avenue for more effective therapies. The purpose of the study was to design a library of 1843 coumarin-1,2,3-triazole hybrids and screen them based on a designed pharmacophore to identify potential inhibitors targeting EGFR in lung cancer with minimum or no side effects. Pharmacophore-based screening was carried out and 60 hits were obtained. To gain a better understanding of the binding interactions between the compounds and the targeted receptor, molecular docking was conducted on the 60 screened compounds. In-silico ADME and toxicity studies were also conducted to assess the drug-likeness and safety of the identified compounds. The results indicated that coumarin-1,2,3-triazole hybrids COUM-0849, COUM-0935, COUM-0414, COUM-1335, COUM-0276, and COUM-0484 exhibit dock score of - 10.2, - 10.2, - 10.1, - 10.1, - 10, - 10 while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of EGFR, indicating their potential as inhibitors. The in-silico ADME and toxicity studies showed that the compounds had favorable drug-likeness properties and low toxicity, further supporting their potential as therapeutic agents. Finally, we performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of coumarin-1,2,3-triazole hybrids as promising EGFR inhibitors for the management of lung cancer.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Faiza Shafiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manjunath D Ghate
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
3
|
Kumar S, Ali I, Abbas F, Khan N, Gupta MK, Garg M, Kumar S, Kumar D. In-silico identification of small molecule benzofuran-1,2,3-triazole hybrids as potential inhibitors targeting EGFR in lung cancer via ligand-based pharmacophore modeling and molecular docking studies. In Silico Pharmacol 2023; 11:20. [PMID: 37575679 PMCID: PMC10412522 DOI: 10.1007/s40203-023-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Lung cancer is one of the most common and deadly types of cancer worldwide, and the epidermal growth factor receptor (EGFR) has emerged as a promising therapeutic target for the treatment of this disease. In this study, we designed a library of 1840 benzofuran-1,2,3-triazole hybrids and conducted pharmacophore-based screening to identify potential EGFR inhibitors. The 20 identified compounds were further evaluated using molecular docking and molecular dynamics simulations to understand their binding interactions with the EGFR receptor. In-silico ADME and toxicity studies were also performed to assess their drug-likeness and safety profiles. The results of this study showed the benzofuran-1,2,3-triazole hybrids BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-1070 dock score of - 10.2, - 10, - 9.9, - 9.8, - 9.7, - 9.6, while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of the receptor, indicating their potential as inhibitors. The in-silico ADME and toxicity studies suggested that the compounds had good pharmacokinetic and safety profiles, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzofuran-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. Overall, this study provides a valuable starting point for the development of novel EGFR inhibitors with improved efficacy and safety profiles. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00157-1.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550 Pakistan
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Nimra Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
| | - Manoj K. Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, H.R. 123031 India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University UP, Sector-125, Noida, 201313 India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
4
|
Chemopreventive and therapeutic properties of anthocyanins in breast cancer: A comprehensive review. Nutr Res 2022; 107:48-64. [PMID: 36179643 DOI: 10.1016/j.nutres.2022.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022]
Abstract
Anthocyanins have received the attention of the scientific community because of their antioxidant, antimetastatic, and cancer-inhibitory properties. The aim of this review is to comprehensively summarize the possible mechanisms by which anthocyanins exhibit anticarcinogenic properties in breast cancer (BC) cell lines and animal models. Anthocyanins inhibit proinflammatory, signal transducer and activator of transcription 3, and nuclear factor kappa-light-chain-enhancer of activated B cell pathways and increase the activities of detoxification enzymes. In addition, downregulation of metalloproteinases by anthocyanins inhibits tumor invasion and metastatic processes in experimental systems. Anthocyanins mediate anticancer and angiogenic effects by modifying multiple receptor families. Furthermore, inhibition of cell-cycle upstream polo-like kinase signaling, the chromosomal replication checkpoint, and ataxia telangiectasia mutated signaling may contribute to the anticarcinogenic effects of anthocyanins. Finally, anthocyanins induce mitochondrial-mediated apoptosis and downregulate the phosphatidylinositol-3-kinase/AKT/mTOR pathway. In conclusion, anthocyanins have been shown to exert potential antitumor effects against breast carcinogenesis in vitro and in vivo, providing insights into the use of anthocyanins as a natural chemopreventive intervention in BC.
Collapse
|