1
|
Krzykawski K, Kubina R, Wendlocha D, Sarna R, Mielczarek-Palacz A. Multifaceted Evaluation of Inhibitors of Anti-Apoptotic Proteins in Head and Neck Cancer: Insights from In Vitro, In Vivo, and Clinical Studies (Review). Pharmaceuticals (Basel) 2024; 17:1308. [PMID: 39458950 PMCID: PMC11510346 DOI: 10.3390/ph17101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a multifaceted assessment of inhibitors of anti-apoptotic proteins (IAPs) in the context of head and neck squamous cell carcinoma (HNSCC). The article discusses the results of in vitro, in vivo, and clinical studies, highlighting the significance of IAPs in the resistance of cancer cells to apoptosis, which is a key factor hindering effective treatment. The main apoptosis pathways, including the intrinsic and extrinsic pathways, and the role of IAPs in their regulation, are presented. The study's findings suggest that targeting IAPs with novel therapies may offer clinical benefits in the treatment of advanced HNSCC, especially in cases resistant to conventional treatment methods. These conclusions underscore the need for further research to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Krzykawski
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| | - Robert Sarna
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| |
Collapse
|
2
|
Wei K, Zhang X, Yang D. Identification and validation of prognostic and tumor microenvironment characteristics of necroptosis index and BIRC3 in clear cell renal cell carcinoma. PeerJ 2023; 11:e16643. [PMID: 38130918 PMCID: PMC10734432 DOI: 10.7717/peerj.16643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Background Necroptosis is a form of programmed cell death; it has an important role in tumorigenesis and metastasis. However, details of the regulation and function of necroptosis in clear cell renal cell carcinoma (ccRCC) remain unclear. It is necessary to explore the significance of necroptosis in ccRCC. Methods Necroptosis-related clusters were discerned through the application of Consensus Clustering. Based on the TCGA and GEO databases, we identified prognostic necroptosis-related genes (NRGs) with univariate COX regression analysis. The necroptosis-related model was constructed through the utilization of LASSO regression analysis, and the immune properties, tumor mutation burden, and immunotherapy characteristics of the model were assessed using multiple algorithms and datasets. Furthermore, we conducted comprehensive GO, KEGG, and GSVA analyses to probe into the functional aspects of biological pathways. To explore the expression and of hub gene (BIRC3) in different ccRCC cell types and cell lines, single-cell sequencing data was analysed and we performed Quantitative Real-time PCR to detect the expression of BIRC3 in ccRCC cell lines. Function of BIRC3 in ccRCC was assessed through Cell Counting Kit-8 (CCK8) assay (for proliferation), transwell and wound healing assays (for migration and invasion). Results Distinct necroptosis-related clusters exhibiting varying prognostic implications, and enrichment pathways were identified in ccRCC. A robust necroptosis-related model formulated based on the expression of six prognostic NRGs, presented substantial predictive capabilities of overall survival and was shown to be related with patients' immune profiles, tumor mutation burden, and response to immunotherapy. Notably, the hub gene BIRC3 was markedly upregulated in both ccRCC tissues and cell lines, and showed significant correlations with immunosuppressive cells, immune checkpoints, and oncogenic pathways. Downregulation of BIRC3 demonstrated a negative regulatory effect on ccRCC cell proliferation migration and invasion. Conclusion The necroptosis-related model assumed a pivotal role in determining the prognosis, tumor mutation burden, immunotherapy response, and immune cell infiltration characteristics among ccRCC patients. BIRC3 exhibited significant correlations with the immunosuppressive microenvironment, which highlighted its potential for informing the design of innovative immunotherapies for ccRCC patients.
Collapse
Affiliation(s)
- Kai Wei
- Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xi Zhang
- Urology, The State Key Lab of Reproductive; The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongrong Yang
- Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Ali Beg MM, Saxena A, Singh VK, Akhter J, Habib H, Raisuddin S. Modulatory role of BV6 and chloroquine on the regulation of apoptosis and autophagy in non-small cell lung cancer cells. J Cancer Res Ther 2023; 19:S0. [PMID: 37147964 DOI: 10.4103/jcrt.jcrt_816_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aims Non-small cell lung cancer (NSCLC) is one of the aggressive tumors mostly diagnosed in the advanced stage. Therapeutic failure and drug resistance pose a major problem in NSCLC treatment primarily due to alterations in autophagy and loss of apoptosis. Therefore, the present study aimed to investigate the importance of the second mitochondria-derived activator of caspase mimetic BV6 and autophagy inhibitor chloroquine (CQ) on the regulation of apoptosis and autophagy, respectively. Subjects and Methods Study was conducted on NCI-H23 and NCI-H522 cell lines to evaluate the effect of BV6 and CQ on the transcription and translation level of LC3-II, caspase-3, and caspase-9 genes by quantitative real-time-polymerase chain reaction and western blotting techniques. Results In NCI-H23 cell line, BV6 and CQ treatments showed increased mRNA and protein expression of caspase-3, and caspase-9 compared to its untreated counterpart. BV6 and CQ treatments also caused downregulation of LC3-II protein expression compared to its counterpart. In NCI-H522 cell line, BV6 treatment showed a significantly increased expression of caspase-3 and caspase-9 mRNA and protein expression levels whereas BV6 treatment downregulated the expression level of LC3-II protein. A similar pattern was also observed in CQ treatment when compared with the respective controls. Both BV6 and CQ modulated in vitro expression of caspases and LC3-II which have critical regulatory roles in apoptosis and autophagy, respectively. Conclusions Our findings suggest that BV6 and CQ could be promising candidates in NSCLC treatment and there is a need to explore them in vivo and in clinical applications.
Collapse
Affiliation(s)
- Mirza Masroor Ali Beg
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India; Biochemistry, Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyzstan
| | - Alpana Saxena
- Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | - Juheb Akhter
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Haroon Habib
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
4
|
The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1401-1411. [PMID: 36171264 PMCID: PMC9534832 DOI: 10.1038/s12276-022-00847-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Receptor-interacting serine threonine protein kinase 1 (RIPK1) has emerged as a central molecular switch in controlling the balance between cell survival and cell death. The pro-survival role of RIPK1 in maintaining cell survival is achieved via its ability to induce NF-κB-dependent expression of anti-apoptotic genes. However, recent advances have identified the pro-death function of RIPK1: posttranslational modifications of RIPK1 in the tumor necrosis factor receptor 1 (TNFR1)-associated complex-I, in the cytosolic complex-IIb or in necrosomes regulate the cytotoxic potential of RIPK1, forming an early cell death checkpoint. Since the kinase activity of RIPK1 is indispensable in RIPK3- and MLKL-mediated necroptosis induction, while it is dispensable in apoptosis, a better understanding of this early cell death checkpoint via RIPK1 might lead to new insights into the molecular mechanisms controlling both apoptotic and necroptotic modes of cell death and help develop novel therapeutic approaches for cancer. Here, we present an emerging view of the regulatory mechanisms for RIPK1 activity, especially with respect to the early cell death checkpoint. We also discuss the impact of dysregulated RIPK1 activity in pathophysiological settings and highlight its therapeutic potential in treating human diseases. Improved understanding of the molecular mechanisms that allow a protein to control the balance between cell survival or early death could reveal new approaches to treating conditions including chronic inflammatory disease and cancer. Gang Min Hur and colleagues at Chungnam National University in Daejeon, South Korea, with Han-Ming Shen at the University of Macau in China, review emerging evidence about how the protein called receptor-interacting serine/threonine-protein kinase 1 (RIPK1) influences whether cells move towards death or survival at a key ‘checkpoint’ in cell development. Cells can undergo a natural process of programmed cell death called apoptosis, die abnormally in a disease process called necroptosis, or survive. RIPK1 appears able to influence which path is chosen depending on which genes it regulates and which proteins it interacts with. Many details are still unclear, and need further investigation.
Collapse
|
5
|
Pandey SK, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol 2022; 12:992260. [PMID: 36185255 PMCID: PMC9515501 DOI: 10.3389/fonc.2022.992260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial SMAC/Diablo induces apoptosis by binding the inhibitor of apoptosis proteins (IAPs), thereby activating caspases and, subsequently, apoptosis. Previously, we found that despite its pro-apoptotic activity, SMAC/Diablo is overexpressed in cancer, and demonstrated that in cancer it possesses new essential and non-apoptotic functions that are associated with regulating phospholipid synthesis including modulating mitochondrial phosphatidylserine decarboxylase activity. Here, we demonstrate additional functions for SMAC/Diablo associated with inflammation and immunity. CRISPR/Cas9 SMAC/Diablo-depleted A549 lung cancer cells displayed inhibited cell proliferation and migration. Proteomics analysis of these cells revealed altered expression of proteins associated with lipids synthesis and signaling, vesicular transport and trafficking, metabolism, epigenetics, the extracellular matrix, cell signaling, and neutrophil-mediated immunity. SMAC-KO A549 cell-showed inhibited tumor growth and proliferation and activated apoptosis. The small SMAC-depleted “tumor” showed a morphology of alveoli-like structures, reversed epithelial-mesenchymal transition, and altered tumor microenvironment. The SMAC-lacking tumor showed reduced expression of inflammation-related proteins such as NF-kB and TNF-α, and of the PD-L1, associated with immune system suppression. These results suggest that SMAC is involved in multiple processes that are essential for tumor growth and progression. Thus, targeting SMAC’s non-canonical function is a potential strategy to treat cancer.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Varda Shoshan-Barmatz,
| |
Collapse
|
6
|
Crutcher MM, Baybutt TR, Kopenhaver JS, Snook AE, Waldman SA. Emerging drug targets for colon cancer: A preclinical assessment. Expert Opin Ther Targets 2022; 26:207-216. [PMID: 35129035 PMCID: PMC9075542 DOI: 10.1080/14728222.2022.2039119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. There have been improvements in screening, and therefore overall survival, but patients continue to present at late stages when minimal treatment options are available to them. While some targeted therapies have been introduced, their application is limited by patient-specific tumor characteristics. Additional targets for CRC in patients who present at a late stage, or who experience tumor relapse, need to be identified to continue to improve patient outcomes. AREAS COVERED This review focuses on emerging pathways and drug targets for the treatment of colorectal cancer. The shift to the cancer stem cell model and potential targets involving Wnt, NF-κB, phosphodiesterases, RAS, and guanylyl cyclase C, are discussed. The current utility of checkpoint inhibitors and evolving immunological options are examined. EXPERT OPINION Surgery and current systemic cytotoxic therapies are inadequate to appropriately treat the full spectrum of CRC, especially in those patients who present with metastatic or treatment-refractory disease. In addition to the identification of new, more generalizable targets, additional focus is being placed on novel administrations. Immuno-oncologic options and stem cell-targeting therapies for mCRC will become available to patients and may increase survival.
Collapse
Affiliation(s)
- Madison M. Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R. Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol 2021; 163:67-80. [PMID: 34597613 DOI: 10.1016/j.yjmcc.2021.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Rupture of aortic aneurysm and dissection (AAD) remains a leading cause of death. Progressive smooth muscle cell (SMC) loss is a crucial feature of AAD that contributes to aortic dysfunction and degeneration, leading to aortic aneurysm, dissection, and, ultimately, rupture. Understanding the molecular mechanisms of SMC loss and identifying pathways that promote SMC death in AAD are critical for developing an effective pharmacologic therapy to prevent aortic destruction and disease progression. Cell death is controlled by programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis. Although these pathways share common stimuli and triggers, each type of programmed cell death has unique features and activation pathways. A growing body of evidence supports a critical role for programmed cell death in the pathogenesis of AAD, and inhibitors of various types of programmed cell death represent a promising therapeutic strategy. This review discusses the different types of programmed cell death pathways and their features, induction, contributions to AAD development, and therapeutic potential. We also highlight the clinical significance of programmed cell death for further studies.
Collapse
|
8
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
9
|
Abstract
The US Food and Drug Administration (FDA) approval of Janus kinase 2 inhibitors, ruxolitinib and fedratinib for the treatment of intermediate-2 or high-risk primary or secondary myelofibrosis (MF) has revolutionized the management of MF. Nevertheless, these drugs do not reliably alter the natural history of disease. Burgeoning understanding of the molecular pathogenesis and the bone marrow microenvironment in MF has galvanized the development of targeted therapeutics. This review provides insight into the novel therapies under clinical evaluation.
Collapse
|
10
|
Innao V, Rizzo V, Allegra AG, Musolino C, Allegra A. Promising Anti-Mitochondrial Agents for Overcoming Acquired Drug Resistance in Multiple Myeloma. Cells 2021; 10:439. [PMID: 33669515 PMCID: PMC7922387 DOI: 10.3390/cells10020439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable tumor due to the high rate of relapse that still occurs. Acquired drug resistance represents the most challenging obstacle to the extension of survival and several studies have been conducted to understand the mechanisms of this phenomenon. Mitochondrial pathways have been extensively investigated, demonstrating that cancer cells become resistant to drugs by reprogramming their metabolic assessment. MM cells acquire resistance to proteasome inhibitors (PIs), activating protection programs, such as a reduction in oxidative stress, down-regulating pro-apoptotic, and up-regulating anti-apoptotic signals. Knowledge of the mechanisms through which tumor cells escape control of the immune system and acquire resistance to drugs has led to the creation of new compounds that can restore the response by leading to cell death. In this scenario, based on all literature data available, our review represents the first collection of anti-mitochondrial compounds able to overcome drug resistance in MM. Caspase-independent mechanisms, mainly based on increased oxidative stress, result from 2-methoxyestradiol, Artesunate, ascorbic acid, Dihydroartemisinin, Evodiamine, b-AP15, VLX1570, Erw-ASNase, and TAK-242. Other agents restore PIs' efficacy through caspase-dependent tools, such as CDDO-Im, NOXA-inhibitors, FTY720, GCS-100, LBH589, a derivative of ellipticine, AT-101, KD5170, SMAC-mimetics, glutaminase-1 (GLS1)-inhibitors, and thenoyltrifluoroacetone. Each of these substances improved the efficacy rates when employed in combination with the most frequently used antimyeloma drugs.
Collapse
Affiliation(s)
- Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (V.I.); (A.G.A.); (C.M.)
| |
Collapse
|
11
|
Sallas ML, Zapparoli D, Dos Santos MP, Pereira JN, Orcini WA, Peruquetti RL, Chen ES, de Arruda Cardoso Smith M, Payão SLM, Rasmussen LT. Dysregulated Expression of Apoptosis-Associated Genes and MicroRNAs and Their Involvement in Gastric Carcinogenesis. J Gastrointest Cancer 2020; 52:625-633. [PMID: 32583363 DOI: 10.1007/s12029-019-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Analyze the expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b in patients with normal gastric tissue, chronic gastritis, and gastric adenocarcinoma. METHODS The expression of caspase-9, Smac/DIABLO, XIAP, let-7a, and let-7b by qRT-PCR was analyzed in 158 samples from 53 patients with normal gastric mucosa, 86 with chronic gastritis, and 19 with gastric cancer. RESULTS The comparison between the gastric cancer and the control group revealed a decreased expression of caspase-9 in gastric cancer tissues; considering the Helicobacter pylor presence, comparable results were revealed. Smac/DIABLO was increased in gastric cancer cells, while XIAP demonstrated no significant difference in the gene expression. The microRNA analysis revealed a decreased expression of let-7a and let-7b in samples positive to H. pylori infection and in gastric cancer group, regardless of the presence of the bacterium. CONCLUSION Our study provided some evidence of low activity of the intrinsic apoptosis pathway, as well as the influence of H. pylori on let-7a and let-7b expression.
Collapse
Affiliation(s)
| | - Diana Zapparoli
- Universidade do Sagrado Coração (USC), Bauru, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020; 9:cells9010207. [PMID: 31947615 PMCID: PMC7017284 DOI: 10.3390/cells9010207] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.
Collapse
|
13
|
Craver BM, Nguyen TK, Nguyen J, Nguyen H, Huynh C, Morse SJ, Fleischman AG. The SMAC mimetic LCL-161 selectively targets JAK2 V617F mutant cells. Exp Hematol Oncol 2020; 9:1. [PMID: 31908904 PMCID: PMC6941266 DOI: 10.1186/s40164-019-0157-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background Evasion from programmed cell death is a hallmark of cancer and can be achieved in cancer cells by overexpression of inhibitor of apoptosis proteins (IAPs). Second mitochondria-derived activator of caspases (SMAC) directly bind to IAPs and promote apoptosis; thus, SMAC mimetics have been investigated in a variety of cancer types. particularly in diseases with high inflammation and NFĸB activation. Given that elevated TNFα levels and NFĸB activation is a characteristic feature of myeloproliferative neoplasms (MPN), we investigated the effect of the SMAC mimetic LCL-161 on MPN cell survival in vitro and disease development in vivo. Methods To investigate the effect of the SMAC mimetic LCL-161 in vitro, we utilized murine and human cell lines to perform cell viability assays as well as primary bone marrow from mice or humans with JAK2V617F-driven MPN to interrogate myeloid colony formation. To elucidate the effect of the SMAC mimetic LCL-161 in vivo, we treated a JAK2V617F-driven mouse model of MPN with LCL-161 then assessed blood counts, splenomegaly, and myelofibrosis. Results We found that JAK2V617F-mutated cells are hypersensitive to the SMAC mimetic LCL-161 in the absence of exogenous TNFα. JAK2 kinase activity and NFĸB activation is required for JAK2V617F-mediated sensitivity to LCL-161, as JAK or NFĸB inhibitors diminished the differential sensitivity of JAK2V617F mutant cells to IAP inhibition. Finally, LCL-161 reduces splenomegaly and may reduce fibrosis in a mouse model of JAK2V617F-driven MPN. Conclusion LCL-161 may be therapeutically useful in MPN, in particular when exogenous TNFα signaling is blocked. NFĸB activation is a characteristic feature of JAK2V617F mutant cells and this sensitizes them to SMAC mimetic induced killing even in the absence of TNFα. However, when exogenous TNFα is added, NFĸB is activated in both mutant and wild-type cells, abolishing the differential sensitivity. Moreover, JAK kinase activity is required for the differential sensitivity of JAK2V617F mutant cells, suggesting that the addition of JAK2 inhibitors to SMAC mimetics would detract from the ability of SMAC mimetics to selectively target JAK2V617F mutant cells. Instead, combination therapy with other agents that reduce inflammatory cytokines but preserve JAK2 signaling in mutant cells may be a more beneficial combination therapy in MPN.
Collapse
Affiliation(s)
- Brianna M Craver
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Thanh Kim Nguyen
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Jenny Nguyen
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Hellen Nguyen
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Christy Huynh
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Sarah J Morse
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Angela G Fleischman
- 1Department of Biological Chemistry, University of California, Irvine, CA USA.,2Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Irvine, CA 92697 USA.,3Chao Family Comprehensive Cancer Center, University of California, Irvine, CA USA
| |
Collapse
|
14
|
Choo Z, Loh AHP, Chen ZX. Destined to Die: Apoptosis and Pediatric Cancers. Cancers (Basel) 2019; 11:cancers11111623. [PMID: 31652776 PMCID: PMC6893512 DOI: 10.3390/cancers11111623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
Apoptosis (programmed cell death) is a systematic and coordinated cellular process that occurs in physiological and pathophysiological conditions. Sidestepping or resisting apoptosis is a distinct characteristic of human cancers including childhood malignancies. This review dissects the apoptosis pathways implicated in pediatric tumors. Understanding these pathways not only unraveled key molecules that may serve as potential targets for drug discovery, but also molecular nodes that integrate with other signaling networks involved in processes such as development. This review presents current knowledge of the complex regulatory system that governs apoptosis with respect to other processes in pediatric cancers, so that fresh insights may be derived regarding treatment resistance or for more effective treatment options.
Collapse
Affiliation(s)
- Zhang'e Choo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| | - Amos Hong Pheng Loh
- VIVA-KKH Pediatric Brain and Solid Tumor Program, KK Women's and Children's Hospital, Singapore 229899, Singapore.
- Department of Pediatric Surgery, KK Women's and Children's Hospital, Singapore 229899, Singapore.
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- VIVA-KKH Pediatric Brain and Solid Tumor Program, KK Women's and Children's Hospital, Singapore 229899, Singapore.
- National University Cancer Institute, Singapore, Singapore 119074, Singapore.
| |
Collapse
|
15
|
Micewicz ED, Nguyen C, Micewicz A, Waring AJ, McBride WH, Ruchala P. Position of lipidation influences anticancer activity of Smac analogs. Bioorg Med Chem Lett 2019; 29:1628-1635. [PMID: 31047753 PMCID: PMC6625762 DOI: 10.1016/j.bmcl.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of menin-MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed favorable pharmacokinetics and in vivo activity while administered subcutaneously in the preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may be a viable approach in the development of anti-cancer therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alina Micewicz
- David Geffen School of Medicine at UCLA, Volunteering Program, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
16
|
Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C. The role of necroptosis in cancer biology and therapy. Mol Cancer 2019; 18:100. [PMID: 31122251 PMCID: PMC6532150 DOI: 10.1186/s12943-019-1029-8] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Apoptosis resistance is to a large extent a major obstacle leading to chemotherapy failure during cancer treatment. Bypassing the apoptotic pathway to induce cancer cell death is considered to be a promising approach to overcoming this problem. Necroptosis is a regulated necrotic cell death modality in a caspase-independent fashion and is mainly mediated by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL). Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis resistance and may trigger and amplify antitumor immunity in cancer therapy.The role of necroptosis in cancer is complicated. The expression of key regulators of the necroptotic pathway is generally downregulated in cancer cells, suggesting that cancer cells may also evade necroptosis to survive; however, in certain types of cancer, the expression level of key mediators is elevated. Necroptosis can elicit strong adaptive immune responses that may defend against tumor progression; however, the recruited inflammatory response may also promote tumorigenesis and cancer metastasis, and necroptosis may generate an immunosuppressive tumor microenvironment. Necroptosis also reportedly promotes oncogenesis and cancer metastasis despite evidence demonstrating its antimetastatic role in cancer. In addition, necroptotic microenvironments can direct lineage commitment to determine cancer subtype development in liver cancer. A plethora of compounds and drugs targeting necroptosis exhibit potential antitumor efficacy, but their clinical feasibility must be validated.Better knowledge of the necroptotic pathway mechanism and its physiological and pathological functions is urgently required to solve the remaining mysteries surrounding the role of necroptosis in cancer. In this review, we briefly introduce the molecular mechanism and characteristics of necroptosis, the interplay between necroptosis and other cell death mechanisms, crosstalk of necroptosis and metabolic signaling and detection methods. We also summarize the intricate role of necroptosis in tumor progression, cancer metastasis, prognosis of cancer patients, cancer immunity regulation, cancer subtype determination and cancer therapeutics.
Collapse
Affiliation(s)
- Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
17
|
Abstract
Despite the success of antiretroviral therapy (ART), there is currently no HIV cure and treatment is life long. HIV persists during ART due to long-lived and proliferating latently infected CD4+ T cells. One strategy to eliminate latency is to activate virus production using latency reversing agents (LRAs) with the goal of triggering cell death through virus-induced cytolysis or immune-mediated clearance. However, multiple studies have demonstrated that activation of viral transcription alone is insufficient to induce cell death and some LRAs may counteract cell death by promoting cell survival. Here, we review new approaches to induce death of latently infected cells through apoptosis and inhibition of pathways critical for cell survival, which are often hijacked by HIV proteins. Given advances in the commercial development of compounds that induce apoptosis in cancer chemotherapy, these agents could move rapidly into clinical trials, either alone or in combination with LRAs, to eliminate latent HIV infection.
Collapse
|
18
|
Brands RC, Scheurer MJJ, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Apoptosis-sensitizing activity of birinapant in head and neck squamous cell carcinoma cell lines. Oncol Lett 2018; 15:4010-4016. [PMID: 29467909 DOI: 10.3892/ol.2018.7783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Inhibitor of apoptosis proteins, which are overexpressed in head and neck squamous cell carcinoma (HNSCC), may cause therapeutic resistance. Using SMAC mimetic compounds, including birinapant, to degrade and/or inhibit these proteins and sensitize apoptosis may enhance therapies in HNSCC. Fas expression was analyzed in nine HNSCC cell lines and one keratinocyte cell line via flow cytometry. These cell lines were treated with Fas ligand-Fc (FasL) and birinapant, a bivalent SMAC mimetic, in mono and combination therapies. Cytotoxicity was measured using a crystal violet assay. Annexin V assay was performed for detection of apoptosis. The treatment efficacy of mono and combination therapies was statistically analyzed. Nonlinear regression analysis was performed to determine the inhibitory concentration (IC10) of birinapant. Fas expression was detected in each cell line tested. Mono treatment with FasL revealed minor to no apoptotic effects in the majority of the cell lines. Crystal violet and Annexin V staining revealed increased apoptosis rates for all cell lines following incubation with birinapant in mono treatment. Combination treatment with FasL and birinapant (IC10) revealed additional and synergistic effects in eight out of the ten cell lines. To the best of our knowledge, the present study provided the first evidence of the apoptosis-sensitizing activity of combination treatment with FasL and birinapant in HNSCC cell lines.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97080 Würzburg, Germany
| | - Mario J J Scheurer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
19
|
Balakrishnan K, Fu M, Onida F, Wierda WG, Keating MJ, Gandhi V. Reactivation of Smac-mediated apoptosis in chronic lymphocytic leukemia cells: mechanistic studies of Smac mimetic. Oncotarget 2018; 7:39458-39472. [PMID: 27223062 PMCID: PMC5129945 DOI: 10.18632/oncotarget.8462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/28/2016] [Indexed: 12/29/2022] Open
Abstract
Dysfunctional apoptotic machinery is a hallmark feature of chronic lymphocytic leukemia (CLL). Accordingly, targeting apoptosis regulators has been proven a rational approach for CLL treatment. We show that CLL lymphocytes express high levels of XIAP, cIAP1, and cIAP2 compared to normal lymphocytes. Smac mimetic, Smac066, designed to bind to BIR3-domain of IAPs, induce apoptosis in primary CLL cells (n=71; p<0.0001), irrespective of prognostic markers. Apoptosis was mediated by diminished levels of IAPs (XIAP-p=0.02; cIAP-p<0.0001) and increased activation of caspases-8,-9,-3. The caspase-cleavage was in direct association with the levels of apoptosis (r2=0.8 for caspases-8,-9,-3). Correlative analysis revealed a direct relationship between reduction in IAPs and degree of apoptosis (r2=0.6 (XIAP); 0.5 (cIAP2)). There was a strong association between apoptosis, IAP-degradation, and concurrent caspase-activation. Pan-caspase inhibitor Z-Vad-fmk reversed the degradation of Mcl-1, but not IAPs suggesting that smac066 is selective to IAPs, however, Mcl-1 degradation is through caspase-mediated cleavage. Immunoprecipitation experiments revealed physical interaction between caspase-3 and XIAP that was disrupted by smac066. Importantly, XIAP and cIAP2 were markedly induced in bone-marrow and lymph-node microenvironments, providing a basis for IAP antagonists as anti-tumor agents in CLL. Smac066 synergized with ABT-737, revealing a mechanistic rationale to jointly target BH3 and BIR3 domains.
Collapse
Affiliation(s)
- Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Fu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Francesco Onida
- Department of Hematology Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Kim DS, Dastidar H, Zhang C, Zemp FJ, Lau K, Ernst M, Rakic A, Sikdar S, Rajwani J, Naumenko V, Balce DR, Ewanchuk BW, Tailor P, Yates RM, Jenne C, Gafuik C, Mahoney DJ. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms. Nat Commun 2017; 8:344. [PMID: 28839138 PMCID: PMC5570934 DOI: 10.1038/s41467-017-00324-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Second mitochondrial activator of caspase (Smac)-mimetic compounds and oncolytic viruses were developed to kill cancer cells directly. However, Smac-mimetic compound and oncolytic virus therapies also modulate host immune responses in ways we hypothesized would complement one another in promoting anticancer T-cell immunity. We show that Smac-mimetic compound and oncolytic virus therapies synergize in driving CD8+ T-cell responses toward tumors through distinct activities. Smac-mimetic compound treatment with LCL161 reinvigorates exhausted CD8+ T cells within immunosuppressed tumors by targeting tumor-associated macrophages for M1-like polarization. Oncolytic virus treatment with vesicular stomatitis virus (VSVΔM51) promotes CD8+ T-cell accumulation within tumors and CD8+ T-cell activation within the tumor-draining lymph node. When combined, LCL161 and VSVΔM51 therapy engenders CD8+ T-cell-mediated tumor control in several aggressive mouse models of cancer. Smac-mimetic compound and oncolytic virus therapies are both in clinical development and their combination therapy represents a promising approach for promoting anticancer T-cell immunity.Oncolytic viruses (OV) and second mitochondrial activator of caspase (Smac)-mimetic compounds (SMC) synergistically kill cancer cells directly. Here, the authors show that SMC and OV therapies combination also synergize in vivo by promoting anticancer immunity through an increase in CD8+ T-cell response.
Collapse
Affiliation(s)
- Dae-Sun Kim
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Himika Dastidar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Chunfen Zhang
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
| | - Franz J Zemp
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Keith Lau
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Disease, Calgary, AB, Canada, T2N 4N1
| | - Matthias Ernst
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
| | - Andrea Rakic
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Medical Sciences, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Saif Sikdar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Jahanara Rajwani
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
| | - Victor Naumenko
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Disease, Calgary, AB, Canada, T2N 4N1
| | - Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ben W Ewanchuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Pankaj Tailor
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Craig Jenne
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Disease, Calgary, AB, Canada, T2N 4N1
| | - Chris Gafuik
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Douglas J Mahoney
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1.
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1.
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
21
|
Armstrong CWD, Maxwell PJ, Ong CW, Redmond KM, McCann C, Neisen J, Ward GA, Chessari G, Johnson C, Crawford NT, LaBonte MJ, Prise KM, Robson T, Salto-Tellez M, Longley DB, Waugh DJJ. PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy. Oncotarget 2016; 7:7885-98. [PMID: 26799286 PMCID: PMC4884961 DOI: 10.18632/oncotarget.6955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.
Collapse
Affiliation(s)
- Chris W D Armstrong
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Pamela J Maxwell
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Chee Wee Ong
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Kelly M Redmond
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Christopher McCann
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Jessica Neisen
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | | | | | | | - Nyree T Crawford
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Melissa J LaBonte
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Kevin M Prise
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Tracy Robson
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Manuel Salto-Tellez
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Daniel B Longley
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - David J J Waugh
- Movember Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
22
|
Sarkar A, Balakrishnan K, Chen J, Patel V, Neelapu SS, McMurray JS, Gandhi V. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Oncotarget 2016; 7:3461-76. [PMID: 26658105 PMCID: PMC4823120 DOI: 10.18632/oncotarget.6505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
The resistance of apoptosis in cancer cells is pivotal for their survival and is typically ruled by mutations or dysregulation of core apoptotic cascade. Mantle cell lymphoma (MCL) is a non-Hodgkin's B-cell malignancy expressing higher anti-apoptotic proteins providing survival advantage. B-PAC-1, a procaspase activating compound, induces apoptosis by sequestering Zn bound to procaspase-3, but the amino acids holding Zn in Caspase-3 is not known. Here we show that reintroduction of WT caspase-3 or 7 in Caspase3-7 double knock-out (DKO) mouse embryonic fibroblasts (MEF) promoted B-PAC-1 to induce apoptosis (27-43%), but not in DKO MEFs or MEFs expressing respective Casp3-7 catalytic mutants (12-13%). Using caspase-6 and -9 exosite analysis, we identified and mutated predicted Zn-ligands in caspase-3 (H108A, C148S and E272A) and overexpressed into DKO MEFs. Mutants carrying E272A abrogated Zn-reversal of apoptosis induced by B-PAC-1 via higher XIAP and smac expressions but not in H108A or C148S mutants. Co-immunoprecipitation analysis revealed stronger XIAP-caspase-3 interaction suggesting a novel mechanism of impulsive apoptosis resistance by disrupting predicted Zn-ligands in caspase-3. B-PAC-1 sponsored apoptosis in MCL cell lines (30-73%) via caspase-3 and PARP cleavages accompanied by loss of Mcl-1 and IAPs including XIAP while Zn substantially abrogated B-PAC-1-driven apoptosis (18-36%). In contrary, Zn is dispensable to inhibit staurosporin, bendamustine, ABT199 or MK206-induced apoptosis. Consistent to cell lines, B-PAC-1 stimulated cell death in primary B-lymphoma cells via caspase-3 cleavage with decline in both Mcl-1 and XIAP. This study underscores the first genetic evidence that B-PAC-1 driven apoptosis is mediated via Zn chelation.
Collapse
Affiliation(s)
- Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Leukemia, UT MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jefferson Chen
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Viralkumar Patel
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas Health Science Center, Houston, Texas, USA
| | - John S McMurray
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Leukemia, UT MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
23
|
Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia 2016; 31:1154-1165. [PMID: 27748372 DOI: 10.1038/leu.2016.287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-α (TNF-α)-induced RIP1/RIP3 (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3)-mediated necroptosis has been proposed as an alternative strategy for treating apoptosis-resistant leukemia. However, we found that most acute myeloid leukemia (AML) cells, especially M4 and M5 subtypes, produce TNF and show basal level activation of RIP1/RIP3/MLKL signaling, yet do not undergo necroptosis. TNF, through RIP1/RIP3 signaling, prevents degradation of SOCS1, a key negative regulator of interferon-γ (IFN-γ) signaling. Using both pharmacologic and genetic assays, we show here that inactivation of RIP1/RIP3 resulted in reduction of SOCS1 protein levels and partial differentiation of AML cells. AML cells with inactivated RIP1/RIP3 signaling show increased sensitivity to IFN-γ-induced differentiation. RIP1/RIP3 inactivation combined with IFN-γ treatment significantly attenuated the clonogenic capacity of both primary AML cells and AML cell lines. This combination treatment also compromised the leukemogenic ability of murine AML cells in vivo. Our studies suggest that inhibition of RIP1/RIP3-mediated necroptotic signaling might be a novel strategy for the treatment of AML when combined with other differentiation inducers.
Collapse
|
24
|
Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells. Biochem Pharmacol 2016; 118:9-17. [PMID: 27544320 DOI: 10.1016/j.bcp.2016.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
The lack of effective chemotherapies in hepatocellular carcinoma (HCC) is still an unsolved problem and underlines the need for new strategies in liver cancer treatment. In this study, we present a novel approach to improve the efficacy of Sorafenib, today's only routinely used chemotherapeutic drug for HCC, in combination with triterpenoid oleanolic acid (OA). Our data show that cotreatment with subtoxic concentrations of Sorafenib and OA leads to highly synergistic induction of cell death. Importantly, Sorafenib/OA cotreatment triggers cell damage in a sustained manner and suppresses long-term clonogenic survival. Sorafenib/OA cotreatment induces DNA fragmentation and caspase-3/7 cleavage and the addition of the pan-caspase inhibitor zVAD.fmk shows the requirement of caspase activation for Sorafenib/OA-triggered cell death. Furthermore, Sorafenib/OA co-treatment stimulates a significant increase in reactive oxygen species (ROS) levels. Most importantly, the accumulation of intracellular ROS is required for cell death induction, since the addition of ROS scavengers (i.e. α-tocopherol, MnTBAP) that prevent the increase of intracellular ROS levels completely rescues cells from Sorafenib/OA-triggered cell death. In conclusion, OA represents a novel approach to increase the sensitivity of HCC cells to Sorafenib via oxidative stress.
Collapse
|
25
|
El-Mesery M, Shaker ME, Elgaml A. The SMAC mimetic BV6 induces cell death and sensitizes different cell lines to TNF-α and TRAIL-induced apoptosis. Exp Biol Med (Maywood) 2016; 241:2015-2022. [PMID: 27465142 DOI: 10.1177/1535370216661779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF -kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Mohamed El-Mesery
- 1 Faculty of Pharmacy, Department of Biochemistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed E Shaker
- 2 Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz Elgaml
- 3 Faculty of Pharmacy, Department of Microbiology and Immunology, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
26
|
Zeligs KP, Neuman MK, Annunziata CM. Molecular Pathways: The Balance between Cancer and the Immune System Challenges the Therapeutic Specificity of Targeting Nuclear Factor-κB Signaling for Cancer Treatment. Clin Cancer Res 2016; 22:4302-8. [PMID: 27422962 DOI: 10.1158/1078-0432.ccr-15-1374] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/29/2016] [Indexed: 12/23/2022]
Abstract
The NF-κB signaling pathway is a complex network linking extracellular stimuli to cell survival and proliferation. Cytoplasmic signaling to activate NF-κB can occur as part of the DNA damage response or in response to a large variety of activators, including viruses, inflammation, and cell death. NF-κB transcription factors play a fundamental role in tumorigenesis and are implicated in the origination and propagation of both hematologic and solid tumor types, including melanoma, breast, prostate, ovarian, pancreatic, colon, lung, and thyroid cancers. On the other hand, NF-κB signaling is key to immune function and is likely necessary for antitumor immunity. This presents a dilemma when designing therapeutic approaches to target NF-κB. There is growing interest in identifying novel modulators to inhibit NF-κB activity as impeding different steps of the NF-κB pathway has potential to slow tumor growth, progression, and resistance to chemotherapy. Despite significant advances in our understanding of this pathway, our ability to effectively clinically block key targets for cancer therapy remains limited due to on-target effects in normal tissues. Tumor specificity is critical to developing therapeutic strategies targeting this antiapoptotic signaling pathway to maintain antitumor immune surveillance when applying such therapy to patients. Clin Cancer Res; 22(17); 4302-8. ©2016 AACR.
Collapse
Affiliation(s)
- Kristen P Zeligs
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland. Department of Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Monica K Neuman
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | |
Collapse
|
27
|
Liu B, Du L, Xu C, Wang Y, Wang Q, Song Z, Sun X, Wang J, Liu Q. [Radiosensitization Induced by ANTP-SmacN7 Fusion Peptide in H460 Cell Line]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:241-6. [PMID: 27215450 PMCID: PMC5973049 DOI: 10.3779/j.issn.1009-3419.2016.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
背景与目的 肿瘤的辐射耐受制约了放疗疗效,第二个线粒体衍生的半胱氨酸蛋白酶激活剂(Second mitochondria-derived activator of caspase, Smac)蛋白类似物可明显提高辐射诱导的肿瘤细胞凋亡,有望成为新型肿瘤辐射增敏药物。本研究旨在探讨新型Smac蛋白类似物ANTP-SmacN7融合肽对肺癌细胞系H460的辐射增敏作用。 方法 合成ANTP-SmacN7融合肽,连接荧光素FITC以观察融合肽能否进入细胞。对数生长期H460细胞分为空白对照组、单纯照射组、ANTP-SmacN7组和照射联合ANTP-SmacN7组,单纯照射组给予0 Gy、2 Gy、4 Gy、6 Gy照射,照射联合ANTP-SmacN7组中ANTP-SmacN7的浓度为20 μmol/L,WST-1测定H460细胞的增殖。流式细胞仪测定细胞处理后24 h和48 h的细胞凋亡率。Western blot实验检测caspase3和cleaved caspase3的表达水平。 结果 ANTP-SmacN7融合能够顺利进入细胞,且能够增强H460细胞的辐射敏感性(F=25.1,P < 0.01,增敏比为1.86),照射联合ANTP-SmacN7可明显降低H460细胞的克隆形成率(χ2=45.2, P < 0.01; χ2=40.3, P < 0.01),提高cleaved caspase3的表达量,促进caspase3的活化,增加辐射诱导的细胞凋亡率。 结论 ANTP-SmacN7融合肽可明显提高H460细胞的辐射敏感性,作为一种新的Smac蛋白类似物有望用于肿瘤的辐射增敏治疗。
Collapse
Affiliation(s)
- Baona Liu
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Liqing Du
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Chang Xu
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Yan Wang
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Qin Wang
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Zhiyi Song
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Xiaohui Sun
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Qiang Liu
- Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Lab of Radiation and Molecular Nuclear Medicine, Tianjin 300192, China
| |
Collapse
|
28
|
Kumar R, Raghava GPS. ApoCanD: Database of human apoptotic proteins in the context of cancer. Sci Rep 2016; 6:20797. [PMID: 26861916 PMCID: PMC4748276 DOI: 10.1038/srep20797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/12/2016] [Indexed: 01/02/2023] Open
Abstract
In the past decade, apoptosis pathway has gained a serious consideration being a critical cellular process in determining the cancer progression. Inverse relationship between cancer progression and apoptosis rate has been well established in the literature. It causes apoptosis proteins under the investigative scanner for developing anticancer therapies, which certainly got a success in the case of few apoptosis proteins as drug targets. In the present study, we have developed a dedicated database of 82 apoptosis proteins called ApoCanD. This database comprises of crucial information of apoptosis proteins in the context of cancer. Genomic status of proteins in the form of mutation, copy number variation and expression in thousands of tumour samples and cancer cell lines are the major bricks of this database. In analysis, we have found that TP53 and MYD88 are the two most frequently mutated proteins in cancer. Availability of other information e.g. gene essentiality data, tertiary structure, sequence alignments, sequences profiles, post-translational modifications makes it even more useful for the researchers. A user-friendly web interface is provided to ameliorate the use of ApoCanD. We anticipate that, this database will facilitate the research community working in the field of apoptosis and cancer. The database can be accessed at: http://crdd.osdd.net/raghava/apocand.
Collapse
Affiliation(s)
- Rahul Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gajendra P S Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| |
Collapse
|
29
|
Micewicz ED, Ratikan JA, Waring AJ, Whitelegge JP, McBride WH, Ruchala P. Lipid-conjugated Smac analogues. Bioorg Med Chem Lett 2015; 25:4419-27. [PMID: 26384289 PMCID: PMC4592835 DOI: 10.1016/j.bmcl.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Josephine A Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - Julian P Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
30
|
Caspase-8 activation by TRAIL monotherapy predicts responses to IAPi and TRAIL combination treatment in breast cancer cell lines. Cell Death Dis 2015; 6:e1893. [PMID: 26426685 PMCID: PMC4632282 DOI: 10.1038/cddis.2015.234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
The discovery of cancer cell-selective tumour necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis generated broad excitement and development of TRAIL receptor agonists (TRA) as potential cancer therapy. Studies demonstrating the synergistic combination effect of SMAC mimetics and TRA further suggested potentially effective treatment in multiple tumour settings. However, predictive biomarkers allowing identification of patients that could respond to treatment are lacking. Here, we described a high throughput combination screen conducted across a panel of 31 breast cancer cell lines in which we observed highly synergistic activity between TRAIL and the inhibitors of apoptosis proteins (IAP) inhibitor (IAPi) AZD5582 in ~30% of cell lines. We detected no difference in the expression levels of the IAPi or TRAIL-targeted proteins or common modulators of the apoptotic pathway between the sensitive and resistant cell lines. Synergistic combination effect of AZD5582 and TRAIL correlated with sensitivity to TRAIL, but not to AZD5582 as a single agent. TRAIL treatment led to significantly greater activity of Caspase-8 in sensitive than in resistant cell lines (P=0.002). The majority (12/14) of AZD5582+TRAIL-resistant cell lines retained a functional cell death pathway, as they were sensitive to AZD5582+TNFα combination treatment. This suggested that failure of the TRAIL receptor complex to transduce the death signal to Caspase-8 underlies AZD5582+TRAIL resistance. We developed a 3D spheroid assay and demonstrated its suitability for the ex vivo analysis of the Caspase-8 activity as a predictive biomarker. Altogether, our study demonstrated a link between the functionality of the TRAIL receptor pathway and the synergistic activity of the IAPi+TRA combination treatment. It also provided a rationale for development of the Caspase-8 activity assay as a functional predictive biomarker that could allow better prediction of the response to IAPi+TRA-based therapies than the analysis of expression levels of protein biomarkers.
Collapse
|
31
|
Consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat Rev Urol 2015; 12:225-35. [DOI: 10.1038/nrurol.2015.58] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Koff JL, Ramachandiran S, Bernal-Mizrachi L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci 2015; 16:2942-55. [PMID: 25636036 PMCID: PMC4346874 DOI: 10.3390/ijms16022942] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 12/24/2022] Open
Abstract
The process of apoptosis is essential for maintaining the physiologic balance between cell death and cell growth. This complex process is executed by two major pathways that participate in activating an executioner mechanism leading to chromatin disintegration and nuclear fragmentation. Dysregulation of these pathways often contributes to cancer development and resistance to cancer therapy. Here, we review the most recent discoveries in apoptosis regulation and possible mechanisms for resensitizing tumor cells to therapy.
Collapse
Affiliation(s)
- Jean L Koff
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Sampath Ramachandiran
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology at the Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Emeagi PU, Thielemans K, Breckpot K. The role of SMAC mimetics in regulation of tumor cell death and immunity. Oncoimmunology 2014; 1:965-967. [PMID: 23162773 PMCID: PMC3489761 DOI: 10.4161/onci.20369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mimetics of second mitochondria-derived activator of caspases (SMAC) enhance tumor cell death in a variety of cancers. Several molecular mechanisms of action have been identified. However, it was only recently that the modus of action was linked to stimulation of anti-tumor immunity. Here we comment on these findings, highlighting several remaining questions.
Collapse
Affiliation(s)
- Perpetua U Emeagi
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology; Vrije Universiteit Brussel; Laarbeeklaan, Jette, Belgium
| | | | | |
Collapse
|
34
|
Ando M, Hoyos V, Yagyu S, Tao W, Ramos CA, Dotti G, Brenner MK, Bouchier-Hayes L. Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther 2014; 21:472-482. [PMID: 25323693 DOI: 10.1038/cgt.2014.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.
Collapse
Affiliation(s)
- Miki Ando
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Shigeki Yagyu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Wade Tao
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA.,Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
35
|
Differential response of head and neck cancer cell lines to TRAIL or Smac mimetics is associated with the cellular levels and activity of caspase-8 and caspase-10. Br J Cancer 2014; 111:1955-64. [PMID: 25314064 PMCID: PMC4229641 DOI: 10.1038/bjc.2014.521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 11/09/2022] Open
Abstract
Background: Current treatment strategies for head and neck cancer are associated with significant morbidity and up to 50% of patients relapse, highlighting the need for more specific and effective therapeutics. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Smac mimetics (SMs) are promising anticancer agents, but their effect on head and neck squamous cell carcinoma (HNSCC) remains unknown. Methods: We examined the response of a panel of nine HNSCC cell lines to TRAIL and SMs and investigated the mechanism of cell type-specific response by functional analysis. Results: Head and neck cancer cell lines revealed a converse response pattern with three cell lines being highly sensitive to Smac-164 (SM) but resistant to TRAIL, whereas the other six were sensitive to TRAIL but resistant to SM. Distinct protein expression and activation patterns were found to be associated with susceptibility of HNSCC cell lines to TRAIL and SM. Tumour necrosis factor-related apoptosis-inducing ligand sensitivity was associated with high caspase-8 and Bid protein levels, and TRAIL-sensitive cell lines were killed via the type II extrinsic apoptotic pathway. Smac mimetic-sensitive cells expressed low levels of caspase-8 and Bid but had high TNF-α expression. Smac mimetic-induced cell death was associated with caspase-10 activation, suggesting that in the absence of caspase-8, caspase-10 mediates response to SM. Cotreatment with TNF-α sensitised the resistant cells to SM, demonstrating a decisive role for TNF-α-driven feedback loop in SM sensitivity. Conclusions: Tumour necrosis factor-related apoptosis-inducing ligand and SMs effectively kill HNSCC cell lines and therefore represent potential targeted therapeutics for head and neck cancer. Distinct molecular mechanisms determine the sensitivity to each agent, with levels of TNF-α, caspase-8, Bid and caspase-10 providing important predictive biomarkers of response to these agents.
Collapse
|
36
|
Elkholi R, Renault TT, Serasinghe MN, Chipuk JE. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab 2014; 2:16. [PMID: 25621172 PMCID: PMC4304082 DOI: 10.1186/2049-3002-2-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
In order to solve a jigsaw puzzle, one must first have the complete picture to logically connect the pieces. However, in cancer biology, we are still gaining an understanding of all the signaling pathways that promote tumorigenesis and how these pathways can be pharmacologically manipulated by conventional and targeted therapies. Despite not having complete knowledge of the mechanisms that cause cancer, the signaling networks responsible for cancer are becoming clearer, and this information is serving as a solid foundation for the development of rationally designed therapies. One goal of chemotherapy is to induce cancer cell death through the mitochondrial pathway of apoptosis. Within this review, we present the pathways that govern the cellular decision to undergo apoptosis as three distinct, yet connected puzzle pieces: (1) How do oncogene and tumor suppressor pathways regulate apoptosis upstream of mitochondria? (2) How does the B-cell lymphoma 2 (BCL-2) family influence tumorigenesis and chemotherapeutic responses? (3) How is post-mitochondrial outer membrane permeabilization (MOMP) regulation of cell death relevant in cancer? When these pieces are united, it is possible to appreciate how cancer signaling directly impacts upon the fundamental cellular mechanisms of apoptosis and potentially reveals novel pharmacological targets within these pathways that may enhance chemotherapeutic success.
Collapse
Affiliation(s)
- Rana Elkholi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Thibaud T Renault
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| |
Collapse
|
37
|
Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell 2014; 5:737-49. [PMID: 25073422 PMCID: PMC4180462 DOI: 10.1007/s13238-014-0089-1] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
Abstract
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
38
|
Ramzan Z, Nassri AB, Huerta S. Genotypic characteristics of resistant tumors to pre-operative ionizing radiation in rectal cancer. World J Gastrointest Oncol 2014; 6:194-210. [PMID: 25024812 PMCID: PMC4092337 DOI: 10.4251/wjgo.v6.i7.194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/19/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Due to a wide range of clinical response in patients undergoing neo-adjuvant chemoradiation for rectal cancer it is essential to understand molecular factors that lead to the broad response observed in patients receiving the same form of treatment. Despite extensive research in this field, the exact mechanisms still remain elusive. Data raging from DNA-repair to specific molecules leading to cell survival as well as resistance to apoptosis have been investigated. Individually, or in combination, there is no single pathway that has become clinically applicable to date. In the following review, we describe the current status of various pathways that might lead to resistance to the therapeutic applications of ionizing radiation in rectal cancer.
Collapse
|
39
|
Livin, Survivin and Caspase 3 as early recurrence markers in non-muscle-invasive bladder cancer. World J Urol 2014; 32:1477-84. [DOI: 10.1007/s00345-014-1246-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/17/2014] [Indexed: 12/31/2022] Open
|
40
|
Micewicz ED, Luong HT, Jung CL, Waring AJ, McBride WH, Ruchala P. Novel dimeric Smac analogs as prospective anticancer agents. Bioorg Med Chem Lett 2014; 24:1452-7. [PMID: 24582479 DOI: 10.1016/j.bmcl.2014.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Abstract
A small library of monovalent Smac mimics with general structure NMeAla-Tle-(4R)-4-Benzyl-Pro-Xaa-cysteamide, was synthesized (Xaa=hydrophobic residue). The library was screened in vitro against human breast cancer cell lines MCF-7 and MDA-MB-231, and two most active compounds oligomerized via S-alkylation giving bivalent and trivalent derivatives. The most active bivalent analogue SMAC17-2X was tested in vivo and in physiological conditions (mouse model) it exerted a potent anticancer effect resulting in ∼23.4days of tumor growth delay at 7.5mg/kg dose. Collectively, our findings suggest that bivalent Smac analogs obtained via S-alkylation protocol may be a suitable platform for the development of new anticancer therapeutics.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Hai T Luong
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Chun-Ling Jung
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
42
|
Rettinger E, Glatthaar A, Abhari BA, Oelsner S, Pfirrmann V, Huenecke S, Kuçi S, Kreyenberg H, Willasch AM, Klingebiel T, Fulda S, Bader P. SMAC Mimetic BV6 Enables Sensitization of Resistant Tumor Cells but also Affects Cytokine-Induced Killer (CIK) Cells: A Potential Challenge for Combination Therapy. Front Pediatr 2014; 2:75. [PMID: 25101252 PMCID: PMC4103003 DOI: 10.3389/fped.2014.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/03/2014] [Indexed: 01/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an established treatment option for high-risk hematological malignancies, and may also be offered to patients with solid malignancies refractory to conventional therapies. In case of patients' relapse, refractory tumor cells may then be targeted by cellular therapy-based combination strategies. Here, we investigated the potential of small molecule IAP (SMAC mimetic) BV6 in increasing cytokine-induced killer (CIK) cell-mediated cytotoxicity against different tumor targets. Four-hour pre-incubation with 2.5 μMol BV6 moderately enhanced CIK cell-mediated lysis of hematological (H9, THP-1, and Tanoue) and solid malignancies (RH1, RH30, and TE671). However, BV6 also increased apoptosis of non-malignant cells like peripheral blood mononuclear cells and most notably had an inhibitory effect on immune cells potentially limiting their cytotoxic potential. Hence, cytotoxicity increased in a dose-dependent manner when BV6 was removed before CIK cells were added to tumor targets. However, cytotoxic potential was not further increasable by extending BV6 pre-incubation period of target cells from 4 to 12 h. Molecular studies revealed that BV6 sensitization of target cells involved activation of caspases. Here, we provide evidence that SMAC mimetic may sensitize targets cells for CIK cell-induced cell death. However, BV6 also increased apoptosis of non-malignant cells like CIK cells and peripheral mononuclear cells. These findings may therefore be important for cell- and small molecule IAP-based combination therapies of resistant cancers after allogeneic HSCT.
Collapse
Affiliation(s)
- Eva Rettinger
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Andreas Glatthaar
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Behnaz Ahangarian Abhari
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Sarah Oelsner
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany ; Georg-Speyer-Haus, Institute for Biomedical Research , Frankfurt , Germany
| | - Verena Pfirrmann
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Selim Kuçi
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Andre M Willasch
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Thomas Klingebiel
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt am Main , Frankfurt , Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main , Frankfurt , Germany
| |
Collapse
|
43
|
Gatti L, De Cesare M, Ciusani E, Corna E, Arrighetti N, Cominetti D, Belvisi L, Potenza D, Moroni E, Vasile F, Lecis D, Delia D, Castiglioni V, Scanziani E, Seneci P, Zaffaroni N, Perego P. Antitumor Activity of a Novel Homodimeric SMAC Mimetic in Ovarian Carcinoma. Mol Pharm 2013; 11:283-93. [DOI: 10.1021/mp4004578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Laura Gatti
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Michelandrea De Cesare
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Emilio Ciusani
- Laboratory
of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Via Celoria 11, Milan 20133, Italy
| | - Elisabetta Corna
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Noemi Arrighetti
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Denis Cominetti
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Laura Belvisi
- Department
of Chemistry, Università degli Studi di Milano, Via Golgi
19, Milan 20133, Italy
| | - Donatella Potenza
- Department
of Chemistry, Università degli Studi di Milano, Via Golgi
19, Milan 20133, Italy
| | - Elisabetta Moroni
- Department
of Chemistry, Università degli Studi di Milano, Via Golgi
19, Milan 20133, Italy
| | - Francesca Vasile
- Department
of Chemistry, Università degli Studi di Milano, Via Golgi
19, Milan 20133, Italy
| | - Daniele Lecis
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Domenico Delia
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Vittoria Castiglioni
- Department
of Veterinary Science and Public Health, Università degli Studi di Milano, Via Celoria 10, Milan 20133, Italy
| | - Eugenio Scanziani
- Department
of Veterinary Science and Public Health, Università degli Studi di Milano, Via Celoria 10, Milan 20133, Italy
| | - Pierfausto Seneci
- Department
of Chemistry, Università degli Studi di Milano, Via Golgi
19, Milan 20133, Italy
| | - Nadia Zaffaroni
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| | - Paola Perego
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy
| |
Collapse
|
44
|
Abstract
Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.
Collapse
Affiliation(s)
- Caitriona Holohan
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | |
Collapse
|
45
|
Wang L, Wang C, Su B, Song Q, Zhang Y, Luo Y, Li Q, Tan W, Ma D, Wang L. Recombinant human PDCD5 protein enhances chemosensitivity of breast cancer in vitro and in vivo. Biochem Cell Biol 2013; 91:526-31. [PMID: 24219296 DOI: 10.1139/bcb-2013-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance to paclitaxel is common for treatment of breast cancer. Programmed cell death 5 (PDCD5) accelerates apoptosis in different cell types in response to various stimuli; moreover PDCD5 has been shown to be down-regulated in many tumors. In this study, protein levels of PDCD5 were found to be up-regulated in paclitaxel-treated MDA-MB-231 breast cancer cells. MTT, CCK-8, and clonogenic assays have shown that recombinant human PDCD5 (rhPDCD5) alone could not produce an obvious growth inhibition. However, upon paclitaxel triggering apoptosis, rhPDCD5 protein potentiated chemotherapeutic drugs-induced growth arrest in MDA-MB-231, SK-BR-3, and ZR-75-1 breast cancer cells. In vivo, we use a human breast cancer xenograft model to study. We found that rhPDCD5 dramatically improves the antitumor effects of paclitaxel treatment by intraperitoneal administration. These data suggest that rhPDCD5 has the potential to use as a therapeutic agent to enhance the paclitaxel sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Lanlan Wang
- a Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu BH, Chen L, Li SR, Wang ZX, Cheng WG. Smac/DIABLO regulates the apoptosis of hypertrophic scar fibroblasts. Int J Mol Med 2013; 32:615-22. [PMID: 23857156 DOI: 10.3892/ijmm.2013.1442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/10/2013] [Indexed: 11/06/2022] Open
Abstract
In abnormal skin wound healing, hypertrophic scars (HS) are characterized by excessive fibroblast hypercellularity and an overproduction of collagen, leading to atypical extracellular matrix (ECM) remodeling. Although the exact mechanisms of HS remain unclear, decreased HS fibroblast (HSFB) apoptosis and increased proliferation are evident in the development of HS. In this study, the contribution of the second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein (IAP)-binding protein with a low isoelectric point (pI) (Smac/DIABLO), an apoptosis-promoting protein released from the mitochondria, was investigated in human normal skin and HSFB cultures. The expression of Smac/DIABLO is usually decreased in many malignant tumors compared with normal tissues. Immunohistochemical analysis of skin tissues and the western blot analyses of fibroblasts revealed that the expression of Smac/DIABLO was lower in HS tissues compared with normal skin tissues. Of note, adenovirus-mediated Smac/DIABLO overexpression in the cultured HSFBs significantly reduced cell proliferation, as detected by the cell counting kit-8, and increased caspase-3 and -9 activity, as detected by spectrofluorimetry. In addition, it increased apoptosis, as detected by fluorescence-activated cell sorting (FACS). Furthermore, we found that the silencing of Smac with siRNA in the HSFBs induced a noticeable decrease in caspase-3 and -9 activity, leading to a significant reduction in apoptosis. In addition, the mRNA expression of type I and III pro-collagen detected in the HSFBs was significantly increased following the silencing of Smac with siRNA and was inhibited following Smac/DIABLO overexpression, as shown by real-time RT-PCR. In conclusion, Smac/DIABLO decreases the proliferation and increases the apoptosis of HSFBs. To our knowledge, the data from our study suggest for the first time that Smac/DIABLO is a novel therapeutic target for HS.
Collapse
Affiliation(s)
- Bao-Heng Liu
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | | | | | | | | |
Collapse
|
47
|
Vörsmann H, Groeber F, Walles H, Busch S, Beissert S, Walczak H, Kulms D. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Cell Death Dis 2013; 4:e719. [PMID: 23846221 PMCID: PMC3730422 DOI: 10.1038/cddis.2013.249] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/24/2022]
Abstract
Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel therapies thereby regaining tumorigenic capacity. Although genetically engineered mouse models for MM have been developed, at present no model is available that reliably mimics the human disease and is suitable for studying mechanisms of therapeutic obstacles including cell death resistance. To improve the increasing requests on new therapeutic alternatives, reliable human screening models are demanded that translate the findings from basic cellular research into clinical applications. By developing an organotypic full skin equivalent, harboring melanoma tumor spheroids of defined sizes we have invented a cell-based model that recapitulates both the 3D organization and multicellular complexity of an organ/tumor in vivo but at the same time accommodates systematic experimental intervention. By extending our previous findings on melanoma cell sensitization toward TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) by co-application of sublethal doses of ultraviolet-B radiation (UVB) or cisplatin, we show significant differences in the therapeutical outcome to exist between regular two-dimensional (2D) and complex in vivo-like 3D models. Of note, while both treatment combinations killed the same cancer cell lines in 2D culture, skin equivalent-embedded melanoma spheroids are potently killed by TRAIL+cisplatin treatment but remain almost unaffected by the TRAIL+UVB combination. Consequently, we have established an organotypic human skin-melanoma model that will facilitate efforts to improve therapeutic outcomes for malignant melanoma by providing a platform for the investigation of cytotoxic treatments and tailored therapies in a more physiological setting.
Collapse
Affiliation(s)
- H Vörsmann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee EK, Jinesh G G, Laing NM, Choi W, McConkey DJ, Kamat AM. A Smac mimetic augments the response of urothelial cancer cells to gemcitabine and cisplatin. Cancer Biol Ther 2013; 14:812-22. [PMID: 23792592 DOI: 10.4161/cbt.25326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cisplatin-based chemotherapy is considered the gold standard for patients with advanced bladder cancer. However, despite initial response, many patients will relapse; therefore, novel salvage treatment strategies are desperately needed. Herein, we studied a mechanism based treatment combination using a Smac mimetic with standard chemotherapy. Using a panel of 10 urothelial cancer cell lines, we exposed them to a combination of gemcitabine, cisplatin, and a Smac mimetic. Sensitivity was determined using a DNA fragmentation assay. We determined that three cell lines (UMUC-3, UMUC-13, and RT4v6) were considered sensitive to the combination of gemcitabine and cisplatin and an additional three cell lines were sensitized to gemcitabine and cisplatin with the addition of the Smac mimetic (UMUC-6, UMUC-12, and UMUC-18). We next explored the constitutive expression of selected members of the IAP family (XIAP, cIAP-1, cIAP-2, and Survivin), the BCL family (BCL-2, BCLXL, and BAX) and Smac using gene expression profiling and western blotting. We determined that RNA and protein expression of SMAC, selected members of the IAP family and members of the BCL family did not correlate to drug sensitivity. Lastly, using an in vivo mouse model, we determined that treatment with the Smac mimetic in combination with gemcitabine and cisplatin resulted in increased apoptosis, decreased microvessel density and decreased cellular proliferation. This novel treatment strategy may be effective in patients with advanced urothelial carcinoma and warrants further investigation.
Collapse
Affiliation(s)
- Eugene K Lee
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Goodwin Jinesh G
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | - Woonyoung Choi
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - David J McConkey
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Ashish M Kamat
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
49
|
Sampson VB, Gorlick R, Kamara D, Anders Kolb E. A review of targeted therapies evaluated by the pediatric preclinical testing program for osteosarcoma. Front Oncol 2013; 3:132. [PMID: 23755370 PMCID: PMC3668267 DOI: 10.3389/fonc.2013.00132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/12/2013] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma, the most common malignant bone tumor of childhood, is a high-grade primary bone sarcoma that occurs mostly in adolescence. Standard treatment consists of surgery in combination with multi-agent chemotherapy regimens. The development and approval of imatinib for Philadelphia chromosome-positive acute lymphoblastic leukemia in children and the fully human monoclonal antibody, anti-GD2, as part of an immune therapy for high-risk neuroblastoma patients have established the precedent for use of targeted inhibitors along with standard chemotherapy backbones. However, few targeted agents tested have achieved traditional clinical endpoints for osteosarcoma. Many biological agents demonstrating anti-tumor responses in preclinical and early-phase clinical testing have failed to reach response thresholds to justify randomized trials with large numbers of patients. The development of targeted therapies for pediatric cancer remains a significant challenge. To aid in the prioritization of new agents for clinical testing, the Pediatric Preclinical Testing Program (PPTP) has developed reliable and robust preclinical pediatric cancer models to rapidly screen agents for activity in multiple childhood cancers and establish pharmacological parameters and effective drug concentrations for clinical trials. In this article, we examine a range of standard and novel agents that have been evaluated by the PPTP, and we discuss the preclinical and clinical development of these for the treatment of osteosarcoma. We further demonstrate that committed resources for hypothesis-driven drug discovery and development are needed to yield clinical successes in the search for new therapies for this pediatric disease.
Collapse
Affiliation(s)
- Valerie B Sampson
- Nemours Center for Childhood Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | | | | | | |
Collapse
|
50
|
Katragadda L, Carter BZ, Borthakur G. XIAP antisense therapy with AEG 35156 in acute myeloid leukemia. Expert Opin Investig Drugs 2013; 22:663-70. [PMID: 23586880 DOI: 10.1517/13543784.2013.789498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AEG 35156 is an antisense oligonucleotide to X-linked inhibitor of apoptosis protein (XIAP). Overexpression of XIAP is common in acute myeloid leukemia (AML) and other cancers and is thought to cause resistance to cancer therapy. Effective treatment options for patients with relapsed or refractory AML are limited and survival continues to be poor. Targeting resistance mechanisms is expected to improve results in relapsed as well as front-line settings. AREAS COVERED Role of XIAP in apoptosis pathways, structure of AEG 35156, mechanism of action, pharmacokinetics and pharmacodynamics, clinical efficacy and review of clinical trials in AML. EXPERT OPINION AEG 35156 in combination with standard chemotherapy was generally very well-tolerated and had shown some evidence of anti-leukemic activity in AML. The target knock down was transient and has not always correlated with response. Future studies may be done with variations in dose scheduling and with more emphasis on comprehensive pharmacodynamic studies simultaneously analyzing other inhibitor of apoptosis proteins (IAPs) and various XIAP regulators. Use of small molecule mimetics of second mitochondria derived activator of caspases (Smac) simultaneously targeting other IAPs appears to be an attractive option.
Collapse
Affiliation(s)
- Lakshmikanth Katragadda
- MD Anderson Cancer Center, Department of Leukemia, 1515 Holcombe Boulevard, Unit 428, Houston, Texas 77030, USA
| | | | | |
Collapse
|