1
|
AghaAmiri S, Ghosh SC, Hernandez Vargas S, Halperin DM, Azhdarinia A. Somatostatin Receptor Subtype-2 Targeting System for Specific Delivery of Temozolomide. J Med Chem 2024; 67:2425-2437. [PMID: 38346097 PMCID: PMC10896214 DOI: 10.1021/acs.jmedchem.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024]
Abstract
Temozolomide (TMZ) is a DNA alkylating agent that produces objective responses in patients with neuroendocrine tumors (NETs) when the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is inactivated. At high doses, TMZ therapy exhausts MGMT activity but also produces dose-limiting toxicities. To reduce off-target effects, we converted the clinically approved radiotracer 68Ga-DOTA-TOC into a peptide-drug conjugate (PDC) for targeted delivery of TMZ to somatostatin receptor subtype-2 (SSTR2)-positive tumor cells. We used an integrated radiolabeling strategy for direct quantitative assessment of receptor binding, pharmacokinetics, and tissue biodistribution. In vitro studies revealed selective binding to SSTR2-positive cells with high affinity (5.98 ± 0.96 nmol/L), internalization, receptor-dependent DNA damage, cytotoxicity, and MGMT depletion. Imaging and biodistribution analysis showed preferential accumulation of the PDC in receptor-positive tumors and high renal clearance. This study identified a trackable SSTR2-targeting system for TMZ delivery and utilizes a modular design that could be broadly applied in PDC development.
Collapse
Affiliation(s)
- Solmaz AghaAmiri
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Sukhen C. Ghosh
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Servando Hernandez Vargas
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| | - Daniel M. Halperin
- Department
of Gastrointestinal Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ali Azhdarinia
- The
Brown Foundation Institute of Molecular Medicine, McGovern Medical
School, The University of Texas Health Science
Center at Houston, 1881 East Road, 3SCR6.4680, Houston, Texas 77054, United States
| |
Collapse
|
2
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Liu Y, Xia H, Wang Y, Han W, Qin J, Gao W, Qu X, Wang X. Targeted paclitaxel-octreotide conjugates inhibited the growth of paclitaxel-resistant human non-small cell lung cancer A549 cells in vitro. Thorac Cancer 2021; 12:3053-3061. [PMID: 34617400 PMCID: PMC8590899 DOI: 10.1111/1759-7714.14182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The application of chemotherapy in non‐small cell lung cancer (NSCLC) is limited by the toxicity to normal cells and the development of multi‐drug resistance. Targeted chemotherapy using cytotoxic analogs against specific receptors on cancer cells could be a less toxic and more efficacious approach. We identified that the expressions of somatostatin receptor (SSTR) 2 and 5 in tumor tissues from NSCLC patients were higher than those in the adjacent normal tissues by immunohistochemistry, and therefore, cytotoxic somatostatin analogues might be applied for SSTRs‐mediated targeted therapy against NSCLC. Two cytotoxic analogs, paclitaxel‐octreotide (PTX‐OCT) and 2paclitaxel‐octreotide (2PTX‐OCT), were synthesized by linking one or two molecules of paclitaxel to one molecule of somatostatin analog octreotide. PTX‐OCT and 2PTX‐OCT significantly inhibited the growth and induced apoptosis of SSTR2‐ and SSTR5‐positive A549 cells, compared with the control (p < 0.01), and had less inhibitory effect on SSTR2‐ and SSTR5‐negative H157 cells than paclitaxel (p < 0.01). Moreover, compared with paclitaxel, PTX‐OCT conjugates induced lower expression of MDR‐1 gene both in vitro and in vivo. Three A549 paclitaxel‐resistant cell lines were established through different approaches, and the paclitaxel‐resistant cell showed higher sensitivity to PTX‐OCT conjugates than to paclitaxel, which might be because of the differential MDR‐related gene expressions and cell‐cycle distribution in paclitaxel‐resistant A549 cells. Our results suggested that PTX‐OCT conjugates could be potentially used for SSTRs‐mediated targeted therapy for NSCLC, especially for those with paclitaxel resistance and induced less multidrug resistance.
Collapse
Affiliation(s)
- Yanguo Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Handai Xia
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yawei Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenfei Han
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Qin
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Gao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Ciobanasu C. Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. J Drug Target 2021; 29:1063-1079. [PMID: 33775187 DOI: 10.1080/1061186x.2021.1906885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, remarkable progress was registered in the field of cancer research. Though, cancer still represents a major cause of death and cancer metastasis a problem seeking for urgent solutions as it is the main reason for therapeutic failure. Unfortunately, the most common chemotherapeutic agents are non-selective and can damage healthy tissues and cause side effects that affect dramatically the quality of life of the patients. Targeted therapy with molecules that act specifically at the tumour sites interacting with overexpressed cancer receptors is a very promising strategy for achieving the specific delivery of anticancer drugs, radioisotopes or imaging agents. This review aims to give an overview on different strategies for targeting cancer cell receptors localised either at the extracellular matrix or at the cell membrane. Molecules like antibodies, aptamers and peptides targeting the cell surface are presented with advantages and disadvantages, with emphasis on peptides. The most representative peptides are described, including cell penetrating peptides, homing and anticancer peptides with particular consideration on recent discoveries.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Sciences Department, Institute for Interdisciplinary Research, Alexandru I. Cuza University, Iaşi, Romania
| |
Collapse
|
5
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
6
|
Somatostatin Receptors as Molecular Targets in Human Uveal Melanoma. Molecules 2018; 23:molecules23071535. [PMID: 29949880 PMCID: PMC6100349 DOI: 10.3390/molecules23071535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, with an incidence of 4–5 cases per million. The prognosis of UM is very poor. In the present study, our aim was to investigate the expression of mRNA and protein for somatostatin receptor types-1, -2, -3, -4, -5 (SSTR-1–5) in human UM tissue samples and in OCM-1 and OCM-3 human UM cell lines by qRT-PCR, western blot and ligand competition assay. The mRNA for SSTR-2 showed markedly higher expression in UM tissues than SSTR-5. The presence of SSTRs was demonstrated in 70% of UM specimens using ligand competition assay and both human UM models displayed specific high affinity SSTRs. Among the five SSTRs, the mRNA investigated for SSTR-2 and SSTR-5 receptors was strongly expressed in both human UM cell lines, SSTR-5 showing the highest expression. The presence of the SSTR-2 and SSTR-5 receptor proteins was confirmed in both cell lines by western blot. In summary, the expression of somatostatin receptors in human UM specimens and in OCM-1 and OCM-3 human UM cell lines suggests that they could serve as a potential molecular target for therapy of UM using modern powerful cytotoxic SST analogs targeting SSTR-2 and SSTR-5 receptors.
Collapse
|
7
|
Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A, Mueller MD, Ferretti E, Benedetti Panici P. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumour Biol 2017; 39:1010428317695525. [PMID: 28459207 DOI: 10.1177/1010428317695525] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and ovarian cancer is the most lethal gynecological malignancy. Women carrying a BRCA1/2 mutation have a very high lifetime risk of developing breast and ovarian cancer. The only effective risk-reducing strategy in BRCA-mutated women is a prophylactic surgery with bilateral mastectomy and bilateral salpingo-oophorectomy. However, many women are reluctant to undergo these prophylactic surgeries due to a consequent mutilated body perception, unfulfilled family planning, and precocious menopause. In these patients, an effective screening strategy is available only for breast cancer, but it only consists in close radiological exams with a significant burden for the health system and a significant distress to the patients. No biomarkers have been shown to effectively detect breast and ovarian cancer at an early stage. MicroRNAs (miRNAs) are key regulatory molecules operating in a post-transcriptional regulation of gene expression. Aberrant expression of miRNAs has been documented in several pathological conditions, including solid tumors, suggesting their involvement in tumorigenesis. miRNAs can be detected in blood and urine and could be used as biomarkers in solid tumors. Encouraging results are emerging in gynecological malignancy as well, and suggest a different pattern of expression of miRNAs in biological fluids of breast and ovarian cancer patients as compared to healthy control. Aim of this study is to highlight the role of the urinary miRNAs which are specifically associated with cancer and to investigate their role in early diagnosis and in determining the prognosis in breast and ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy.,2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Assunta Casorelli
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Erlisa Bardhi
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Aris Raad Besharat
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Delia Savone
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ilary Ruscito
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ammad Ahmad Farooqi
- 3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Andrea Papadia
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Michael David Mueller
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Elisabetta Ferretti
- 4 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,5 Neuromed Institute, Pozzilli, Italy
| | | |
Collapse
|
8
|
Parvani JG, Jackson MW. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocr Relat Cancer 2017; 24:R81-R97. [PMID: 28148541 PMCID: PMC5471497 DOI: 10.1530/erc-16-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
Abstract
Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Jenny G Parvani
- Department of Biomedical EngineeringCase Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| | - Mark W Jackson
- Case Comprehensive Cancer CenterCase Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Schally AV, Perez R, Block NL, Rick FG. Potentiating effects of GHRH analogs on the response to chemotherapy. Cell Cycle 2015; 14:699-704. [PMID: 25648497 DOI: 10.1080/15384101.2015.1010893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growth hormone releasing hormone (GHRH) from hypothalamus nominatively stimulates growth hormone release from adenohypophysis. GHRH is also produced by cancers, acting as an autocrine/paracrine growth factor. This growth factor function is seen in lymphoma, melanoma, colorectal, liver, lung, breast, prostate, kidney, bladder cancers. Pituitary type GHRH receptors and their splice variants are also expressed in these malignancies. Synthetic antagonists of the GHRH receptor inhibit proliferation of cancers. Besides direct inhibitory effects on tumors, GHRH antagonists also enhance cytotoxic chemotherapy. GHRH antagonists potentiate docetaxel effects on growth of H460 non-small cell lung cancer (NSCLC) and MX-1 breast cancer plus suppressive action of doxorubicin on MX-1 and HCC1806 breast cancer. We investigated mechanisms of antagonists on tumor growth, inflammatory signaling, doxorubicin response, expression of drug resistance genes, and efflux pump function. Triple negative breast cancer cell xenografted into nude mice were treated with GHRH antagonist, doxorubicin, or their combination. The combination reduced tumor growth, inflammatory gene expression, drug-resistance gene expression, cancer stem-cell marker expression, and efflux-pump function. Thus, antagonists increased the efficacy of doxorubicin in HCC1806 and MX-1 tumors. Growth inhibition of H460 NSCLC by GHRH antagonists induced marked downregulation in expression of prosurvival proteins K-Ras, COX-2, and pAKT. In HT-29, HCT-116 and HCT-15 colorectal cancer lines, GHRH antagonist treatment caused cellular arrest in S-phase of cell cycle, potentiated inhibition of in vitro proliferation and in vivo growth produced by S-phase specific cytotoxic agents, 5-FU, irinotecan and cisplatin. This enhancement of cytotoxic therapy by GHRH antagonists should have clinical applications.
Collapse
Affiliation(s)
- Andrew V Schally
- a Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education ; Miami , FL USA
| | | | | | | |
Collapse
|
10
|
Popovics P, Schally AV, Szalontay L, Block NL, Rick FG. Targeted cytotoxic analog of luteinizing hormone-releasing hormone (LHRH), AEZS-108 (AN-152), inhibits the growth of DU-145 human castration-resistant prostate cancer in vivo and in vitro through elevating p21 and ROS levels. Oncotarget 2015; 5:4567-78. [PMID: 24994120 PMCID: PMC4147346 DOI: 10.18632/oncotarget.2146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Management of castration-resistant prostate cancer (CRPC) is challenging due to lack of efficacious therapy. Luteinizing hormone-releasing hormone (LHRH) analogs appear to act directly on cells based on the LHRH receptors on human prostate adenocarcinoma cells. We explored anticancer activity of a cytotoxic analog of LHRH, AEZS-108, consisting of LHRH agonist linked to doxorubicin. Nude mice bearing DU-145 tumors were used to compare antitumor effects of AEZS-108 with its individual constituents or their unconjugated combination. The tumor growth inhibition of conjugate was greatest among treatment groups (90.5% inhibition vs. 41% by [D-Lys(6)]LHRH+DOX). The presence of LHRH receptors on DU-145 cells was confirmed by immunocytochemistry. In vitro, AEZS-108 significantly inhibited cell proliferation (61.2% inhibition) and elevated apoptosis rates (by 46%). By the detection of the inherent doxorubicin fluorescence, unconjugated doxorubicin was seen in the nucleus; the conjugate was perinuclear and at cell membrane. Autophagy, visualized by GFP-tagged p62 reporter, was increased by AEZS-108 (7.9-fold vs. 5.3-fold by DOX+[D-Lys(6)]LHRH. AEZS-108 more effectively increased reactive oxygen species (ROS, 2-fold vs. 1.4-fold by DOX+[D-Lys(6)]LHRH) and levels of the apoptotic regulator p21 in vivo and in vitro. We demonstrate robust inhibitory effects of the targeted cytotoxic LHRH analog, AEZS-108, on LHRHR positive castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Cardiovascular Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL; Department of Medicine III, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL; Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL; Endocrinology University of Miami, Miller School of Medicine, Miami, FL
| | - Luca Szalontay
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL
| | - Norman L Block
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL; Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL
| | - Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL; Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| |
Collapse
|
11
|
Böhme D, Beck-Sickinger AG. Drug delivery and release systems for targeted tumor therapy. J Pept Sci 2015; 21:186-200. [PMID: 25703117 DOI: 10.1002/psc.2753] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022]
Abstract
Most toxic agents currently used for chemotherapy show a narrow therapeutic window, because of their inability to distinguish between healthy and cancer cells. Targeted drug delivery offers the possibility to overcome this issue by selectively addressing structures on the surface of cancer cells, therefore reducing undesired side effects. In this broad field, peptide-drug conjugates linked by intracellular cleavable structures have evolved as highly promising agents. They can specifically deliver toxophores to tumor cells by targeting distinct receptors overexpressed in cancer. In this review, we focus on these compounds and describe important factors to develop a highly efficient peptide-drug conjugate. The necessary properties of tumor-targeting peptides are described, and the different options for cleavable linkers used to connect toxic agents and peptides are discussed, and synthetic considerations for the introduction of these structures are reported. Furthermore, recent examples and current developments of peptide-drug conjugates are critically evaluated with a special focus on the applied linker structures and their future use in cancer therapy.
Collapse
Affiliation(s)
- David Böhme
- Institute of Biochemistry, Universität Leipzig, Brüderstraße 34, 04103, Leipzig, Germany
| | | |
Collapse
|
12
|
Tiscornia MM, González HS, Lorenzati MA, Zapata PD. Association Between Methylation of SHP-1 Isoform I and SSTR2A Promoter Regions with Breast and Prostate Carcinoma Development. Cancer Invest 2015; 33:61-9. [DOI: 10.3109/07357907.2014.1001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Antagonistic analogs of growth hormone-releasing hormone increase the efficacy of treatment of triple negative breast cancer in nude mice with doxorubicin; A preclinical study. Oncoscience 2014; 1:665-73. [PMID: 25593995 PMCID: PMC4278278 DOI: 10.18632/oncoscience.92] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction This study evaluated the effects of an antagonistic analog of growth hormone-releasing hormone, MIA-602, on tumor growth, response to doxorubicin, expression of drug resistance genes, and efflux pump function in human triple negative breast cancers. Methods HCC1806 (doxorubicin-sensitive) and MX-1 (doxorubicin-resistant), cell lines were xenografted into nude mice and treated with MIA-602, doxorubicin, or their combination. Tumors were evaluated for changes in volume and the expression of the drug resistance genes MDR1 and NANOG. In-vitro cell culture assays were used to analyze the effect of MIA-602 on efflux pump function. Results Therapy with MIA-602 significantly reduced tumor growth and enhanced the efficacy of doxorubicin in both cell lines. Control HCC1806 tumors grew by 435%, while the volume of tumors treated with MIA-602 enlarged by 172.2% and with doxorubicin by 201.6%. Treatment with the combination of MIA-602 and doxorubicin resulted in an increase in volume of only 76.2%. Control MX-1 tumors grew by 907%, while tumors treated with MIA-602 enlarged by 434.8% and with doxorubicin by 815%. The combination of MIA-602 and doxorubicin reduced the increase in tumor volume to 256%. Treatment with MIA-602 lowered the level of growth hormone-releasing hormone and growth hormone-releasing hormone receptors and significantly reduced the expression of multidrug resistance (MDR1) gene and the drug resistance regulator NANOG. MIA-602 also suppressed efflux pump function in both cell lines. Conclusions We conclude that treatment of triple negative breast cancers with growth hormone-releasing hormone antagonists reduces tumor growth and potentiates the effects of cytotoxic therapy by nullifying drug resistance.
Collapse
|
14
|
Abstract
AIM: To examine the expression of somatostatin receptor subtypes (SSTRs), including SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5, in gastric cancer and to analyze their relationship with clinical and pathological characteristics.
METHODS: The expression of SSTRs in 58 gastric cancer specimens and adjacent normal stomach tissue specimens were examined by immunohistochemical staining. Correlations between SSTR expression and clinical and pathological parameters were analyzed by the chi-square test.
RESULTS: All five SSTR subtypes were expressed in gastric cancer tissues, with SSTR3 having the highest expression. SSTR5 expression increased significantly in gastric cancer compared with that in normal gastric tissue (P < 0.05). SSTR4 expression was significantly lower in gastric cancer with lymph node metastasis than in gastric cancer without lymph node metastasis (P < 0.05). SSTR3 expression in highly and moderately differentiated gastric cancer was significantly higher than that in poorly differentiated gastric cancer (P < 0.05). SSTR2 was lowly expressed in each group; SSTR1 expression was higher than SSTR5 expression in normal stomach tissue, but was lower in gastric cancer tissue.
CONCLUSION: Our results indicated that SSRT5, SSTR3 and SSTR4 may play important roles in the development of gastric cancer.
Collapse
|
15
|
Guo RS, Shi PD, Zhou J, Chen YY. Somatostatin receptors 3, 4 and 5 play important roles in gallbladder cancer. Asian Pac J Cancer Prev 2014; 14:4071-5. [PMID: 23991955 DOI: 10.7314/apjcp.2013.14.7.4071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Expression changes of somatostatin receptor subtypes (SSTRs) including SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5 in the development of gallbladder cancer were assessed with attention to relationships with clinical pathological characteristics. SSTRs in 29 gallbladder cancer and 25 normal gallbladder tissue specimens were examined by immunohistochemical staining. Differences between SSTRs expressions and clinical pathological parameters were analyzed by chi-square test. The five subtypes of SSTR were all expressed in gallbladder cancer tissues and SSTR3 presented the highest expression. SSTR5 expression was increased significantly in gallbladder cancer (P<0.05) compared with that in normal gallbladder tissue. SSTR3 expression in highly and moderately differentiated gallbladder cancer was significantly higher than that in poorly differentiated lesions (P<0.05). SSTR4 expression was lower in gallbladder cancer with lymph node metastasis than that in gallbladder cancer without lymph node metastasis (P<0.05). Therfore, these results indicated that SSRT5, SSTR3 and SSTR4 may play important roles in the formation and development of gallbladder cancer.
Collapse
Affiliation(s)
- Run-Sheng Guo
- Department of General Surgery, Jiading Central Hospital, Shanghai, China
| | | | | | | |
Collapse
|
16
|
Jaszberenyi M, Schally AV, Block NL, Nadji M, Vidaurre I, Szalontay L, Rick FG. Inhibition of U-87 MG glioblastoma by AN-152 (AEZS-108), a targeted cytotoxic analog of luteinizing hormone-releasing hormone. Oncotarget 2013; 4:422-32. [PMID: 23518876 PMCID: PMC3717305 DOI: 10.18632/oncotarget.917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is the most frequent tumor of the central nervous system in adults and has a dismal clinical outcome, which necessitates the development of new therapeutic approaches. We investigated in vivo the action of the targeted cytotoxic analog of luteinizing hormone releasing hormone, AN-152 (AEZS-108) in nude mice (Ncr nu/nu strain) bearing xenotransplanted U-87 MG glioblastoma tumors. We evaluated in vitro the expression of LHRH receptors, proliferation, apoptosis and the release of oncogenic and tumor suppressor cytokines. Clinical and U-87 MG samples of glioblastoma tumors expressed LHRH receptors. Treatment of nude mice with AN-152, once a week at an intravenous dose of 413 nmol/20g, for six weeks resulted in 76 % reduction in tumor growth. AN-152 nearly completely abolished tumor progression and elicited remarkable apoptosis in vitro. Genomic (RT-PCR) and proteomic (ELISA, Western blot) studies revealed that AN-152 activated apoptosis, as reflected by the changes in p53 and its regulators and substrates, inhibited cell growth, and elicited changes in intermediary filament pattern. AN-152 similarly reestablished contact regulation as demonstrated by expression of adhesion molecules and inhibited vascularization, as reflected by the transcription of angiogenic factors. Our findings suggest that targeted cytotoxic analog AN-152 (AEZS-108) should be considered for a treatment of glioblastomas.
Collapse
|