1
|
Chen G, Tong K, Li S, Huang Z, Liu S, Zhu H, Zhong Y, Zhou Z, Jiao G, Wei F, Chen N. Extracellular vesicles released by transforming growth factor-beta 1-preconditional mesenchymal stem cells promote recovery in mice with spinal cord injury. Bioact Mater 2024; 35:135-149. [PMID: 38312519 PMCID: PMC10837068 DOI: 10.1016/j.bioactmat.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-β1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shiming Li
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zerong Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Shuangjiang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Haoran Zhu
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Heyuan, 517400, China
| | - Yanheng Zhong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhisen Zhou
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Genlong Jiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Dongguan Key Laboratory of Central Nervous System Injury and Repair / Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, 523573, China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
3
|
Yang H, Jin G, Chen S, Luo J, Xu W. Glycoprotein non-metastatic melanoma B interacts with epidermal growth factor receptor to regulate neural stem cell survival and differentiation. Open Med (Wars) 2023; 18:20230639. [PMID: 36820063 PMCID: PMC9938639 DOI: 10.1515/med-2023-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 02/16/2023] Open
Abstract
The functional recovery following spinal cord injury (SCI) remains a challenge clinically. Among the proteins interacted with the glycoprotein non-metastatic melanoma B (GPNMB), epidermal growth factor receptor (EGFR) during activation is able to promote the proliferation of neural stem cells (NSCs) in the spinal cord. We investigated the roles of GPNMB and EGFR in regulating the survival and differentiation of the NSCs. By overexpression and short-hairpin RNA-mediated knockdown of GPNMB in the NSCs, GPNMB promoted cell viability and differentiation by increasing the expressions of βIII tubulin and CNPase (2',3'-cyclic nucleotide 3-phosphodiesterase). Using co-immunoprecipitation, we found that EGFR interacted with GPNMB. Furthermore, EGFR had a similar effect as GPNMB on promoting cell viability and differentiation. Overexpression of EGFR reversed the decrease in viability and differentiation caused by the knockdown of GPNMB, and vice versa. Last but not least, we tested the effect of GPNMB and EGFR on several intracellular pathways and found that GPNMB/EGFR modulated the phosphorylated (p)-c-Jun N-terminal kinase (JNK)1/2/JNK1/2 ratio and the p-nuclear factor κB (NF-κB p65)/NF-κB p65 ratio. In sum, our findings demonstrate the interaction between GPNMB and EGFR that regulates cell bioprocesses, with the hope to provide a new strategy of SCI therapy.
Collapse
Affiliation(s)
- Hua Yang
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gang Jin
- Orthopedics Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai City, Taizhou, Zhejiang Province, 317000, China
| | - Shihong Chen
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jing Luo
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Wei Xu
- Orthopedics Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai City, Taizhou, Zhejiang Province, 317000, China
| |
Collapse
|
4
|
Pan B, Wu X, Zeng X, Chen J, Zhang W, Cheng X, Wan Y, Li X. Transplantation of Wnt4-modified neural stem cells mediate M2 polarization to improve inflammatory micro-environment of spinal cord injury. Cell Prolif 2023:e13415. [PMID: 36747440 PMCID: PMC10392051 DOI: 10.1111/cpr.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Neural stem cells (NSCs) transplantation has been considered as a potential strategy to reconnect the neural circuit after spinal cord injury (SCI) but the therapeutic effect was still unsatisfied because of the poor inflammatory micro-environment of SCI. Previous study reported that neuroprotection and inflammatory immunomodulation were considered to be most important mechanism of NSCs transplantation. In addition, Wnt4 has been considered to be neurogenesis and anti-inflammatory so that it would be an essential assistant agent for NSCs transplantation. Our single cells sequence indicates that macrophages are the most important contributor of inflammatory response after SCI and the interaction between macrophages and astrocytes may be the most crucial to inflammatory microenvironment of SCI. We further report the first piece of evidence to confirm the interaction between Wnt4-modified NSCs and macrophages using NSCs-macrophages co-cultured system. Wnt4-modified NSCs induce M2 polarization and inhibit M1 polarization of macrophages through suppression of TLR4/NF-κB signal pathway; furthermore, M2 cells promote neuronal differentiation of NSCs through MAPK/JNK signal pathway. In vivo, transplantation of Wnt4-modified NSCs improves inflammatory micro-environment through induce M2 polarization and inhibits M1 polarization of macrophages to promote axonal regeneration and tissue repair. The current study indicated that transplantation of Wnt4-modified NSCs mediates M2 polarization of macrophages to promote spinal cord injury repair. Our novel findings would provide more insight of SCI and help with identification of novel treatment strategy.
Collapse
Affiliation(s)
- Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiaolin Zeng
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiewen Chen
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Zhang
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Cheng
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Wan
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Transplanting neurofibromatosis-1 gene knockout neural stem cells improve functional recovery in rats with spinal cord injury by enhancing the mTORC2 pathway. Exp Mol Med 2022; 54:1766-1777. [PMID: 36241865 PMCID: PMC9636387 DOI: 10.1038/s12276-022-00850-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022] Open
Abstract
The poor survival and low efficiency of neuronal differentiation limits the therapeutic effects of transplanted neural stem cells in the treatment of spinal cord injury. Neurofibromatosis-1 (NF-1) is a tumor suppressor gene that restricts the rapid and abnormal growth and differentiation of neural cells. In the present study, lentiviral vectors were used to knock out NF-1, Ricotr (the core member of mTORC2) or NF-1+Ricotr in neural stem cells in vitro, and the NF-1, Ricotr or NF-1+Ricotr knockout neural stem cells were transplanted at the lesion site in a rat model of spinal cord injury (SCI). We first demonstrated that targeted knockout of NF-1 had an antiapoptotic effect and improved neuronal differentiation by enhancing the mTORC2/Rictor pathway of neural stem cells in vitro. Subsequently, transplanting NF-1 knockout neural stem cells into the injured site sufficiently promoted the tissue repair and functional recovery of rats with spinal cord injury by enhancing the survival and neuronal differentiation of grafted neural stem cells. Collectively, these findings reveal a prominent role of NF-1 in neural stem cell biology, which is an invaluable step forward in enhancing the benefit of neural stem cell-mediated regenerative cell therapy for spinal cord injury and identifies the transplantation of NF-1 knockout neural stem cells as a promising strategy for spinal cord injury.
Collapse
|
6
|
Huang L, Sun X, Wang L, Pei G, Wang Y, Zhang Q, Liang Z, Wang D, Fu C, He C, Wei Q. Enhanced effect of combining bone marrow mesenchymal stem cells (BMMSCs) and pulsed electromagnetic fields (PEMF) to promote recovery after spinal cord injury in mice. MedComm (Beijing) 2022; 3:e160. [PMID: 35949547 PMCID: PMC9350428 DOI: 10.1002/mco2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/03/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive traumatic disease of the central nervous system without satisfying therapy efficiency. Bone marrow mesenchymal stem cells (BMMSCs) therapy promotes the neurotrophic factors' secretion and axonal regeneration, thereby promoting recovery of SCI. Pulsed electromagnetic fields (PEMF) therapy has been proven to promote neural growth and regeneration. Both BMMSCs and PEMF have shown curative effects for SCI; PEMF can further promote stem cell differentiation. Thus, we explored the combined effects of BMMSCs and PEMF and the potential interaction between these two therapies in SCI. Compared with the SCI control, BMMSCs, and PEMF groups, the combinational therapy displayed the best therapeutic effect. Combinational therapy increased the expression levels of nutritional factors including brain-derived neurotrophic factor (BDNF), nerve growth factors (NGF) and vascular endothelial growth factor (VEGF), enhanced neuron preservation (NeuN and NF-200), and increased axonal growth (MBP and myelin sheath). Additionally, PEMF promoted the expression levels of BDNF and VEGF in BMMSCs via Wnt/β-catenin signaling pathway. In summary, the combined therapy of BMMSCs and PEMF displayed a more satisfactory effect than BMMSCs and PEMF therapy alone, indicating a promising application of combined therapy for the therapy of SCI.
Collapse
Affiliation(s)
- Liyi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Gaiqing Pei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Yang Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Qing Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Zejun Liang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Dong Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
- Aging and Geriatric Mechanism Laboratory, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China HospitalSichuan UniversityChengduPR China
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceSichuan UniversityChengduPR China
| |
Collapse
|
7
|
Chen K, Ding L, Shui H, Liang Y, Zhang X, Wang T, Li L, Liu S, Wu H. MiR-615 Agomir Encapsulated in Pluronic F-127 Alleviates Neuron Damage and Facilitates Function Recovery After Brachial Plexus Avulsion. J Mol Neurosci 2021; 72:136-148. [PMID: 34569008 PMCID: PMC8755699 DOI: 10.1007/s12031-021-01916-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Brachial plexus avulsion (BPA) is a devastating traumatic peripheral nerve injury complicated with paralysis of the upper extremity. We previously reported that leucine-rich repeat and immunoglobulin-like domain-containing NOGO receptor-interacting protein 1 (LINGO-1) has a potent role in inhibiting neuron survival and axonal regeneration after the central nervous system (CNS) damage and miR-615 is a potential microRNA (miRNA) negatively regulated LINGO-1. However, the effect of miR-615 in BPA remains to be elucidated. Accumulating evidence indicates that pluronic F-127 (PF-127) hydrogel could serve as a promising vehicle for miRNA encapsulation. Thus, to further explore the potential role of hydrogel-miR-615 in BPA-reimplantation, the present study established the BPA rat model and injected miR-615 agomir encapsulated by PF-127 hydrogel into the reimplantation site using a microsyringe. In this study, results indicated that hydrogel-miR-615 agomir effectively alleviated motoneuron loss by LINGO-1 inhibition, promoted musculocutaneous nerve regeneration and myelination, reduced astrocytes activation, promoted angiogenesis and attenuated peripheral amyotrophy, leading to improved motor functional rehabilitation of the upper extremity. In conclusion, our findings demonstrate that miR-615-loaded PF-127 hydrogel may represent a novel therapeutic strategy for BPA treatment.
Collapse
Affiliation(s)
- Kangzhen Chen
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Lu Ding
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hua Shui
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
| | - Yinru Liang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaomin Zhang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, 528318, China
| | - Linke Li
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Shuxian Liu
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China.
| | - Hongfu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Zhao CG, Qin J, Li J, Jiang S, Ju F, Sun W, Ren Z, Ji YQ, Wang R, Sun XL, Mou X, Yuan H. LINGO-1 regulates Wnt5a signaling during neural stem and progenitor cell differentiation by modulating miR-15b-3p levels. Stem Cell Res Ther 2021; 12:372. [PMID: 34187584 PMCID: PMC8243903 DOI: 10.1186/s13287-021-02452-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background Manipulation of neural stem and progenitor cells (NSPCs) is critical for the successful treatment of spinal cord injury (SCI) by NSPC transplantation, since their differentiation into neurons and oligodendrocytes can be inhibited by factors present in inflamed myelin. In this study, we examined the effects of LINGO-1 on spinal cord-derived NSPC (sp-NSPC) differentiation, the underlying mechanisms of action, and the functional recovery of mice after transplantation of manipulated cells. Methods sp-NSPCs were harvested from female adult C57/BL6 mice after SCI induced with an NYU impactor. These cells were infected with lentiviral vectors containing LINGO-1 shRNA sequence or a scrambled control and transplanted into SCI mice. Tuj-1- and GFAP-positive cells were assessed by immunofluorescence staining. Wnt5a, p-JNK, JNK, and β-catenin expression was determined by Western blot and RT-qPCR. miRNAs were sequenced to detect changes in miRNA expression. Motor function was evaluated 0–35 days post-surgery by means of the Basso Mouse Scale (BMS) and by the rotarod performance test. Results We discovered that LINGO-1 shRNA increased neuronal differentiation of sp-NSPCs while decreasing astrocyte differentiation. These effects were accompanied by elevated Wnt5a protein expression, but unexpectedly, no changes in Wnt5a mRNA levels. miRNA-sequence analysis demonstrated that miR-15b-3p was a downstream mediator of LINGO-1 which suppressed Wnt5a expression. Transplantation of LINGO-1 shRNA-treated sp-NSPCs into SCI mice promoted neural differentiation, wound compaction, and motor function recovery. Conclusions LINGO-1 shRNA promotes neural differentiation of sp-NSPCs and Wnt5a expression, probably by downregulating miR-15b-3p. Transplantation of LINGO-1 shRNA-treated NSPCs promotes recovery of motor function after SCI, highlighting its potential as a target for SCI treatment.
Collapse
Affiliation(s)
- Chen-Guang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Li
- Department of Medicine and Health, University Bretagne Occidentale, Brest, France
| | - Shan Jiang
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fen Ju
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Ren
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Ji
- Department of Central Laboratory, The First Hospital of Xi'an, Xi'an, China
| | - Rui Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Long Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang Mou
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
He Q, Jiang L, Zhang Y, Yang H, Zhou CN, Xie YH, Luo YM, Zhang SS, Zhu L, Guo YJ, Deng YH, Liang X, Xiao Q, Zhang L, Tang J, Huang DJ, Zhou YN, Dou XY, Chao FL, Tang Y. Anti-LINGO-1 antibody ameliorates cognitive impairment, promotes adult hippocampal neurogenesis, and increases the abundance of CB1R-rich CCK-GABAergic interneurons in AD mice. Neurobiol Dis 2021; 156:105406. [PMID: 34044148 DOI: 10.1016/j.nbd.2021.105406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
In view of the negative regulatory effect of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1) on neurons, an antibody against LINGO-1 (anti-LINGO-1 antibody) was herein administered to 10-month-old APP/PS1 transgenic Alzheimer's disease (AD) mice for 2 months as an experimental intervention. Behavioral, stereology, immunohistochemistry and immunofluorescence analyses revealed that the anti-LINGO-1 antibody significantly improved the cognitive abilities, promoted adult hippocampal neurogenesis (AHN), decreased the amyloid beta (Aβ) deposition, enlarged the hippocampal volume, and increased the numbers of total neurons and GABAergic interneurons, including GABAergic and CCK-GABAergic interneurons rich in cannabinoid type 1 receptor (CB1R), in the hippocampus of AD mice. In contrast, this intervention significantly reduced the number of GABAergic interneurons expressing LINGO-1 and CB1R in the hippocampus of AD mice. More importantly, we also found a negative correlation between LINGO-1 and CB1R on GABAergic interneurons in the hippocampus of AD mice, while the anti-LINGO-1 antibody reversed this relationship. These results indicated that LINGO-1 plays an important role in the process of hippocampal neuron loss in AD mice and that antagonizing LINGO-1 can effectively prevent hippocampal neuron loss and promote AHN. The improvement in cognitive abilities may be attributed to the improvement in AHN, and in the numbers of GABAergic interneurons and CCK-GABAergic interneurons rich in CB1Rs in the hippocampus of AD mice induced by the anti-LINGO-1 antibody. Collectively, the double target effect (LINGO-1 and CB1R) initiated by the anti-LINGO-1 antibody may provide an important basis for the study of drugs for the prevention and treatment of AD in the future.
Collapse
Affiliation(s)
- Qi He
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Experimental Teaching Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Hao Yang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Han Xie
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan-Shan Zhang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhu
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi-Jing Guo
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Hui Deng
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Du-Juan Huang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu-Ning Zhou
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiao-Yun Dou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Li T, Zhao X, Duan J, Cui S, Zhu K, Wan Y, Liu S, Peng Z, Wang L. Targeted inhibition of STAT3 in neural stem cells promotes neuronal differentiation and functional recovery in rats with spinal cord injury. Exp Ther Med 2021; 22:711. [PMID: 34007320 PMCID: PMC8120646 DOI: 10.3892/etm.2021.10143] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
STAT3 is expressed in neural stem cells (NSCs), where a number of studies have previously shown that STAT3 is involved in regulating NSC differentiation. However, the possible molecular mechanism and role of STAT3 in spinal cord injury (SCI) remain unclear. In the present study, the potential effect of STAT3 in NSCs was first investigated by using short hairpin RNA (shRNA)-mediated STAT3 knockdown in rat NSCs in vitro. Immunofluorescence of β3-tubulin and glial fibrillary acidic protein staining and western blotting showed that knocking down STAT3 expression promoted NSC neuronal differentiation, where the activity of mTOR was upregulated. Subsequently, rats underwent laminectomy and complete spinal cord transection followed by transplantation of NSCs transfected with control-shRNA or STAT3-shRNA at the injured site in vivo. Spinal cord-evoked potentials and the Basso-Beattie-Bresnahan scores were used to examine functional recovery. In addition, axonal regeneration and tissue repair were assessed using retrograde tracing with FluoroGold, hematoxylin and eosin, Nissl and immunofluorescence staining of β3-tubulin, glial fibrillary acidic protein and microtubule-associated protein 2 following SCI. The results showed that transplantation with NSCs transfected with STAT3-RNA enhanced functional recovery following SCI and promoted tissue repair in rats, in addition to improving neuronal differentiation of the transplanted NSCs in the injury site. Taken together, in vitro and in vivo evidence that inhibiting STAT3 could promote NSC neuronal differentiation was demonstrated in the present study. Therefore, transplantation with NSCs with STAT3 expression knocked down appears to hold promising potential for enhancing the benefit of NSC-mediated regenerative cell therapy for SCI.
Collapse
Affiliation(s)
- Tingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing Duan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shangbin Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shaoyu Liu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiming Peng
- Department of Orthopaedics, Air Force General Hospital, Beijing 100142, P.R. China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Zhu J, Zhu Z, Ren Y, Dong Y, Li Y, Yang X. LINGO-1 shRNA protects the brain against ischemia/reperfusion injury by inhibiting the activation of NF-κB and JAK2/STAT3. Hum Cell 2021; 34:1114-1122. [PMID: 33830473 PMCID: PMC8197719 DOI: 10.1007/s13577-021-00527-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/03/2021] [Indexed: 11/27/2022]
Abstract
LINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhu Zhu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yipin Ren
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yukang Dong
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yaqi Li
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiulin Yang
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
12
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
13
|
Transplantation of Wnt5a-modified NSCs promotes tissue repair and locomotor functional recovery after spinal cord injury. Exp Mol Med 2020; 52:2020-2033. [PMID: 33311637 PMCID: PMC8080632 DOI: 10.1038/s12276-020-00536-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
Traditional therapeutic strategies for spinal cord injury (SCI) are insufficient to repair locomotor function because of the failure of axonal reconnection and neuronal regeneration in the injured central nervous system (CNS). Neural stem cell (NSC) transplantation has been considered a potential strategy and is generally feasible for repairing the neural circuit after SCI; however, the most formidable problem is that the neuronal differentiation rate of NSCs is quite limited. Therefore, it is essential to induce the neuronal differentiation of NSCs and improve the differentiation rate of NSCs in spinal cord repair. Our results demonstrate that both Wnt5a and miRNA200b-3p could promote NSC differentiation into neurons and that Wnt5a upregulated miRNA200b-3p expression through MAPK/JNK signaling to promote NSC differentiation into neurons. Wnt5a could reduce RhoA expression by upregulating miRNA200b-3p expression to inhibit activation of the RhoA/Rock signaling pathway, which has been reported to suppress neuronal differentiation. Overexpression of RhoA abolished the neurogenic capacity of Wnt5a and miRNA200b-3p. In vivo, miRNA200b-3p was critical for Wnt5a-induced NSC differentiation into neurons to promote motor functional and histological recovery after SCI by suppressing RhoA/Rock signaling. These findings provide more insight into SCI and help with the identification of novel treatment strategies. Incorporating key molecules into neural stem cells enhances their ability to differentiate correctly and promote repair following spinal cord injury. Spinal cord injuries can have a debilitating effect on patients’ lives, yet there are no therapies that fully restore movement and sensation. Therapies based on neural stem cells (NSCs) show promise, but initial studies show many NSCs differentiate into astrocytes, supportive cells that do not conduct nerve impulses, instead of neurons, leading to treatment failure. Yong Wan and Le Wang at Sun Yat-sen University in Guangzhou, China, and co-workers demonstrated that adding a protein called Wnt5a and a specific microRNA molecule to NSCs significantly increases differentiation into neurons. Wnt5a suppresses a signalling pathway that otherwise interferes with NSC differentiation. Experiments on rat models showed that the therapy improved locomotor function and tissue repair after injury.
Collapse
|
14
|
Ji Z, Jiang X, Li Y, Song J, Chai C, Lu X. Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp Ther Med 2020; 20:148. [PMID: 33093886 PMCID: PMC7571360 DOI: 10.3892/etm.2020.9277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are divided into two types: M1- and M2-type macrophages. Both types of macrophages serve important roles during the process of inflammation. M1-type macrophages release various pro-inflammatory cytokines, such as IL-1, IFN-γ and other inflammatory mediators, such as nitric oxide, glutamate and reactive oxygen species to generate inflammation. In contrast, M2-type macrophages counteract the pro-inflammatory M1 conditions and promote tissue repair by secreting anti-inflammatory cytokines, such as IL-10. In spinal cord injury (SCI), an imbalance in M1/M2 macrophages leads to irreversible tissue destruction. Thus, it is crucial to increase the number of M2-type macrophages and promote M2 polarization of macrophages in SCI. Accordingly, in this study an in vitro co-culture system was established to investigate the effect of neural stem cells (NSCs) on macrophages. The results of the present study demonstrated that NSCs induced M2 polarization and suppressed M1 polarization of macrophages in an interleukin (IL)-4-dependent manner. Furthermore, the nuclear factor (NF)-κB/p65 signaling pathway was involved in the M1 polarization of macrophages and NSCs suppressed the activation of the NF-κB/p65 pathway in an IL-4-dependent manner to induce M2 macrophage polarization. These findings provide more insight into SCI and help to identify novel treatment strategies.
Collapse
Affiliation(s)
- Zhuangqi Ji
- Department of Gastrointestinal-Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Xianming Jiang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jian Song
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Cuicui Chai
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
15
|
Zabana Y, Lorén V, Domènech E, Aterido A, Garcia-Jaraquemada A, Julià A, Vicario M, Pedrosa E, Ferreiro M, Troya J, Lozano JJ, Sarrias MR, Cabré E, Mañosa M, Manyé J. Transcriptomic identification of TMIGD1 and its relationship with the ileal epithelial cell differentiation in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G109-G120. [PMID: 32508154 DOI: 10.1152/ajpgi.00027.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a complex and multifactorial illness. There are still considerable gaps in our knowledge regarding its pathophysiology. A transcriptomic approach could shed some light on little-known biological alterations of the disease. We therefore aimed to explore the ileal transcriptome to gain knowledge about CD. We performed whole transcriptome gene expression analysis on ileocecal resections from CD patients and inflammatory bowel disease-free controls, as well as on a CD-independent cohort to replicate selected results. Normalized data were hierarchically clustered, and gene ontology and the molecular network were studied. Cell cultures and molecular methods were used for further evaluations. Genome-wide expression data analysis identified a robust transmembrane immunoglobulin domain-containing 1 (TMIGD1) gene underexpression in CD tissue, which was even more marked in inflamed ileum, and which was replicated in the validation cohort. Immunofluorescence showed TMIGD1 to be located in the apical microvilli of well-differentiated enterocytes but not in intestinal crypt. This apical TMIGD1 was lower in the noninflamed tissue and almost disappeared in the inflamed mucosa of surgical resections. In vitro studies showed hypoxic-dependent TMIGD1 decreased its expression in enterocyte-like cells. The gene enrichment analysis linked TMIGD1 with cell recovery and tissue remodeling in CD settings, involving guanylate cyclase activities. Transcriptomics may be useful for finding new targets that facilitate studies of the CD pathology. This is how TMIGD1 was identified in CD patients, which was related to multiciliate ileal epithelial cell differentiation.NEW & NOTEWORTHY This is a single-center translational research study that aimed to look for key targets involved in Crohn's disease and define molecular pathways through different functional analysis strategies. With this approach, we have identified and described a novel target, the almost unknown TMIGD1 gene, which may be key in the recovery of injured mucosa involving intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Yamile Zabana
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Violeta Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eugeni Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Adrià Aterido
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Arce Garcia-Jaraquemada
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain
| | - Maria Vicario
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Laboratory of Translational Mucosal Immunology & Department of Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Research University Hospital, Badalona, Catalonia, Spain
| | - Elisabet Pedrosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Miriam Ferreiro
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - José Troya
- Colorectal Surgery Unit, General and Digestive Surgery Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Juan J Lozano
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Maria R Sarrias
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Innate Immunity Group, IGTP (AGAUR 2017-SGR-490 group), Badalona, Catalonia, Spain
| | - Eduard Cabré
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Miriam Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
16
|
Wu H, Ding L, Wang Y, Zou TB, Wang T, Fu W, Lin Y, Zhang X, Chen K, Lei Y, Zhong C, Luo C. MiR-615 Regulates NSC Differentiation In Vitro and Contributes to Spinal Cord Injury Repair by Targeting LINGO-1. Mol Neurobiol 2020; 57:3057-3074. [PMID: 32462552 DOI: 10.1007/s12035-020-01936-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/25/2023]
Abstract
LINGO-1(LRR and Ig domain-containing NOGO receptor interacting protein 1) is a viable target for spinal cord injury (SCI) repair due to its potent negative regulation in neuron survival and axonal regeneration. Although promising, the intracellular mechanism underlying LINGO-1 regulation is unclear. Here, we identified miR-615 as a potential microRNA (miRNA) that directly targets LINGO-1 by binding its 3'-untranslated region (3'-UTR) and caused the translation inhibition of LINGO-1. MiR-615 negatively regulated LINGO-1 during neural stem cell (NSC) differentiation and facilitated its neuronal differentiation in vitro. Interestingly, compared to the control, neurons differentiated from miR-615-treated NSCs were immature with short processes. Further results showed LINGO-1/epidermal growth factor receptor (EGFR) signaling may be involved in this process, as blockade of EGFR using specific antagonist resulted in mature neurons with long processes. Furthermore, intrathecal administration of miR-615 agomir in SCI rats effectively knocked down LINGO-1, increased neuronal survival, enhanced axonal extension and myelination, and improved recovery of hindlimbs motor functions. This work thus uncovers miR-615 as an effective miRNA that regulates LINGO-1 in NSC and SCI animals, and suggests miR-615 as a potential therapeutic target for traumatic central nervous system (CNS) injury.
Collapse
Affiliation(s)
- Hongfu Wu
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China.
| | - Lu Ding
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuhui Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Tang-Bin Zou
- Department of Nutrition and Food Hygiene, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Wenjin Fu
- Clinical Laboratory, Dongguan Municipal Houjie Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yong Lin
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Xiaomin Zhang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China
| | - Kangzhen Chen
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China
| | - Yutian Lei
- Hand & Foot Surgery, Dongguan Municipal Houjie Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Caitang Zhong
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Chuanming Luo
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No.628, Zhenyuan Road, Xinhu Street, Guangming New District, Shenzhen, 518107, China.
| |
Collapse
|
17
|
Chen N, Zhou P, Liu X, Li J, Wan Y, Liu S, Wei F. Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury. FASEB J 2020; 34:6984-6998. [PMID: 32232913 DOI: 10.1096/fj.201903171r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 11/11/2022]
Abstract
Rictor is an essential component that directly activates the mammalian target of rapamycin (mTOR) activity, which contributes to the intrinsic axon growth capacity of adult sensory neurons after injury. However, whether its action also applies to regeneration after spinal cord injury (SCI) remains unknown. In this study, rats were given spinal cord contusion at the T9-10 level to establish the SCI model and were subsequently treated with intraspinal cord injection of a Rictor overexpression lentiviral vector to locally upregulate the Rictor expression in the injured spinal cord. Thereafter, we investigated the therapeutic effects of Rictor overexpression in the injured spinal cords of SCI rats. Rictor overexpression not only significantly attenuated the acute inflammatory response and cell death after SCI but also markedly increased the shift in macrophages around the lesion from the M1 to M2 phenotype compared to those of the control lentiviral vector injection-treated group. Furthermore, Rictor overexpression dramatically increased neurogenesis in the lesion epicenter, subsequently promoting the tissue repair and functional recovery in SCI rats. Interestingly, the mechanism underlying the beneficial effects of Rictor overexpression on SCI may be associated with the Rictor overexpression playing a role in the anti-inflammatory response and driving macrophage polarization toward the M2 phenotype, which benefits resident neuronal and oligodendrocyte survival. Our findings demonstrate that Rictor is an effective target that affects the generation of molecules that inhibit spinal cord regeneration. In conclusion, localized Rictor overexpression represents a promising potential strategy for the repair of SCI.
Collapse
Affiliation(s)
- Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Pengxiang Zhou
- Department of Physical Diagnostic, Daqing Longnan Hospital, Daqing, China
| | - Xizhe Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiachun Li
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
18
|
Li X, Peng Z, Long L, Tuo Y, Wang L, Zhao X, Le W, Wan Y. Wnt4-modified NSC transplantation promotes functional recovery after spinal cord injury. FASEB J 2020; 34:82-94. [PMID: 31914702 DOI: 10.1096/fj.201901478rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, yet there are no effective therapies currently due to the failure of reconstructing the interruption of the neuroanatomical circuit. While neural stem cell (NSC) transplantation has been considered a potential strategy to repair the neural circuit after SCI, the efficacy of this strategy remains unproven. The main reason is that most of the transplanted NSC differentiates into astrocyte rather than neuron in the microenvironment of SCI. Our results demonstrated that Wnt4 significantly promotes the differentiation of NSC into neuron by activating both β-catenin and MAPK/JNK pathways and suppressing the activation of Notch signaling, which is acknowledged as prevention of NSC differentiation into neuron, through downregulating NICD expression, translocating and preventing the combination of NICD and RbpJ in nucleus. In addition, Wnt4 rescues the negative effect of Jagged, the ligand of Notch signaling, to promote neuronal differentiation. Moreover, in vivo study, transplantation of Wnt4-modified NSC efficaciously repairs the injured spinal cord and recovers the motor function of hind limbs after SCI. This study sheds new light into mechanisms that Wnt4-modified NSC transplantation is sufficient to repair the injured spinal cord and recover the motor dysfunction after SCI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Tuo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang Le
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
19
|
Quan Y, Wu Y, Zhan Z, Yang Y, Chen X, Wu K, Yu M. Inhibition of the leucine-rich repeat protein lingo-1 enhances RGC survival in optic nerve injury. Exp Ther Med 2019; 19:619-629. [PMID: 31885701 PMCID: PMC6913235 DOI: 10.3892/etm.2019.8250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (lingo-1) is selectively expressed on neurons and oligodendrocytes in the central nervous system and acts as a negative regulator in neural repair, implying a potential role in optic neuropathy. The aim of the present study was to determine whether adeno-associated virus serotype 2 (AAV2) vector-mediated transfer of lingo-1 short hairpin RNA could reduce nerve crush-induced axonal degeneration and enhance axonal regeneration following optic nerve (ON) injury in vivo. The expression of lingo-1 was knocked down in vivo using a green fluorescent protein (GFP)-tagged AAV2 encoding lingo-1 shRNA via intravitreal injection in adult Sprague-Dawley rats. Silencing effects of AAV2-lingo-1-shRNA were confirmed by detecting GFP labelling of RGCs, and by quantifying lingo-1 expression levels with reverse transcription-quantitative polymerase chain reaction and western blotting. Rats received an intravitreal injection of AAV2-lingo-1-shRNA or negative control shRNA. The ON crush (ONC) injury was performed 2 weeks after the intravitreal injection. RGC density, lesion volume of the injured ON and the visual electrophysiology [flash visual evoked potential (F-VEP)] at different time points post-injury were determined. Transduction with lingo-1-shRNA decreased lingo-1 expression levels and promoted RGC survival following ONC. Lingo-1-shRNA promoted ON tissue repair and functional recovery. The mechanism underlying the effect of AAV2-lingo-1-shRNA on RGCs may be the phosphorylation of protein kinase B (Akt) at Ser473 and activation of the Akt signaling pathway acting downstream of lingo-1. The results of the current study indicate that the inhibition of lingo-1 may enhance RGC survival and facilitate functional recovery following ON injury, representing a promising potential strategy for the repair of optic neuropathy.
Collapse
Affiliation(s)
- Yadan Quan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yali Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaotao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
20
|
Rong Y, Liu W, Lv C, Wang J, Luo Y, Jiang D, Li L, Zhou Z, Zhou W, Li Q, Yin G, Yu L, Fan J, Cai W. Neural stem cell small extracellular vesicle-based delivery of 14-3-3t reduces apoptosis and neuroinflammation following traumatic spinal cord injury by enhancing autophagy by targeting Beclin-1. Aging (Albany NY) 2019; 11:7723-7745. [PMID: 31563124 PMCID: PMC6782003 DOI: 10.18632/aging.102283] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Neural stem cell-derived small extracellular vesicles (NSC-sEVs) play an important role in the repair of tissue damage. Our previous in vitro and in vivo studies found that preconditioning with NSC-sEVs promoted the recovery of functional behaviors following spinal cord injury by activating autophagy. However, the underlying mechanisms for such observations remain unclear. In this study, we further explored the mechanisms by which NSC-sEVs repair spinal cord injury via autophagy. We found that NSC-sEVs contain 14-3-3t protein, of which the overexpression or knockdown enhanced and decreased autophagy, respectively. In addition, 14-3-3t overexpression enhanced the anti-apoptotic and anti-inflammatory effects of NSC-sEVs, further promoting functional behavior recovery following spinal cord injury. The overexpression of 14-3-3t was used to further validate the in vivo results through a series of in vitro experiments. Conversely, knockdown of 14-3-3t attenuated the anti-apoptotic and anti-inflammatory effects of NSC-sEVs. Further studies also confirmed that NSC-sEVs increased Beclin-1 expression, with which 14-3-3t interacted and promoted its localization to autophagosome precursors. In this study, we found that NSC-sEVs deliver 14-3-3t, which interacts with Beclin-1 to activate autophagy. Our results indicate that 14-3-3t acts via a newly-discovered mechanism for the activation of autophagy by NSC-sEVs.
Collapse
Affiliation(s)
- Yuluo Rong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng 224000, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yongjun Luo
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Linwei Li
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wei Zhou
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qingqing Li
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lipeng Yu
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
21
|
Peng Z, Li X, Fu M, Zhu K, Long L, Zhao X, Chen Q, Deng DYB, Wan Y. Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 2019; 150:709-722. [PMID: 31339573 DOI: 10.1111/jnc.14833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) transplantation represents a promising strategy for the repair of injured neurons, since NSCs not only produce multiple neurotrophic growth factors but also differentiate into mature cells to replace damaged cells. Previous studies have shown that Notch signaling pathway had negative effects on neuronal differentiation; however, the precise mechanism remained inadequately understood. This research aimed to investigate whether inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in rat spinal cord injury through suppressing the activation of Ras homolog family member A (RhoA). QPCR, western blot, and immunofluorescence experiments were used to analyze Notch1 signaling pathways, RhoA, Ras homologous -associated coiled-coil containing protein kinase 1 (ROCK1), cleaved caspased-3, and neuronal/astrocytic differentiation markers. The expression of RhoA and ROCK1 was inhibited by lentivirus or specific biochemical inhibitors. In spinal cord injury (SCI), motor function was assessed by hind limbs movements and electrophysiology. Tissue repairing was measured by immunofluorescence, Nissl staining, Fluorogold, HE staining, QPCR, western blot, and magnetic resonance imaging (MRI) experiments. Our results demonstrate that inhibition of Notch1 in NSCs can promote the differentiation of NSCs to neurons. Knockdown of RhoA and inhibition of ROCK1 both can promote neuronal differentiation through inhibiting the activation of Notch1 signaling pathway in NSCs. In SCI, silencing RhoA enhanced neuronal differentiation and improved tissue repairing/functional recovery by inhibiting the activation of Notch1 signaling pathway. Since Notch1 inhibits neuronal differentiation through activating the RhoA/ROCK1 signaling pathway in NSCs, our data suggest that the Notch1/RhoA/ROCK1/Hes1/Hes5 signaling pathway may serve as a novel target for the treatment of SCI.
Collapse
Affiliation(s)
- Zhiming Peng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengxia Fu
- Division of Cardiac Surgery, NHC Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Department of Translational Medicine Center Research Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - David Y B Deng
- Scientific Research Center and Department of Orthopedic, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Zhang S, Botchway BO, Zhang Y, Liu X. Resveratrol can inhibit Notch signaling pathway to improve spinal cord injury. Ann Anat 2019; 223:100-107. [DOI: 10.1016/j.aanat.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
|
23
|
Mao J, Bao Y, Mei F, Liao X, Liu F, Zhou L, Qi S, Qiu B. An improved method of culturing somatotropic cells from rat adenohypophysis. Tissue Cell 2019; 58:93-98. [PMID: 31133252 DOI: 10.1016/j.tice.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 01/09/2023]
Abstract
This study aimed to propose a simple and practical method for culturing primary rat somatotropic cells in vitro free of pericytes contamination. Rat adenohypophyses were randomly divided into two groups. An improved method was used in group A (digesting adenohypophysis with 0.25% trypsin-EDTA, followed by removing pericytes by double filtration and using serum-free medium for culturing somatotropic cells). The traditional method was used in group B (digesting adenohypophysis with 0.35% collagenase, using serum medium for culturing somatotropic cells, and removing pericytes by changing the culture dish). The numbers and viability of somatotropic cells were higher in group A than in group B after 6 days. GH secretion of somatotropic cells was also higher in group A than in group B. Besides, the pericytes grew rapidly only in group B after 3 days. α-SMA, type I collagen, and type III collagen had weaker expression in group A. Also, the viability of pericytes decreased in group A. The improved method could solve the problem of pericytes contamination, and the culture of primary rat somatotropic cells in vitro was successful. This method can be used for other primary cultures with pericytes contamination.
Collapse
Affiliation(s)
- Jian Mao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Bao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Mei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixian Liao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fan Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lizhi Zhou
- Department of Biostatistics, School of biostatistics, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Binghui Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Rong Y, Liu W, Wang J, Fan J, Luo Y, Li L, Kong F, Chen J, Tang P, Cai W. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis 2019; 10:340. [PMID: 31000697 PMCID: PMC6472377 DOI: 10.1038/s41419-019-1571-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) can cause severe irreversible motor dysfunction and even death. Neural stem cell (NSC) transplantation can promote functional recovery after acute SCI in experimental animals, but numerous issues, including low-transplanted cell survival rate, cell de-differentiation, and tumor formation need to be resolved before routine clinical application is feasible. Recent studies have shown that transplanted stem cells facilitate regeneration through release of paracrine factors. Small extracellular vesicles (sEVs), the smallest known membrane-bound nanovesicles, are involved in complex intercellular communication systems and are an important vehicle for paracrine delivery of therapeutic agents. However, the application of NSC-derived small extracellular vesicles (NSC-sEVs) to SCI treatment has not been reported. We demonstrate that NSC-sEVs can significantly reduce the extent of SCI, improve functional recovery, and reduce neuronal apoptosis, microglia activation, and neuroinflammation in rats. Furthermore, our study suggests that NSC-sEVs can regulate apoptosis and inflammatory processes by inducing autophagy. In brief, NSC-sEVs increased the expression of the autophagy marker proteins LC3B and beclin-1, and promoted autophagosome formation. Following NSC-sEV infusion, the SCI area was significantly reduced, and the expression levels of the proapoptotic protein Bax, the apoptosis effector cleaved caspase-3, and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were significantly reduced, whereas the expression level of the anti-apoptotic protein Bcl-2 was upregulated. In the presence of the autophagy inhibitor 3MA, however, these inhibitory effects of NSC-sEVs on apoptosis and neuroinflammation were significantly reversed. Our results show for the first time that NSC-sEV treatment has the potential to reduce neuronal apoptosis, inhibit neuroinflammation, and promote functional recovery in SCI model rats at an early stage by promoting autophagy.
Collapse
Affiliation(s)
- Yuluo Rong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Department of Orthopaedics, West China Hospital Sichuan University, Chengdu, 610000, Sichuan, China
| | - Jiaxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yongjun Luo
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Linwei Li
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fanqi Kong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Chen
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
25
|
Astragalus polysaccharide protects hypoxia-induced injury by up-regulation of miR-138 in rat neural stem cells. Biomed Pharmacother 2018; 102:295-301. [DOI: 10.1016/j.biopha.2018.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
|
26
|
Ruan W, Ning G, Feng S, Gao S, Hao Y. MicroRNA‑381/Hes1 is a potential therapeutic target for spinal cord injury. Int J Mol Med 2018; 42:1008-1017. [PMID: 29750292 DOI: 10.3892/ijmm.2018.3658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate whether microRNA‑381 is a potential therapeutic target for spinal cord injury (SCI) and its possible mechanism. Reverse transcription quantitative polymerase chain reaction (qPCR) for mRNA expression was used to analyze the changes of microRNA-381 expression. Cell viability and cell apoptosis were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Caspase‑3 activity was measured using caspase‑3 activity kit, and western blot analysis was used to measure the protein expression of neurogenic locus notch homolog protein 1 (Notch1), notch 1 intracellular domain (NICD) and transcription factor HES-1 (Hes1). The data showed that microRNA‑381 expression of model SCI rats was downregulated compared with that of control rats. Overexpression of microRNA‑381 promoted cell proliferation, and inhibited apoptosis and caspase‑3 and apoptosis regulator BAX (Bax) protein expression in neurocytes. Overexpression of microRNA‑381 also increased Wnt and β‑catenin protein expression, and suppressed the protein expression of Notch1, NICD and Hes1 in neurocytes. Wnt inhibitor, Wnt‑C59 (1 µmol/l), inhibited cell proliferation, promoted apoptosis and caspase‑3 and Bax protein expression, suppressed β‑catenin protein expression and induced Hes1 protein expression in neurocytes following microRNA‑381 overexpression. Notch inhibitor, FLI‑06 (1 µmol/l), promoted cell proliferation, inhibited apoptosis and caspase‑3 and Bax protein expression, and suppressed NICD and Hes1 protein expression in neurocytes following microRNA‑381 overexpression. Thus, this study showed that overexpression of microRNA‑381 promotes cell proliferation of neurocytes in SCI via Hes1 expression, which may be a novel important mechanism for SCI in clinical applications.
Collapse
Affiliation(s)
- Wendong Ruan
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Shijie Gao
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, The General Hospital of Tianjin Medical University, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
27
|
Hou XQ, Wang L, Wang FG, Zhao XM, Zhang HT. Combination of RNA Interference and Stem Cells for Treatment of Central Nervous System Diseases. Genes (Basel) 2017; 8:genes8050135. [PMID: 28481269 PMCID: PMC5448009 DOI: 10.3390/genes8050135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi), including microRNAs, is an important player in the mediation of differentiation and migration of stem cells via target genes. It is used as a potential strategy for gene therapy for central nervous system (CNS) diseases. Stem cells are considered vectors of RNAi due to their capacity to deliver RNAi to other cells. In this review, we discuss the recent advances in studies of RNAi pathways in controlling neuronal differentiation and migration of stem cells. We also highlight the utilization of a combination of RNAi and stem cells in treatment of CNS diseases.
Collapse
Affiliation(s)
- Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Lei Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Fu-Gang Wang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Xiao-Min Zhao
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Taishan Medical University, Taian 271016, Shandong, China.
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
28
|
Miao Y, Yang R, Deng DYB, Zhang LM. Poly(l-lysine) modified zein nanofibrous membranes as efficient scaffold for adhesion, proliferation, and differentiation of neural stem cells. RSC Adv 2017. [DOI: 10.1039/c7ra00189d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell viability, adhesion, proliferation, and differentiation of neural stem cells (NSCs) on zein nanofibrous membranes could be improved by poly(l-lysine) modification.
Collapse
Affiliation(s)
- Yingling Miao
- Department of Polymer and Materials Science
- School of Chemistry
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- Sun Yat-sen University
| | - Ruirui Yang
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology
- Sun Yat-sen University
- Guangzhou 510080
| | - David Y. B. Deng
- Research Center of Translational Medicine
- The First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology
- Sun Yat-sen University
- Guangzhou 510080
| | - Li-Ming Zhang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
29
|
Tumor Necrosis Factor Alpha Induces Neural Stem Cell Apoptosis Through Activating p38 MAPK Pathway. Neurochem Res 2016; 41:3052-3062. [PMID: 27528245 DOI: 10.1007/s11064-016-2024-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is an essential cytokine that mediates cell death and has been shown to play a potential role in inducing neural stem cell (NSC) apoptosis. We have previously shown that TNF-α antagonist etanercept can suppress the transplanted NSC apoptosis induced by TNF-α in spinal cord injury (SCI) sites; however, the precise molecular mechanism remains unclear. This study aimed to investigate the signaling pathways responsible for TNF-α-induced apoptosis in NSCs. TNF-α treatment impairs cell viability and increases apoptosis of NSCs in concentration- and time-dependent manners. This is embodied in an increase in Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Additionally, TNF-α remarkably increased the expression of phosphatidylinositol p38 Mitogen-activated protein kinase (p38 MAPK) in NSCs. p38 MAPK regulates apoptosis, acting as an apoptotic signal due to TNF-α exposure. TNF-α-induced apoptosis was significantly alleviated by the p38 MAPK pathway inhibitor SB203580, as well as targeted inhibition of p38 gene in NSCs, or TNF-α antagonist etanercept. These results suggest that TNF-α induces NSCs apoptosis by activating the p38 MAPK signaling pathway and etanercept acts as an effective TNF-α antagonist to prevent p38 MAPK-dependent apoptosis induced by TNF-α in NSCs. Our research represents a potential gene targeting that can prevent unnecessary grafted cell death after transplantation into the SCI models.
Collapse
|
30
|
Molecular Turbocharging Stem Cells to Improve Treatment of Experimental Spinal Cord Injury. Crit Care Med 2016; 44:649-50. [PMID: 26901557 DOI: 10.1097/ccm.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|