1
|
Bello G, Giammatteo V, Bisanti A, Delle Cese L, Rosà T, Menga LS, Montini L, Michi T, Spinazzola G, De Pascale G, Pennisi MA, Ribeiro De Santis Santiago R, Berra L, Antonelli M, Grieco DL. High vs Low PEEP in Patients With ARDS Exhibiting Intense Inspiratory Effort During Assisted Ventilation: A Randomized Crossover Trial. Chest 2024; 165:1392-1405. [PMID: 38295949 DOI: 10.1016/j.chest.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Alessandra Bisanti
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Montini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Giorgia Spinazzola
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Mariano Alberto Pennisi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Roberta Ribeiro De Santis Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy.
| |
Collapse
|
2
|
Wittenstein J, Scharffenberg M, Yang X, Bluth T, Kiss T, Schultz MJ, Rocco PRM, Pelosi P, Gama de Abreu M, Huhle R. Distribution of transpulmonary pressure during one-lung ventilation in pigs at different body positions. Front Physiol 2023; 14:1204531. [PMID: 37601645 PMCID: PMC10436328 DOI: 10.3389/fphys.2023.1204531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Background. Global and regional transpulmonary pressure (PL) during one-lung ventilation (OLV) is poorly characterized. We hypothesized that global and regional PL and driving PL (ΔPL) increase during protective low tidal volume OLV compared to two-lung ventilation (TLV), and vary with body position. Methods. In sixteen anesthetized juvenile pigs, intra-pleural pressure sensors were placed in ventral, dorsal, and caudal zones of the left hemithorax by video-assisted thoracoscopy. A right thoracotomy was performed and lipopolysaccharide administered intravenously to mimic the inflammatory response due to thoracic surgery. Animals were ventilated in a volume-controlled mode with a tidal volume (VT) of 6 mL kg-1 during TLV and of 5 mL kg-1 during OLV and a positive end-expiratory pressure (PEEP) of 5 cmH2O. Global and local transpulmonary pressures were calculated. Lung instability was defined as end-expiratory PL<2.9 cmH2O according to previous investigations. Variables were acquired during TLV (TLVsupine), left lung ventilation in supine (OLVsupine), semilateral (OLVsemilateral), lateral (OLVlateral) and prone (OLVprone) positions randomized according to Latin-square sequence. Effects of position were tested using repeated measures ANOVA. Results. End-expiratory PL and ΔPL were higher during OLVsupine than TLVsupine. During OLV, regional end-inspiratory PL and ΔPL did not differ significantly among body positions. Yet, end-expiratory PL was lower in semilateral (ventral: 4.8 ± 2.9 cmH2O; caudal: 3.1 ± 2.6 cmH2O) and lateral (ventral: 1.9 ± 3.3 cmH2O; caudal: 2.7 ± 1.7 cmH2O) compared to supine (ventral: 4.8 ± 2.9 cmH2O; caudal: 3.1 ± 2.6 cmH2O) and prone position (ventral: 1.7 ± 2.5 cmH2O; caudal: 3.3 ± 1.6 cmH2O), mainly in ventral (p ≤ 0.001) and caudal (p = 0.007) regions. Lung instability was detected more often in semilateral (26 out of 48 measurements; p = 0.012) and lateral (29 out of 48 measurements, p < 0.001) as compared to supine position (15 out of 48 measurements), and more often in lateral as compared to prone position (19 out of 48 measurements, p = 0.027). Conclusion. Compared to TLV, OLV increased lung stress. Body position did not affect stress of the ventilated lung during OLV, but lung stability was lowest in semilateral and lateral decubitus position.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Xiuli Yang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Thomas Bluth
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- Department of Anaesthesiology, Intensive-Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Marcus J. Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
de Carvalho EB, Battaglini D, Robba C, Malbrain MLNG, Pelosi P, Rocco PRM, Silva PL. Fluid management strategies and their interaction with mechanical ventilation: from experimental studies to clinical practice. Intensive Care Med Exp 2023; 11:44. [PMID: 37474816 PMCID: PMC10359242 DOI: 10.1186/s40635-023-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Patients on mechanical ventilation may receive intravenous fluids via restrictive or liberal fluid management. A clear and objective differentiation between restrictive and liberal fluid management strategies is lacking in the literature. The liberal approach has been described as involving fluid rates ranging from 1.2 to 12 times higher than the restrictive approach. A restrictive fluid management may lead to hypoperfusion and distal organ damage, and a liberal fluid strategy may result in endothelial shear stress and glycocalyx damage, cardiovascular complications, lung edema, and distal organ dysfunction. The association between fluid and mechanical ventilation strategies and how they interact toward ventilator-induced lung injury (VILI) could potentiate the damage. For instance, the combination of a liberal fluids and pressure-support ventilation, but not pressure control ventilation, may lead to further lung damage in experimental models of acute lung injury. Moreover, under liberal fluid management, the application of high positive end-expiratory pressure (PEEP) or an abrupt decrease in PEEP yielded higher endothelial cell damage in the lungs. Nevertheless, the translational aspects of these findings are scarce. The aim of this narrative review is to provide better understanding of the interaction between different fluid and ventilation strategies and how these interactions may affect lung and distal organs. The weaning phase of mechanical ventilation and the deresuscitation phase are not explored in this review.
Collapse
Affiliation(s)
- Eduardo Butturini de Carvalho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- University of Vassouras, Rio de Janeiro, Brazil
| | | | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Manu L. N. G. Malbrain
- First Department of Anesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
- International Fluid Academy, Lovenjoel, Belgium
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Liu HY, Zhang SP, Zhang CX, Gao QY, Liu YY, Ge SL. Postoperative hypoxemia for patients undergoing Stanford type A aortic dissection. World J Clin Cases 2023; 11:3140-3147. [PMID: 37274044 PMCID: PMC10237117 DOI: 10.12998/wjcc.v11.i14.3140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Clinically, it is widely recognized that surgical treatment is the preferred and reliable option for Stanford type A aortic dissection. Stanford type A aortic dissection is an emergent and serious cardiovascular disease characterized with an acute onset, poor prognosis, and high mortality. However, the incidences of postoperative complications are relatively higher due to the complexity of the disease and its intricate procedure. It has been considered that hypoxemia, one of the most common postoperative complications, plays an important role in having a worse clinical prognosis. Therefore, the effective intervention of postoperative hypoxemia is significant for the improved prognosis of patients with Stanford type A aortic dissection.
Collapse
Affiliation(s)
- Hai-Yuan Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Shuai-Peng Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Cheng-Xin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Qing-Yun Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yu-Yong Liu
- First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Sheng-Lin Ge
- First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
5
|
Wittenstein J, Huhle R, Leiderman M, Möbius M, Braune A, Tauer S, Herzog P, Barana G, de Ferrari A, Corona A, Bluth T, Kiss T, Güldner A, Schultz MJ, Rocco PRM, Pelosi P, Gama de Abreu M, Scharffenberg M. Effect of patient-ventilator asynchrony on lung and diaphragmatic injury in experimental acute respiratory distress syndrome in a porcine model. Br J Anaesth 2023; 130:e169-e178. [PMID: 34895719 DOI: 10.1016/j.bja.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patient-ventilator asynchrony during mechanical ventilation may exacerbate lung and diaphragm injury in spontaneously breathing subjects. We investigated whether subject-ventilator asynchrony increases lung or diaphragmatic injury in a porcine model of acute respiratory distress syndrome (ARDS). METHODS ARDS was induced in adult female pigs by lung lavage and injurious ventilation before mechanical ventilation by pressure assist-control for 12 h. Mechanically ventilated pigs were randomised to breathe spontaneously with or without induced subject-ventilator asynchrony or neuromuscular block (n=7 per group). Subject-ventilator asynchrony was produced by ineffective, auto-, or double-triggering of spontaneous breaths. The primary outcome was mean alveolar septal thickness (where thickening of the alveolar wall indicates worse lung injury). Secondary outcomes included distribution of ventilation (electrical impedance tomography), lung morphometric analysis, inflammatory biomarkers (gene expression), lung wet-to-dry weight ratio, and diaphragmatic muscle fibre thickness. RESULTS Subject-ventilator asynchrony (median [interquartile range] 28.8% [10.4] asynchronous breaths of total breaths; n=7) did not increase mean alveolar septal thickness compared with synchronous spontaneous breathing (asynchronous breaths 1.0% [1.6] of total breaths; n=7). There was no difference in mean alveolar septal thickness throughout upper and lower lung lobes between pigs randomised to subject-ventilator asynchrony vs synchronous spontaneous breathing (87.3-92.2 μm after subject-ventilator asynchrony, compared with 84.1-95.0 μm in synchronised spontaneous breathing;). There were also no differences between groups in wet-to-dry weight ratio, diaphragmatic muscle fibre thickness, atelectasis, lung aeration, or mRNA expression levels for inflammatory cytokines pivotal in ARDS pathogenesis. CONCLUSIONS Subject-ventilator asynchrony during spontaneous breathing did not exacerbate lung injury and dysfunction in experimental porcine ARDS.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Robert Huhle
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Mark Leiderman
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marius Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Anja Braune
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Nuclear Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Tauer
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Paul Herzog
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Giulio Barana
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology, Hospital Thurgau AG, Frauenfeld, Switzerland
| | - Alessandra de Ferrari
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesia and Intensive Care, IRCCS AOU San Martino IST, Genoa, Italy
| | - Andrea Corona
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology and Intensive Care, Mater Olbia Hospital, Olbia, Italy
| | - Thomas Bluth
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology, Intensive-, Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Andreas Güldner
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Martin Scharffenberg
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| |
Collapse
|
6
|
Wang Y, Yang Y, Wang DM, Li J, Bao QT, Wang BB, Zhu SJ, Zou L. Different positive end expiratory pressure and tidal volume controls on lung protection and inflammatory factors during surgical anesthesia. World J Clin Cases 2022; 10:12146-12155. [PMID: 36483798 PMCID: PMC9724538 DOI: 10.12998/wjcc.v10.i33.12146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mechanical ventilation can lead to the severe impairment of the metabolic pathway of alveolar surfactants, inactivating alveolar surfactants and significantly reducing lung-chest compliance. The cardiopulmonary function of elderly patients usually reduced to a certain extent, and there are lung complications after surgical anesthesia, just like lung barotrauma caused by mechanical ventilation, atelectasis and postoperative hypoxemia. AIM To investigate the effects of different positive end expiratory pressures (PEEPs) and tidal volumes (VTs) on respiratory function, the degree of the inflammatory response and hemodynamic indexes in patients undergoing surgery under general anesthesia. METHODS A total of 120 patients undergoing surgery for gastric or colon cancer under general anesthesia in Xinghua People's Hospital from January 2017 to January 2021 were randomly divided into Group A and Group B, with 60 cases in each group. The ventilation mode in Group A was VT (6.0 mL/kg) + PEEP (5.0 cmH2O), while that in Group B was VT (6.0 mL/kg) + PEEP (8.0 cmH2O). Blood gas parameters, respiratory mechanical parameters, inflammatory response indicators, hemodynamic indicators and related complications were compared between the two groups. RESULTS There were no significant differences in PaCO2, PaO2, oxygen or the examined indexes at T0 between group A and group B (P > 0.05). The measured PaO2 value of patients in group A at T3 was higher than that in group B, and the difference was significant (P < 0.05). There were no significant differences in peak airway pressure (Ppeak), mean airway pressure or dynamic pulmonary compliance (Cdyn) at T0 between group A and group B (P > 0.05). The measured Ppeak value of patients in group A at T1 was higher than that in group B, and the difference was significant (P < 0.05). The measured Cdyn value at T1 and T2 was greater than that in group B (P < 0.05). Before surgery, there were no significant differences in tumor necrosis factor-α (TNF-α), interleukin (IL)-6 or IL-10 between group A and group B (P > 0.05). After 4 h, the measured values of TNF-α and IL-6 in group A were lower than those in group B, and the differences were significant (P < 0.05). The IL-10 Level in group A was higher than that in group B (P < 0.05). At T0, there were no significant differences in cardiac output, cardiac index (CI), stroke volume index (SVI) or mean arterial pressure between group A and group B (P > 0.05). The measured values of CI and SVI at T2 in patients in group A were higher than those in group B, and the differences were significant (P < 0.05). CONCLUSION For patients undergoing surgery for gastric or colon cancer under general anesthesia, the VT (6.0 mL/kg) + PEEP (5.0 cmH2O) regimen was more effective than the VT (6.0 mL/kg) + PEEP (8.0 cmH2O) regimen in protecting the lung function and ventilatory function of patients, and it had better effects on maintaining hemodynamic stability and reducing inflammatory reactions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anesthesia, Xinghua City People's Hospital, Xinghua 225700, Jiangsu Province, China
| | - Yi Yang
- Department of Anesthesiology, Suzhou High-Tech Zone People's Hospital, Suzhou 215011, Jiangsu Province, China
| | - Ding-Mu Wang
- Department of Anesthesia, Xinghua City People's Hospital, Xinghua 225700, Jiangsu Province, China
| | - Jie Li
- Naval Medical Center, Naval Medical University, PLA, Shanghai 200433, China
| | - Quan-Tang Bao
- Department of Anesthesia, Xinghua City People's Hospital, Xinghua 225700, Jiangsu Province, China
| | - Bei-Bei Wang
- Department of Anesthesia, Xinghua City People's Hospital, Xinghua 225700, Jiangsu Province, China
| | - Shu-Jun Zhu
- Department of Anesthesia, Xinghua City People's Hospital, Xinghua 225700, Jiangsu Province, China
| | - Lu Zou
- Department of Anesthesiology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
7
|
Rosà T, Menga LS, Tejpal A, Cesarano M, Michi T, Sklar MC, Grieco DL. Non-invasive ventilation for acute hypoxemic respiratory failure, including COVID-19. JOURNAL OF INTENSIVE MEDICINE 2022; 3:11-19. [PMID: 36785582 PMCID: PMC9596174 DOI: 10.1016/j.jointm.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022]
Abstract
Optimal initial non-invasive management of acute hypoxemic respiratory failure (AHRF), of both coronavirus disease 2019 (COVID-19) and non-COVID-19 etiologies, has been the subject of significant discussion. Avoidance of endotracheal intubation reduces related complications, but maintenance of spontaneous breathing with intense respiratory effort may increase risks of patients' self-inflicted lung injury, leading to delayed intubation and worse clinical outcomes. High-flow nasal oxygen is currently recommended as the optimal strategy for AHRF management for its simplicity and beneficial physiological effects. Non-invasive ventilation (NIV), delivered as either pressure support or continuous positive airway pressure via interfaces like face masks and helmets, can improve oxygenation and may be associated with reduced endotracheal intubation rates. However, treatment failure is common and associated with poor outcomes. Expertise and knowledge of the specific features of each interface are necessary to fully exploit their potential benefits and minimize risks. Strict clinical and physiological monitoring is necessary during any treatment to avoid delays in endotracheal intubation and protective ventilation. In this narrative review, we analyze the physiological benefits and risks of spontaneous breathing in AHRF, and the characteristics of tools for delivering NIV. The goal herein is to provide a contemporary, evidence-based overview of this highly relevant topic.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Salvatore Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Ambika Tejpal
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Michael C. Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto ON M5S 1A1, Canada,Department of Anesthesia and Pain Medicine, St. Michael's Hospital – Unity Health Toronto, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy,Istituto di Anestesiologiae Rianimazione, Università Cattolica del Sacro Cuore, Rome 00168, Italy,Corresponding author: Domenico L. Grieco, Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart. Fondazione ‘Policlinico Universitario Agostino Gemelli’ IRCCS, L.go F. Vito, Rome 00168, Italy.
| |
Collapse
|
8
|
Cesarano M, Grieco DL, Michi T, Munshi L, Menga LS, Delle Cese L, Ruggiero E, Rosà T, Natalini D, Sklar MC, Cutuli SL, Bongiovanni F, De Pascale G, Ferreyro BL, Goligher EC, Antonelli M. Helmet noninvasive support for acute hypoxemic respiratory failure: rationale, mechanism of action and bedside application. Ann Intensive Care 2022; 12:94. [PMID: 36241926 PMCID: PMC9568634 DOI: 10.1186/s13613-022-01069-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. Main results In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet; alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10–15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. Conclusions Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.
Collapse
Affiliation(s)
- Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Daniele Natalini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Michael C Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Salvatore L Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Gennaro De Pascale
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
9
|
Prone Position Minimizes the Exacerbation of Effort-dependent Lung Injury: Exploring the Mechanism in Pigs and Evaluating Injury in Rabbits. Anesthesiology 2022; 136:779-791. [PMID: 35303058 DOI: 10.1097/aln.0000000000004165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vigorous spontaneous effort can potentially worsen lung injury. This study hypothesized that the prone position would diminish a maldistribution of lung stress and inflation after diaphragmatic contraction and reduce spontaneous effort, resulting in less lung injury. METHODS A severe acute respiratory distress syndrome model was established by depleting surfactant and injurious mechanical ventilation in 6 male pigs ("mechanism" protocol) and 12 male rabbits ("lung injury" protocol). In the mechanism protocol, regional inspiratory negative pleural pressure swing (intrabronchial balloon manometry) and the corresponding lung inflation (electrical impedance tomography) were measured with a combination of position (supine or prone) and positive end-expiratory pressure (high or low) matching the intensity of spontaneous effort. In the lung injury protocol, the intensities of spontaneous effort (esophageal manometry) and regional lung injury were compared in the supine position versus prone position. RESULTS The mechanism protocol (pigs) found that in the prone position, there was no ventral-to-dorsal gradient in negative pleural pressure swing after diaphragmatic contraction, irrespective of the positive end-expiratory pressure level (-10.3 ± 3.3 cm H2O vs. -11.7 ± 2.4 cm H2O at low positive end-expiratory pressure, P = 0.115; -10.4 ± 3.4 cm H2O vs. -10.8 ± 2.3 cm H2O at high positive end-expiratory pressure, P = 0.715), achieving homogeneous inflation. In the supine position, however, spontaneous effort during low positive end-expiratory pressure had the largest ventral-to-dorsal gradient in negative pleural pressure swing (-9.8 ± 2.9 cm H2O vs. -18.1 ± 4.0 cm H2O, P < 0.001), causing dorsal overdistension. Higher positive end-expiratory pressure in the supine position reduced a ventral-to-dorsal gradient in negative pleural pressure swing, but it remained (-9.9 ± 2.8 cm H2O vs. -13.3 ± 2.3 cm H2O, P < 0.001). The lung injury protocol (rabbits) found that in the prone position, spontaneous effort was milder and lung injury was less without regional difference (lung myeloperoxidase activity in ventral vs. dorsal lung, 74.0 ± 30.9 μm · min-1 · mg-1 protein vs. 61.0 ± 23.0 μm · min-1 · mg-1 protein, P = 0.951). In the supine position, stronger spontaneous effort increased dorsal lung injury (lung myeloperoxidase activity in ventral vs. dorsal lung, 67.5 ± 38.1 μm · min-1 · mg-1 protein vs. 167.7 ± 65.5 μm · min-1 · mg-1 protein, P = 0.003). CONCLUSIONS Prone position, independent of positive end-expiratory pressure levels, diminishes a maldistribution of lung stress and inflation imposed by spontaneous effort and mitigates spontaneous effort, resulting in less effort-dependent lung injury. EDITOR’S PERSPECTIVE
Collapse
|
10
|
Scharffenberg M, Wittenstein J, Ran X, Zhang Y, Braune A, Theilen R, Maiello L, Benzi G, Bluth T, Kiss T, Pelosi P, Rocco PRM, Schultz MJ, Kotzerke J, Gama de Abreu M, Huhle R. Mechanical Power Correlates With Lung Inflammation Assessed by Positron-Emission Tomography in Experimental Acute Lung Injury in Pigs. Front Physiol 2021; 12:717266. [PMID: 34880770 PMCID: PMC8645956 DOI: 10.3389/fphys.2021.717266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Mechanical ventilation (MV) may initiate or worsen lung injury, so-called ventilator-induced lung injury (VILI). Although different mechanisms of VILI have been identified, research mainly focused on single ventilator parameters. The mechanical power (MP) summarizes the potentially damaging effects of different parameters in one single variable and has been shown to be associated with lung damage. However, to date, the association of MP with pulmonary neutrophilic inflammation, as assessed by positron-emission tomography (PET), has not been prospectively investigated in a model of clinically relevant ventilation settings yet. We hypothesized that the degree of neutrophilic inflammation correlates with MP. Methods: Eight female juvenile pigs were anesthetized and mechanically ventilated. Lung injury was induced by repetitive lung lavages followed by initial PET and computed tomography (CT) scans. Animals were then ventilated according to the acute respiratory distress syndrome (ARDS) network recommendations, using the lowest combinations of positive end-expiratory pressure and inspiratory oxygen fraction that allowed adequate oxygenation. Ventilator settings were checked and adjusted hourly. Physiological measurements were conducted every 6 h. Lung imaging was repeated 24 h after first PET/CT before animals were killed. Pulmonary neutrophilic inflammation was assessed by normalized uptake rate of 2-deoxy-2-[18F]fluoro-D-glucose (KiS), and its difference between the two PET/CT was calculated (ΔKiS). Lung aeration was assessed by lung CT scan. MP was calculated from the recorded pressure-volume curve. Statistics included the Wilcoxon tests and non-parametric Spearman correlation. Results: Normalized 18F-FDG uptake rate increased significantly from first to second PET/CT (p = 0.012). ΔKiS significantly correlated with median MP (ρ = 0.738, p = 0.037) and its elastic and resistive components, but neither with median peak, plateau, end-expiratory, driving, and transpulmonary driving pressures, nor respiratory rate (RR), elastance, or resistance. Lung mass and volume significantly decreased, whereas relative mass of hyper-aerated lung compartment increased after 24 h (p = 0.012, p = 0.036, and p = 0.025, respectively). Resistance and PaCO2 were significantly higher (p = 0.012 and p = 0.017, respectively), whereas RR, end-expiratory pressure, and MP were lower at 18 h compared to start of intervention. Conclusions: In this model of experimental acute lung injury in pigs, pulmonary neutrophilic inflammation evaluated by PET/CT increased after 24 h of MV, and correlated with MP.
Collapse
Affiliation(s)
- Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Xi Ran
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingying Zhang
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Anja Braune
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Raphael Theilen
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lorenzo Maiello
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giulia Benzi
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Clinical and Biological Sciences, Service of Anesthesia and Intensive Care, Ospedale di Circolo e Fondazione Macchi, University of Insubria, Varese, Italy
| | - Thomas Bluth
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Anaesthesiology, Intensive-, Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus J. Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) is marked by inflammation-mediated disruptions in alveolar-capillary permeability, edema formation, reduced alveolar clearance and collapse/derecruitment, reduced compliance, increased pulmonary vascular resistance, and resulting gas exchange abnormalities due to shunting and ventilation-perfusion mismatch. Mechanical ventilation, especially in the setting of regional disease heterogeneity, can propagate ventilator-associated injury patterns including barotrauma/volutrauma and atelectrauma. Lung injury due to the novel coronavirus SARS-CoV-2 resembles other causes of ARDS, though its initial clinical characteristics may include more profound hypoxemia and loss of dyspnea perception with less radiologically-evident lung injury, a pattern not described previously in ARDS.
Collapse
Affiliation(s)
- Kai Erik Swenson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, BUL 148, Boston, MA 02114, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | - Erik Richard Swenson
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA; Medical Service, Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Campus Box 358280 (S-111 Pulm), Seattle, WA 98108, USA
| |
Collapse
|
12
|
Wittenstein J, Scharffenberg M, Ran X, Zhang Y, Keller D, Tauer S, Theilen R, Chai Y, Ferreira J, Müller S, Bluth T, Kiss T, Schultz MJ, Rocco PRM, Pelosi P, Gama de Abreu M, Huhle R. Effects of Body Position and Hypovolemia on the Regional Distribution of Pulmonary Perfusion During One-Lung Ventilation in Endotoxemic Pigs. Front Physiol 2021; 12:717269. [PMID: 34566683 PMCID: PMC8461176 DOI: 10.3389/fphys.2021.717269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Background: The incidence of hypoxemia during one-lung ventilation (OLV) is as high as 10%. It is also partially determined by the distribution of perfusion. During thoracic surgery, different body positions are used, such as the supine, semilateral, lateral, and prone positions, with such positions potentially influencing the distribution of perfusion. Furthermore, hypovolemia can impair hypoxic vasoconstriction. However, the effects of body position and hypovolemia on the distribution of perfusion remain poorly defined. We hypothesized that, during OLV, the relative perfusion of the ventilated lung is higher in the lateral decubitus position and that hypovolemia impairs the redistribution of pulmonary blood flow. Methods: Sixteen juvenile pigs were anesthetized, mechanically ventilated, submitted to a right-sided thoracotomy, and randomly assigned to one of two groups: (1) intravascular normovolemia or (2) intravascular hypovolemia, as achieved by drawing ~25% of the estimated blood volume (n = 8/group). Furthermore, to mimic thoracic surgery inflammatory conditions, Escherichia coli lipopolysaccharide was continuously infused at 0.5 μg kg-1 h-1. Under left-sided OLV conditions, the animals were further randomized to one of the four sequences of supine, left semilateral, left lateral, and prone positioning. Measurements of pulmonary perfusion distribution with fluorescence-marked microspheres, ventilation distribution by electrical impedance tomography, and gas exchange were then performed during two-lung ventilation in a supine position and after 30 min in each position and intravascular volume status during OLV. Results: During one-lung ventilation, the relative perfusion of the ventilated lung was higher in the lateral than the supine position. The relative perfusion of the non-ventilated lung was lower in the lateral than the supine and prone positions and in semilateral compared with the prone position. During OLV, the highest arterial partial pressure of oxygen/inspiratory fraction of oxygen (PaO2/F I O 2) was achieved in the lateral position as compared with all the other positions. The distribution of perfusion, ventilation, and oxygenation did not differ significantly between normovolemia and hypovolemia. Conclusions: During one-lung ventilation in endotoxemic pigs, the relative perfusion of the ventilated lung and oxygenation were higher in the lateral than in the supine position and not impaired by hypovolemia.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Xi Ran
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany.,Department of Intensive Care, Chongqing General Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Yingying Zhang
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Diana Keller
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sebastian Tauer
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Raphael Theilen
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Yusen Chai
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Jorge Ferreira
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sabine Müller
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thomas Bluth
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany.,Department of Anaesthesiology, Intensive-, Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Anesthesia and Critical Care, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neurosciences, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany.,Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Robert Huhle
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Grieco DL, Maggiore SM, Roca O, Spinelli E, Patel BK, Thille AW, Barbas CSV, de Acilu MG, Cutuli SL, Bongiovanni F, Amato M, Frat JP, Mauri T, Kress JP, Mancebo J, Antonelli M. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med 2021; 47:851-866. [PMID: 34232336 PMCID: PMC8261815 DOI: 10.1007/s00134-021-06459-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The role of non-invasive respiratory support (high-flow nasal oxygen and noninvasive ventilation) in the management of acute hypoxemic respiratory failure and acute respiratory distress syndrome is debated. The oxygenation improvement coupled with lung and diaphragm protection produced by non-invasive support may help to avoid endotracheal intubation, which prevents the complications of sedation and invasive mechanical ventilation. However, spontaneous breathing in patients with lung injury carries the risk that vigorous inspiratory effort, combined or not with mechanical increases in inspiratory airway pressure, produces high transpulmonary pressure swings and local lung overstretch. This ultimately results in additional lung damage (patient self-inflicted lung injury), so that patients intubated after a trial of noninvasive support are burdened by increased mortality. Reducing inspiratory effort by high-flow nasal oxygen or delivery of sustained positive end-expiratory pressure through the helmet interface may reduce these risks. In this physiology-to-bedside review, we provide an updated overview about the role of noninvasive respiratory support strategies as early treatment of hypoxemic respiratory failure in the intensive care unit. Noninvasive strategies appear safe and effective in mild-to-moderate hypoxemia (PaO2/FiO2 > 150 mmHg), while they can yield delayed intubation with increased mortality in a significant proportion of moderate-to-severe (PaO2/FiO2 ≤ 150 mmHg) cases. High-flow nasal oxygen and helmet noninvasive ventilation represent the most promising techniques for first-line treatment of severe patients. However, no conclusive evidence allows to recommend a single approach over the others in case of moderate-to-severe hypoxemia. During any treatment, strict physiological monitoring remains of paramount importance to promptly detect the need for endotracheal intubation and not delay protective ventilation.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Salvatore Maurizio Maggiore
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy.,University Department of Innovative Technologies in Medicine and Dentistry, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Oriol Roca
- Servei de Medicina Intensiva, Hospital Universitari Vall D'Hebron, Institut de Recerca Vall D'Hebron, Barcelona, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| | - Bhakti K Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Arnaud W Thille
- Centre Hospitalier Universitaire (CHU) de Poitiers, Médecine Intensive Réanimation, Poitiers, France.,Centre D'Investigation Clinique 1402, ALIVE, INSERM, Université de Poitiers, Poitiers, France
| | - Carmen Sílvia V Barbas
- Division of Pulmonary and Critical Care, University of São Paulo, São Paulo, Brazil.,Intensive Care Unit, Albert Einstein Hospital, São Paulo, Brazil
| | - Marina Garcia de Acilu
- Servei de Medicina Intensiva, Hospital Universitari Vall D'Hebron, Institut de Recerca Vall D'Hebron, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvatore Lucio Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Marcelo Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jean-Pierre Frat
- Centre Hospitalier Universitaire (CHU) de Poitiers, Médecine Intensive Réanimation, Poitiers, France.,Centre D'Investigation Clinique 1402, ALIVE, INSERM, Université de Poitiers, Poitiers, France
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - John P Kress
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| | - Jordi Mancebo
- Servei de Medicina Intensiva, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
14
|
Wittenstein J, Huhle R, Scharffenberg M, Kiss T, Herold J, Vivona L, Bergamaschi A, Schultz MJ, Pelosi P, Gama de Abreu M, Bluth T. Effects of two stepwise lung recruitment strategies on respiratory function and haemodynamics in anaesthetised pigs: A randomised crossover study. Eur J Anaesthesiol 2021; 38:634-643. [PMID: 33967255 DOI: 10.1097/eja.0000000000001480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Lung recruitment manoeuvres and positive end-expiratory pressure (PEEP) can improve lung function during general anaesthesia. Different recruitment manoeuvre strategies have been described in large international trials: in the protective ventilation using high vs. low PEEP (PROVHILO) strategy, tidal volume (VT) was increased during volume-controlled ventilation; in the individualised peri-operative open-lung approach vs. standard protective ventilation in abdominal surgery (iPROVE) strategy, PEEP was increased during pressure-controlled ventilation. OBJECTIVES To compare the effects of the PROVHILO strategy and the iPROVE strategy on respiratory and haemodynamic variables. DESIGN Randomised crossover study. SETTING University hospital research facility. ANIMALS A total of 20 juvenile anaesthetised pigs. INTERVENTIONS Animals were assigned randomly to one of two sequences: PROVHILO strategy followed by iPROVE strategy or vice-versa (n = 10/sequence). In the PROVHILO strategy, VT was increased stepwise by 4 ml kg-1 at a fixed PEEP of 12 cmH2O until a plateau pressure of 30 to 35 cmH2O was reached. In the iPROVE strategy, at fixed driving pressure of 20 cmH2O, PEEP was increased up to 20 cmH2O followed by PEEP titration according to the lowest elastance of the respiratory system (ERS). MAIN OUTCOME MEASURES We assessed regional transpulmonary pressure (Ptrans), respiratory system mechanics, gas exchange and haemodynamics, as well as the centre of ventilation (CoV) by electrical impedance tomography. RESULTS During recruitment manoeuvres with the PROVHILO strategy compared with the iPROV strategy, dorsal Ptrans was lower at end-inspiration (16.3 ± 2.7 vs. 18.6 ± 3.1 cmH2O, P = 0.001) and end-expiration (4.8 ± 2.6 vs. 8.8 ± 3.4 cmH2O, P < 0.001), and mean arterial pressure (MAP) was higher (77 ± 11 vs. 60 ± 14 mmHg, P < 0.001). At 1 and 15 min after recruitment manoeuvres, ERS was higher in the PROVHILO strategy than the iPROVE strategy (24.6 ± 3.9 vs. 21.5 ± 3.4 and 26.7 ± 4.3 vs. 24.0 ± 3.8 cmH2O l-1; P < 0.001, respectively). At 1 min, PaO2 was lower in PROVHILO compared with iPROVE strategy (57.1 ± 6.1 vs. 59.3 ± 5.1 kPa, P = 0.013), but at 15 min, values did not differ. CoV did not differ between strategies. CONCLUSION In anaesthetised pigs, the iPROVE strategy compared with the PROVHILO strategy increased dorsal Ptrans at the cost of lower MAP during recruitment manoeuvres, and decreased ERS thereafter, without consistent improvement of oxygenation or shift of the CoV. TRIAL REGISTRATION This study was registered and approved by the Landesdirektion Dresden, Germany (DD24-5131/338/28).
Collapse
Affiliation(s)
- Jakob Wittenstein
- From the Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (JW, RH, MS, TK, JH, LV, AB, MGdeA, TB), Department of Pathophysiology and Transplantation, University of Milan, Milan (LV), San Martino Hospital, IRCCS for Oncology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy (AB, PP), Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (MJS), Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy (PP) and Outcomes Research Consortium, Cleveland, Ohio, USA (MGdeA)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Comparative effects of neurally adjusted ventilatory assist and variable pressure support on lung and diaphragmatic function in a model of acute respiratory distress syndrome: A randomised animal study. Eur J Anaesthesiol 2021; 38:32-40. [PMID: 32657806 DOI: 10.1097/eja.0000000000001261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Variable assisted mechanical ventilation has been shown to improve lung function and reduce lung injury. However, differences between extrinsic and intrinsic variability are unknown. OBJECTIVE To investigate the effects of neurally adjusted ventilatory assist (NAVA, intrinsic variability), variable pressure support ventilation (Noisy PSV, extrinsic variability) and conventional pressure-controlled ventilation (PCV) on lung and diaphragmatic function and damage in experimental acute respiratory distress syndrome (ARDS). DESIGN Randomised controlled animal study. SETTING University Hospital Research Facility. SUBJECTS A total of 24 juvenile female pigs. INTERVENTIONS ARDS was induced by repetitive lung lavage and injurious ventilation. Animals were randomly assigned to 24 h of either: 1) NAVA, 2) Noisy PSV or 3) PCV (n=8 per group). Mechanical ventilation settings followed the ARDS Network recommendations. MEASUREMENTS The primary outcome was histological lung damage. Secondary outcomes were respiratory variables and patterns, subject-ventilator asynchrony (SVA), pulmonary and diaphragmatic biomarkers, as well as diaphragmatic muscle atrophy and myosin isotypes. RESULTS Global alveolar damage did not differ between groups, but NAVA resulted in less interstitial oedema in dorsal lung regions than Noisy PSV. Gas exchange and SVA incidence did not differ between groups. Compared with Noisy PSV, NAVA generated higher coefficients of variation of tidal volume and respiratory rate. During NAVA, only 40.4% of breaths were triggered by the electrical diaphragm signal. The IL-8 concentration in lung tissue was lower after NAVA compared with PCV and Noisy PSV, whereas Noisy PSV yielded lower type III procollagen mRNA expression than NAVA and PCV. Diaphragmatic muscle fibre diameters were smaller after PCV compared with assisted modes, whereas expression of myosin isotypes did not differ between groups. CONCLUSION Noisy PSV and NAVA did not reduce global lung injury compared with PCV but affected different biomarkers and attenuated diaphragmatic atrophy. NAVA increased the respiratory variability; however, NAVA yielded a similar SVA incidence as Noisy PSV. TRIAL REGISTRATION This trial was registered and approved by the Landesdirektion Dresden, Germany (AZ 24-9168.11-1/2012-2).
Collapse
|
16
|
Tonelli R, Marchioni A, Tabbì L, Fantini R, Busani S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Demurtas J, Andreani A, Cappiello GF, Samarelli AV, Clini E. Spontaneous Breathing and Evolving Phenotypes of Lung Damage in Patients with COVID-19: Review of Current Evidence and Forecast of a New Scenario. J Clin Med 2021; 10:975. [PMID: 33801368 PMCID: PMC7958611 DOI: 10.3390/jcm10050975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
The mechanisms of acute respiratory failure other than inflammation and complicating the SARS-CoV-2 infection are still far from being fully understood, thus challenging the management of COVID-19 patients in the critical care setting. In this unforeseen scenario, the role of an individual's excessive spontaneous breathing may acquire critical importance, being one potential and important driver of lung injury and disease progression. The consequences of this acute lung damage may impair lung structure, forecasting the model of a fragile respiratory system. This perspective article aims to analyze the progression of injured lung phenotypes across the SARS-CoV-2 induced respiratory failure, pointing out the role of spontaneous breathing and also tackling the specific respiratory/ventilatory strategy required by the fragile lung type.
Collapse
Affiliation(s)
- Roberto Tonelli
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Alessandro Marchioni
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Stefano Busani
- Intensive Care Unit, University Hospital of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Ivana Castaniere
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Dario Andrisani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Filippo Gozzi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Giulia Bruzzi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Linda Manicardi
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Jacopo Demurtas
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41124 Modena, Italy;
- Primary Care Department USL Toscana Sud Est-Grosseto, 58100 Grosseto, Italy
| | - Alessandro Andreani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Gaia Francesca Cappiello
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Anna Valeria Samarelli
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| | - Enrico Clini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41124 Modena, Italy; (L.T.); (R.F.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.A.); (G.F.C.); (A.V.S.); (E.C.)
| |
Collapse
|
17
|
Scharffenberg M, Wittenstein J, Herzog M, Tauer S, Vivona L, Theilen R, Bluth T, Kiss T, Koch T, Fiorentino G, de Abreu MG, Huhle R. Continuous external negative pressure improves oxygenation and respiratory mechanics in Experimental Lung Injury in Pigs - A pilot proof-of-concept trial. Intensive Care Med Exp 2020; 8:49. [PMID: 33336263 PMCID: PMC7746426 DOI: 10.1186/s40635-020-00315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Continuous external negative pressure (CENP) during positive pressure ventilation can recruit dependent lung regions. We hypothesised that CENP applied regionally to the thorax or the abdomen only, increases the caudal end-expiratory transpulmonary pressure depending on positive end-expiratory pressure (PEEP) in lung-injured pigs. Eight pigs were anesthetised and mechanically ventilated in the supine position. Pressure sensors were placed in the left pleural space, and a lung injury was induced by saline lung lavages. A CENP shell was placed at the abdomen and thorax (randomised order), and animals were ventilated with PEEP 15, 7 and zero cmH2O (15 min each). On each PEEP level, CENP of - 40, - 30, - 20, - 10 and 0 cmH2O was applied (3 min each). Respiratory and haemodynamic variables were recorded. Electrical impedance tomography allowed assessment of centre of ventilation. RESULTS Compared to positive pressure ventilation alone, the caudal transpulmonary pressure was significantly increased by CENP of ≤ 20 cmH2O at all PEEP levels. CENP of - 20 cmH2O reduced the mean airway pressure at zero PEEP (P = 0.025). The driving pressure decreased at CENP of ≤ 10 at PEEP of 0 and 7 cmH2O (P < 0.001 each) but increased at CENP of - 30 cmH2O during the highest PEEP (P = 0.001). CENP of - 30 cmH2O reduced the mechanical power during zero PEEP (P < 0.001). Both elastance (P < 0.001) and resistance (P < 0.001) were decreased at CENP ≤ 30 at PEEP of 0 and 7 cmH2O. Oxygenation increased at CENP of ≤ 20 at PEEP of 0 and 7 cmH2O (P < 0.001 each). Applying external negative pressure significantly shifted the centre of aeration towards dorsal lung regions irrespectively of the PEEP level. Cardiac output decreased significantly at CENP -20 cmH2O at all PEEP levels (P < 0.001). Effects on caudal transpulmonary pressure, elastance and cardiac output were more pronounced when CENP was applied to the abdomen compared with the thorax. CONCLUSIONS In this lung injury model in pigs, CENP increased the end-expiratory caudal transpulmonary pressure. This lead to a shift of lung aeration towards dependent zones as well as improved respiratory mechanics and oxygenation, especially when CENP was applied to the abdomen as compared to the thorax. CENP values ≤ 20 cmH2O impaired the haemodynamics.
Collapse
Affiliation(s)
- Martin Scharffenberg
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Jakob Wittenstein
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Herzog
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Sebastian Tauer
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Luigi Vivona
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milano, Italia
| | - Raphael Theilen
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Bluth
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Kiss
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thea Koch
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | | | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Robert Huhle
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
18
|
Wittenstein J, Scharffenberg M, Ran X, Keller D, Michler P, Tauer S, Theilen R, Kiss T, Bluth T, Koch T, Gama de Abreu M, Huhle R. Comparative effects of flow vs. volume-controlled one-lung ventilation on gas exchange and respiratory system mechanics in pigs. Intensive Care Med Exp 2020; 8:24. [PMID: 33336305 PMCID: PMC7746431 DOI: 10.1186/s40635-020-00308-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023] Open
Abstract
Background Flow-controlled ventilation (FCV) allows expiratory flow control, reducing the collapse of the airways during expiration. The performance of FCV during one-lung ventilation (OLV) under intravascular normo- and hypovolaemia is currently unknown. In this explorative study, we hypothesised that OLV with FCV improves PaO2 and reduces mechanical power compared to volume-controlled ventilation (VCV). Sixteen juvenile pigs were randomly assigned to one of two groups: (1) intravascular normovolaemia (n = 8) and (2) intravascular hypovolaemia (n = 8). To mimic inflammation due to major thoracic surgery, a thoracotomy was performed, and 0.5 μg/kg/h lipopolysaccharides from Escherichia coli continuously administered intravenously. Animals were randomly assigned to OLV with one of two sequences (60 min per mode): (1) VCV–FCV or (2) FCV–VCV. Variables of gas exchange, haemodynamics and respiratory signals were collected 20, 40 and 60 min after initiation of OLV with each mechanical ventilation mode. The distribution of ventilation was determined using electrical impedance tomography (EIT). Results Oxygenation did not differ significantly between modes (P = 0.881). In the normovolaemia group, the corrected expired minute volume (P = 0.022) and positive end-expiratory pressure (PEEP) were lower during FCV than VCV. The minute volume (P ≤ 0.001), respiratory rate (P ≤ 0.001), total PEEP (P ≤ 0.001), resistance of the respiratory system (P ≤ 0.001), mechanical power (P ≤ 0.001) and resistive mechanical power (P ≤ 0.001) were lower during FCV than VCV irrespective of the volaemia status. The distribution of ventilation did not differ between both ventilation modes (P = 0.103). Conclusions In a model of OLV in normo- and hypovolemic pigs, mechanical power was lower during FCV compared to VCV, without significant differences in oxygenation. Furthermore, the efficacy of ventilation was higher during FCV compared to VCV during normovolaemia.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Martin Scharffenberg
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Xi Ran
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Diana Keller
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Pia Michler
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Sebastian Tauer
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Raphael Theilen
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Kiss
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Bluth
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thea Koch
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Robert Huhle
- Pulmonary Engineering Group, Dept. of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
19
|
Low Spontaneous Breathing Effort during Extracorporeal Membrane Oxygenation in a Porcine Model of Severe Acute Respiratory Distress Syndrome. Anesthesiology 2020; 133:1106-1117. [PMID: 32898217 DOI: 10.1097/aln.0000000000003538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A lung rest strategy is recommended during extracorporeal membrane oxygenation in severe acute respiratory distress syndrome (ARDS). However, spontaneous breathing modes are frequently used in this context. The impact of this approach may depend on the intensity of breathing efforts. The authors aimed to determine whether a low spontaneous breathing effort strategy increases lung injury, compared to a controlled near-apneic ventilation, in a porcine severe ARDS model assisted by extracorporeal membrane oxygenation. METHODS Twelve female pigs were subjected to lung injury by repeated lavages, followed by 2-h injurious ventilation. Thereafter, animals were connected to venovenous extracorporeal membrane oxygenation and during the first 3 h, ventilated with near-apneic ventilation (positive end-expiratory pressure, 10 cm H2O; driving pressure, 10 cm H2O; respiratory rate, 5/min). Then, animals were allocated into (1) near-apneic ventilation, which continued with the previous ventilatory settings; and (2) spontaneous breathing: neuromuscular blockers were stopped, sweep gas flow was decreased until regaining spontaneous efforts, and ventilation was switched to pressure support mode (pressure support, 10 cm H2O; positive end-expiratory pressure, 10 cm H2O). In both groups, sweep gas flow was adjusted to keep Paco2 between 30 and 50 mmHg. Respiratory and hemodynamic as well as electric impedance tomography data were collected. After 24 h, animals were euthanized and lungs extracted for histologic tissue analysis. RESULTS Compared to near-apneic group, the spontaneous breathing group exhibited a higher respiratory rate (52 ± 17 vs. 5 ± 0 breaths/min; mean difference, 47; 95% CI, 34 to 59; P < 0.001), but similar tidal volume (2.3 ± 0.8 vs. 2.8 ± 0.4 ml/kg; mean difference, 0.6; 95% CI, -0.4 to 1.4; P = 0.983). Extracorporeal membrane oxygenation settings and gas exchange were similar between groups. Dorsal ventilation was higher in the spontaneous breathing group. No differences were observed regarding histologic lung injury. CONCLUSIONS In an animal model of severe ARDS supported with extracorporeal membrane oxygenation, spontaneous breathing characterized by low-intensity efforts, high respiratory rates, and very low tidal volumes did not result in increased lung injury compared to controlled near-apneic ventilation. EDITOR’S PERSPECTIVE
Collapse
|
20
|
Dos Santos Rocha A, Fodor GH, Kassai M, Degrugilliers L, Bayat S, Petak F, Habre W. Physiologically variable ventilation reduces regional lung inflammation in a pediatric model of acute respiratory distress syndrome. Respir Res 2020; 21:288. [PMID: 33129315 PMCID: PMC7602830 DOI: 10.1186/s12931-020-01559-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Benefits of variable mechanical ventilation based on the physiological breathing pattern have been observed both in healthy and injured lungs. These benefits have not been characterized in pediatric models and the effect of this ventilation mode on regional distribution of lung inflammation also remains controversial. Here, we compare structural, molecular and functional outcomes reflecting regional inflammation between PVV and conventional pressure-controlled ventilation (PCV) in a pediatric model of healthy lungs and acute respiratory distress syndrome (ARDS). METHODS New-Zealand White rabbit pups (n = 36, 670 ± 20 g [half-width 95% confidence interval]), with healthy lungs or after induction of ARDS, were randomized to five hours of mechanical ventilation with PCV or PVV. Regional lung aeration, inflammation and perfusion were assessed using x-ray computed tomography, positron-emission tomography and single-photon emission computed tomography, respectively. Ventilation parameters, blood gases and respiratory tissue elastance were recorded hourly. RESULTS Mechanical ventilation worsened respiratory elastance in healthy and ARDS animals ventilated with PCV (11 ± 8%, 6 ± 3%, p < 0.04), however, this trend was improved by PVV (1 ± 4%, - 6 ± 2%). Animals receiving PVV presented reduced inflammation as assessed by lung normalized [18F]fluorodeoxyglucose uptake in healthy (1.49 ± 0.62 standardized uptake value, SUV) and ARDS animals (1.86 ± 0.47 SUV) compared to PCV (2.33 ± 0.775 and 2.28 ± 0.3 SUV, respectively, p < 0.05), particularly in the well and poorly aerated lung zones. No benefit of PVV could be detected on regional blood perfusion or blood gas parameters. CONCLUSIONS Variable ventilation based on a physiological respiratory pattern, compared to conventional pressure-controlled ventilation, reduced global and regional inflammation in both healthy and injured lungs of juvenile rabbits.
Collapse
Affiliation(s)
- Andre Dos Santos Rocha
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.
| | - Gergely H Fodor
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland.,Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Miklos Kassai
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| | - Loic Degrugilliers
- Department of Pediatric Intensive Care, Amiens University Hospital, Amiens, France
| | - Sam Bayat
- Inserm UA7 STROBE Laboratory &, Department of Clinical Physiology, Sleep and Exercise, Grenoble University Hospital, Boulevard de La Chantourne, 38700, Grenoble, La Tronche, France
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, 9 Korányi fasor, Szeged, 6720, Hungary
| | - Walid Habre
- Unit for Anaesthesiological Investigations, Department of Acute Medicine, University Hospitals of Geneva and University of Geneva, rue Willy Donzé 6, 1205, Geneva, Switzerland
| |
Collapse
|
21
|
Wittenstein J, Scharffenberg M, Braune A, Huhle R, Bluth T, Herzog M, Güldner A, Ball L, Simonassi F, Zeidler-Rentzsch I, Vidal Melo MF, Koch T, Rocco PR, Pelosi P, Kotzerke J, Gama de Abreu M, Kiss T. Effects of variable versus non-variable controlled mechanical ventilation: response to comment on Br J Anaesth 2020; 124: 430–9. Br J Anaesth 2020; 124:e224-e225. [DOI: 10.1016/j.bja.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
|
22
|
Grieco DL, Menga LS, Raggi V, Bongiovanni F, Anzellotti GM, Tanzarella ES, Bocci MG, Mercurio G, Dell'Anna AM, Eleuteri D, Bello G, Maviglia R, Conti G, Maggiore SM, Antonelli M. Physiological Comparison of High-Flow Nasal Cannula and Helmet Noninvasive Ventilation in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2020; 201:303-312. [PMID: 31687831 DOI: 10.1164/rccm.201904-0841oc] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rationale: High-flow nasal cannula (HFNC) and helmet noninvasive ventilation (NIV) are used for the management of acute hypoxemic respiratory failure.Objectives: Physiological comparison of HFNC and helmet NIV in patients with hypoxemia.Methods: Fifteen patients with hypoxemia with PaO2/FiO2 < 200 mm Hg received helmet NIV (positive end-expiratory pressure ≥ 10 cm H2O, pressure support = 10-15 cm H2O) and HFNC (50 L/min) in randomized crossover order. Arterial blood gases, dyspnea, and comfort were recorded. Inspiratory effort was estimated by esophageal pressure (Pes) swings. Pes-simplified pressure-time product and transpulmonary pressure swings were measured.Measurements and Main Results: As compared with HFNC, helmet NIV increased PaO2/FiO2 (median [interquartile range]: 255 mm Hg [140-299] vs. 138 [101-172]; P = 0.001) and lowered inspiratory effort (7 cm H2O [4-11] vs. 15 [8-19]; P = 0.001) in all patients. Inspiratory effort reduction by NIV was linearly related to inspiratory effort during HFNC (r = 0.84; P < 0.001). Helmet NIV reduced respiratory rate (24 breaths/min [23-31] vs. 29 [26-32]; P = 0.027), Pes-simplified pressure-time product (93 cm H2O ⋅ s ⋅ min-1 [43-138] vs. 200 [168-335]; P = 0.001), and dyspnea (visual analog scale 3 [2-5] vs. 8 [6-9]; P = 0.002), without affecting PaCO2 (P = 0.80) and comfort (P = 0.50). In the overall cohort, transpulmonary pressure swings were not different between treatments (NIV = 18 cm H2O [14-21] vs. HFNC = 15 [8-19]; P = 0.11), but patients exhibiting lower inspiratory effort on HFNC experienced increases in transpulmonary pressure swings with helmet NIV. Higher transpulmonary pressure swings during NIV were associated with subsequent need for intubation.Conclusions: As compared with HFNC in hypoxemic respiratory failure, helmet NIV improves oxygenation, reduces dyspnea, inspiratory effort, and simplified pressure-time product, with similar transpulmonary pressure swings, PaCO2, and comfort.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Luca S Menga
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Valeria Raggi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Filippo Bongiovanni
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Gian Marco Anzellotti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Eloisa S Tanzarella
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Maria Grazia Bocci
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giovanna Mercurio
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Antonio M Dell'Anna
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Davide Eleuteri
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giuseppe Bello
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Riccardo Maviglia
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giorgio Conti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Salvatore Maurizio Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| |
Collapse
|
23
|
Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care 2020; 26:59-65. [DOI: 10.1097/mcc.0000000000000691] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Widing CH, Pellegrini M, Larsson A, Perchiazzi G. The Effects of Positive End-Expiratory Pressure on Transpulmonary Pressure and Recruitment-Derecruitment During Neurally Adjusted Ventilator Assist: A Continuous Computed Tomography Study in an Animal Model of Acute Respiratory Distress Syndrome. Front Physiol 2019; 10:1392. [PMID: 31824326 PMCID: PMC6882775 DOI: 10.3389/fphys.2019.01392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 01/22/2023] Open
Abstract
Background Whether spontaneous breathing (SB) should be used in early acute respiratory distress syndrome (ARDS) is questioned because it may cause ventilator-induced lung injury (VILI) by tidal high strain/stress and recruitment/derecruitment (R/D). However, SB has shown beneficial effects when used appropriately. We hypothesized that high levels of positive end-expiratory pressure (PEEP), during assisted SB, would prevent tidal R/D, reducing ventilatory variation and respiratory rate while potentially increasing transpulmonary pressure (PTP). The aim was to test this hypothesis in experimental mild ARDS during continuous SB using neurally adjusted ventilator assist (NAVA) and uninterrupted computed tomography (CT) exposure. Methods Mild experimental ARDS (PaO2/FiO2-ratio of 250) was induced in anesthetized pigs (n = 5), ventilated using uninterrupted NAVA. PEEP was changed in steps of 3 cmH2O, from 0 to 15 and back to 0 cmH2O. Dynamic CT scans, ventilatory parameters, and esophageal pressure were acquired simultaneously. PTP and R/D were calculated and compared among PEEP levels. Results When increasing PEEP from 0 to 15 cmH2O, tidal R/D decreased from 4.3 ± 5.9 to 1.1 ± 0.7% (p < 0.01), breath-to-breath variability decreased, and PTP increased from 11.4 ± 3.7 to 29.7 ± 14.1 cmH2O (R2 = 0.96). Conclusion This study shows that injurious phenomena like R/D and high PTP are present in NAVA at the two extremes of the PEEP spectrum. Willing to titrate PEEP to limit these phenomena, the physician must choose the best compromise between restraining the R/D or PTP.
Collapse
Affiliation(s)
- Carl Hannes Widing
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,NU-Hospital Organization, Trollhättan, Sweden
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Anaesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Anaesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Anaesthesia and Intensive Care Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|