1
|
Moradi N, Sanfrancesco VC, Champsi S, Hood DA. Regulation of lysosomes in skeletal muscle during exercise, disuse and aging. Free Radic Biol Med 2024; 225:323-332. [PMID: 39332541 DOI: 10.1016/j.freeradbiomed.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Lysosomes play a critical role as a terminal organelle in autophagy flux and in regulating protein degradation, but their function and adaptability in skeletal muscle is understudied. Lysosome functions include both housekeeping and signaling functions essential for cellular homeostasis. This review focuses on the regulation of lysosomes in skeletal muscle during exercise, disuse, and aging, with a consideration of sex differences as well as the role of lysosomes in mediating the degradation of mitochondria, termed mitophagy. Exercise enhances mitophagy during elevated mitochondrial stress and energy demand. A critical response to this deviation from homeostasis is the activation of transcription factors TFEB and TFE3, which drive the expression of lysosomal and autophagic genes. Conversely, during muscle disuse, the suppression of lysosomal activity contributes to the accumulation of defective mitochondria and other cellular debris, impairing muscle function. Aging further exacerbates these effects by diminishing lysosomal efficacy, leading to the accumulation of damaged cellular components. mTORC1, a key nutrient sensor, modulates lysosomal activity by inhibiting TFEB/TFE3 translocation to the nucleus under nutrient-rich conditions, thereby suppressing autophagy. During nutrient deprivation or exercise, AMPK activation inhibits mTORC1, facilitating TFEB/TFE3 nuclear translocation and promoting lysosomal biogenesis and autophagy. TRPML1 activation by mitochondrial ROS enhances lysosomal calcium release, which is essential for autophagy and maintaining mitochondrial quality. Overall, the intricate regulation of lysosomal functions and signaling pathways in skeletal muscle is crucial for adaptation to physiological demands, and disruptions in these processes during disuse and aging underscore the ubiquitous power of exercise-induced adaptations, and also highlight the potential for targeted therapeutic interventions to preserve muscle health.
Collapse
Affiliation(s)
- N Moradi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - V C Sanfrancesco
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - S Champsi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - D A Hood
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Jackson MJ. Reactive oxygen species in age-related musculoskeletal decline: implications for nutritional intervention. Proc Nutr Soc 2024:1-9. [PMID: 39512110 DOI: 10.1017/s0029665124004877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Musculoskeletal disorders and age-related musculoskeletal decline are major contributors to the burden of ill health seen in older subjects. Despite this increased burden, these chronic disorders of old age receive a relatively small proportion of national research funds. Much has been learned about fundamental processes involved in ageing from basic science research and this is leading to identification of key pathways that mediate ageing which may help the search for interventions to reduce age-related musculoskeletal decline. This short review will focus on the role of reactive oxygen species in age-related skeletal muscle decline and on the implications of this work for potential nutritional interventions in sarcopenia. The key physiological role of reactive oxygen species is now known to be in mediating redox signalling in muscle and other tissues and ageing leads to disruption of such pathways. In muscle, this is reflected in an age-related attenuation of specific adaptations and responses to contractile activity that impacts the ability of skeletal muscle from ageing individuals to respond to exercise. These pathways provides potential targets for identification of logical interventions that may help maintain muscle mass and function during ageing.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Tsitkanou S, Morena da Silva F, Cabrera AR, Schrems ER, Muhyudin R, Koopmans PJ, Khadgi S, Lim S, Delfinis LJ, Washington TA, Murach KA, Perry CGR, Greene NP. Mitochondrial antioxidant SkQ1 attenuates C26 cancer-induced muscle wasting in males and improves muscle contractility in female tumor-bearing mice. Am J Physiol Cell Physiol 2024; 327:C1308-C1322. [PMID: 39344417 PMCID: PMC11559642 DOI: 10.1152/ajpcell.00497.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Mitochondrial dysfunction is a hallmark of cancer cachexia (CC). Mitochondrial reactive oxygen species (ROS) are elevated in muscle shortly after tumor onset. Targeting mitochondrial ROS may be a viable option to prevent CC. The aim of this study was to evaluate the efficacy of a mitochondria-targeted antioxidant, SkQ1, to mitigate CC in both biological sexes. Male and female Balb/c mice were injected bilaterally with colon 26 adenocarcinoma (C26) cells (total 1 × 106 cells) or PBS (equal volume control). SkQ1 was dissolved in drinking water (∼250 nmol/kg body wt/day) and administered to mice beginning 7 days following tumor induction, whereas control groups consumed normal drinking water. In vivo muscle contractility of dorsiflexors, deuterium oxide-based protein synthesis, mitochondrial respiration and mRNA content of mitochondrial, protein turnover, and calcium channel-related markers were assessed at endpoint (25 days following tumor induction). Two-way ANOVAs, followed by Tukey's post hoc test when interactions were significant (P ≤ 0.05), were performed. SkQ1 attenuated cancer-induced atrophy, promoted protein synthesis, and abated Redd1 and Atrogin induction in gastrocnemius of C26 male mice. In female mice, SkQ1 decreased muscle mass and increased catabolic signaling in the plantaris of tumor-bearing mice, as well as reduced mitochondrial oxygen consumption, regardless of tumor. However, in females, SkQ1 enhanced muscle contractility of the dorsiflexors with concurrent induction of Ryr1, Serca1, and Serca2a in TA. In conclusion, the mitochondria-targeted antioxidant SkQ1 may attenuate CC-induced muscle loss in males, while improving muscle contractile function in tumor-bearing female mice, suggesting sexual dimorphism in the effects of this mitochondrial therapy in CC.NEW & NOTEWORTHY Herein, we assess the efficacy of the mitochondria-targeted antioxidant SkQ1 to mitigate cancer cachexia (CC) in both biological sexes. We demonstrate that SkQ1 administration attenuates muscle wasting induced by C26 tumors in male, but not female, mice. Conversely, we identify that in females, SkQ1 improves muscle contractility. These phenotypic adaptations to SkQ1 are aligned with respective responses in muscle protein synthesis, mitochondrial respiration, and mRNA content of protein turnover, as well as mitochondrial and calcium handling-related markers.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ruqaiza Muhyudin
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Pieter J Koopmans
- Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sabin Khadgi
- Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Seongkyun Lim
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Luca J Delfinis
- Muscle Health Research Centre and the School of Kinesiology & Health Sciences, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Christopher G R Perry
- Muscle Health Research Centre and the School of Kinesiology & Health Sciences, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Nicholas P Greene
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
4
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
5
|
Powers SK, Lategan-Potgieter R, Goldstein E. Exercise-induced Nrf2 activation increases antioxidant defenses in skeletal muscles. Free Radic Biol Med 2024; 224:470-478. [PMID: 39181477 DOI: 10.1016/j.freeradbiomed.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Following the discovery that exercise increases the production of reactive oxygen species in contracting skeletal muscles, evidence quickly emerged that endurance exercise training increases the abundance of key antioxidant enzymes in the trained muscles. Since these early observations, knowledge about the impact that regular exercise has on skeletal muscle antioxidant capacity has increased significantly. Importantly, in recent years, our understanding of the cell signaling pathways responsible for this exercise-induced increase in antioxidant enzymes has expanded exponentially. Therefore, the goals of this review are: 1) summarize our knowledge about the influence that exercise training has on the abundance of key antioxidant enzymes in skeletal muscles; and 2) to provide a state-of-the-art review of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway that is responsible for many of the exercise-induced changes in muscle antioxidant capacity. We begin with a discussion of the sources of reactive oxygen species in contracting muscles and then examine the exercise-induced changes in the antioxidant enzymes that eliminate both superoxide radicals and hydrogen peroxide in muscle fibers. We conclude with a discussion of the advances in our understanding of the exercise-induced control of the Nrf2 signaling pathway that is responsible for the expression of numerous antioxidant proteins. In hopes of stimulating future research, we also identify gaps in our knowledge about the signaling pathways responsible for the exercise-induced increases in muscle antioxidant enzymes.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | | | - Erica Goldstein
- Department of Health Sciences, Stetson University, Deland, FL, USA
| |
Collapse
|
6
|
Machado-Junior PA, Dias MSS, de Souza ABF, Lopes LSE, Menezes TP, Talvani A, Brochard L, Bezerra FS. A short duration of mechanical ventilation alters redox status in the diaphragm and aggravates inflammation in septic mice. Respir Physiol Neurobiol 2024; 331:104361. [PMID: 39433197 DOI: 10.1016/j.resp.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Mechanical ventilation (MV) is a life support method used to treat patients with respiratory failure. High tidal volumes during MV can cause ventilator-induced lung injury (VILI), but also affect other organs, such as the diaphragm (Dia) causing ventilator-induced diaphragmatic dysfunction (VIDD). VIDD is often associated with a complicated course on MV. Sepsis can induce inflammation and oxidative stress, contributing to the impairment of the Dia and worsening of the prognosis. This study evaluated the additive or synergistic effects of a short course of mechanical ventilation on Dia in healthy and septic adult mice. METHODS 32 adult male C57BL/6 mice were randomly into four groups: Control (CG), non-ventilated animals instilled with saline solution (PBS1x); Lipopolysaccharide (LPS), non-ventilated animals instilled with PBS solution containing lipopolysaccharide; Mechanical Ventilation (MV) for 1 h, ventilated animals instilled with PBS solution; and Mechanical Ventilation and LPS (MV+LPS), ventilated animals instilled with PBS solution containing LPS. At the end of the experimental protocol, the animals were euthanized, then blood and diaphragm tissue samples were collected. RESULTS Evaluation of leukocyte/blood parameters and diaphragm muscle showed that MV, LPS and the combination of both were able to increase neutrophil count, creatine kinase, inflammatory mediators and oxidative stress in all groups compared to the control. MV and sepsis combined had additive effects on inflammation and lipid peroxidation. CONCLUSIONS A short course of Mechanical ventilation promotes inflammation and oxidative stress and, its combination with sepsis further increases local and systemic inflammation.
Collapse
Affiliation(s)
- Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Marcelo Santiago Soares Dias
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leonardo Spinelli Estevão Lopes
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Powers SK. Ventilator-induced diaphragm dysfunction: phenomenology and mechanism(s) of pathogenesis. J Physiol 2024; 602:4729-4752. [PMID: 39216087 DOI: 10.1113/jp283860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical ventilation (MV) is used to support ventilation and pulmonary gas exchange in patients during critical illness and surgery. Although MV is a life-saving intervention for patients in respiratory failure, an unintended side-effect of MV is the rapid development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is labelled as 'ventilator-induced diaphragm dysfunction' (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a risk factor for the failure to wean patients from MV. Indeed, the inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. The pathogenesis of VIDD has been extensively investigated, revealing that increased mitochondrial production of reactive oxygen species within diaphragm muscle fibres promotes a cascade of redox-regulated signalling events leading to both accelerated proteolysis and depressed protein synthesis. Together, these events promote the rapid development of diaphragmatic atrophy and contractile dysfunction. This review highlights the MV-induced changes in the structure/function of diaphragm muscle and discusses the cell-signalling mechanisms responsible for the pathogenesis of VIDD. This report concludes with a discussion of potential therapeutic opportunities to prevent VIDD and suggestions for future research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Holwerda AM, Dirks ML, Barbeau P, Goessens J, Gijsen A, van Loon LJ, Holloway GP. Mitochondrial bioenergetics are not associated with myofibrillar protein synthesis rates. J Cachexia Sarcopenia Muscle 2024; 15:1811-1822. [PMID: 39007407 PMCID: PMC11446679 DOI: 10.1002/jcsm.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Mitochondria represent key organelles influencing cellular homeostasis and have been implicated in the signalling events regulating protein synthesis. METHODS We examined whether mitochondrial bioenergetics (oxidative phosphorylation and reactive oxygen species (H2O2) emission, ROS) measured in vitro in permeabilized muscle fibres represent regulatory factors for integrated daily muscle protein synthesis rates and skeletal muscle mass changes across the spectrum of physical activity, including free-living and bed-rest conditions: n = 19 healthy, young men (26 ± 4 years, 23.4 ± 3.3 kg/m2) and following 12 weeks of resistance-type exercise training: n = 10 healthy older men (70 ± 3 years, 25.2 ± 2.1 kg/m2). Additionally, we evaluated the direct relationship between attenuated mitochondrial ROS emission and integrated daily myofibrillar and sarcoplasmic protein synthesis rates in genetically modified mice (mitochondrial-targeted catalase, MCAT). RESULTS Neither oxidative phosphorylation nor H2O2 emission were associated with muscle protein synthesis rates in healthy young men under free-living conditions or following 1 week of bed rest (both P > 0.05). Greater increases in GSSG concentration were associated with greater skeletal muscle mass loss following bed rest (r = -0.49, P < 0.05). In older men, only submaximal mitochondrial oxidative phosphorylation (corrected for mitochondrial content) was positively associated with myofibrillar protein synthesis rates during exercise training (r = 0.72, P < 0.05). However, changes in oxidative phosphorylation and H2O2 emission were not associated with changes in skeletal muscle mass following training (both P > 0.05). Additionally, MCAT mice displayed no differences in myofibrillar (2.62 ± 0.22 vs. 2.75 ± 0.15%/day) and sarcoplasmic (3.68 ± 0.35 vs. 3.54 ± 0.35%/day) protein synthesis rates when compared with wild-type mice (both P > 0.05). CONCLUSIONS Mitochondrial oxidative phosphorylation and reactive oxygen emission do not seem to represent key factors regulating muscle protein synthesis or muscle mass regulation across the spectrum of physical activity.
Collapse
Affiliation(s)
- Andrew M. Holwerda
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| | - Marlou L. Dirks
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Pierre‐Andre Barbeau
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| | - Joy Goessens
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Annemie Gijsen
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Luc J.C. van Loon
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Graham P. Holloway
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| |
Collapse
|
9
|
Endo Y, Aoki T, Jafari D, Rolston DM, Hagiwara J, Ito-Hagiwara K, Nakamura E, Kuschner CE, Becker LB, Hayashida K. Acute lung injury and post-cardiac arrest syndrome: a narrative review. J Intensive Care 2024; 12:32. [PMID: 39227997 PMCID: PMC11370287 DOI: 10.1186/s40560-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Post-cardiac arrest syndrome (PCAS) presents a multifaceted challenge in clinical practice, characterized by severe neurological injury and high mortality rates despite advancements in management strategies. One of the important critical aspects of PCAS is post-arrest lung injury (PALI), which significantly contributes to poor outcomes. PALI arises from a complex interplay of pathophysiological mechanisms, including trauma from chest compressions, pulmonary ischemia-reperfusion (IR) injury, aspiration, and systemic inflammation. Despite its clinical significance, the pathophysiology of PALI remains incompletely understood, necessitating further investigation to optimize therapeutic approaches. METHODS This review comprehensively examines the existing literature to elucidate the epidemiology, pathophysiology, and therapeutic strategies for PALI. A comprehensive literature search was conducted to identify preclinical and clinical studies investigating PALI. Data from these studies were synthesized to provide a comprehensive overview of PALI and its management. RESULTS Epidemiological studies have highlighted the substantial prevalence of PALI in post-cardiac arrest patients, with up to 50% of survivors experiencing acute lung injury. Diagnostic imaging modalities, including chest X-rays, computed tomography, and lung ultrasound, play a crucial role in identifying PALI and assessing its severity. Pathophysiologically, PALI encompasses a spectrum of factors, including chest compression-related trauma, pulmonary IR injury, aspiration, and systemic inflammation, which collectively contribute to lung dysfunction and poor outcomes. Therapeutically, lung-protective ventilation strategies, such as low tidal volume ventilation and optimization of positive end-expiratory pressure, have emerged as cornerstone approaches in the management of PALI. Additionally, therapeutic hypothermia and emerging therapies targeting mitochondrial dysfunction hold promise in mitigating PALI-related morbidity and mortality. CONCLUSION PALI represents a significant clinical challenge in post-cardiac arrest care, necessitating prompt diagnosis and targeted interventions to improve outcomes. Mitochondrial-related therapies are among the novel therapeutic strategies for PALI. Further clinical research is warranted to optimize PALI management and enhance post-cardiac arrest care paradigms.
Collapse
Affiliation(s)
- Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Daniel Jafari
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel M Rolston
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Kanako Ito-Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA.
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
10
|
Miao C, Shen Y, Lang Y, Li H, Gong Y, Liu Y, Li H, Jones BC, Chen F, Feng S. Biomimetic nanoparticles with enhanced rapamycin delivery for autism spectrum disorder treatment via autophagy activation and oxidative stress modulation. Theranostics 2024; 14:4375-4392. [PMID: 39113803 PMCID: PMC11303075 DOI: 10.7150/thno.95614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Autism spectrum disorder (ASD) represents a complex neurodevelopmental condition lacking specific pharmacological interventions. Given the multifaced etiology of ASD, there exist no effective treatment for ASD. Rapamycin (RAPA) can activate autophagy by inhibiting the mTOR pathway and has exhibited promising effects in treating central nervous system disorders; however, its limited ability to cross the blood-brain barrier (BBB) has hindered its clinical efficacy, leading to substantial side effects. Methods: To address this challenge, we designed a drug delivery system utilizing red blood cell membrane (CM) vesicles modified with SS31 peptides to enhance the brain penetration of RAPA for the treatment of autism. Results: The fabricated SCM@RAPA nanoparticles, with an average diameter of 110 nm, exhibit rapid release of RAPA in a pathological environment characterized by oxidative stress. In vitro results demonstrate that SCM@RAPA effectively activate cellular autophagy, reduce intracellular ROS levels, improve mitochondrial function, thereby ameliorating neuronal damage. SS31 peptide modification significantly enhances the BBB penetration and rapid brain accumulation of SCM@RAPA. Notably, SCM@RAPA nanoparticles demonstrate the potential to ameliorate social deficits, improve cognitive function, and reverse neuronal impairments in valproic acid (VPA)-induced ASD models. Conclusions: The therapeutic potential of SCM@RAPA in managing ASD signifies a paradigm shift in autism drug treatment, holding promise for clinical interventions in diverse neurological conditions.
Collapse
Affiliation(s)
- Chenlin Miao
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Yizhe Shen
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Yue Lang
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Hui Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Yan Gong
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Yamei Liu
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, USA
| | - Fuxue Chen
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| | - Shini Feng
- School of Lifesciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P.R.C
| |
Collapse
|
11
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
12
|
Xu X, Wen Z. The mediating role of inflammaging between mitochondrial dysfunction and sarcopenia in aging: a review. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:109-126. [PMID: 38187366 PMCID: PMC10767199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Sarcopenia, characterized by the insidious reduction of skeletal muscle mass and strength, detrimentally affects the quality of life in elderly cohorts. Present therapeutic strategies are confined to physiotherapeutic interventions, signaling a critical need for elucidation of the etiological underpinnings to facilitate the development of innovative pharmacotherapies. Recent scientific inquiries have associated mitochondrial dysfunction and inflammation with the etiology of sarcopenia. Mitochondria are integral to numerous fundamental cellular processes within muscle tissue, including but not limited to apoptosis, autophagy, signaling via reactive oxygen species, and the maintenance of protein equilibrium. Deviations in mitochondrial dynamics, coupled with compromised oxidative capabilities, autophagic processes, and protein equilibrium, result in disturbances to muscular architecture and functionality. Mitochondrial dysfunction is particularly detrimental as it diminishes oxidative phosphorylation, escalates apoptotic activity, and hinders calcium homeostasis within muscle cells. Additionally, deleterious feedback loops of deteriorated respiration, exacerbated oxidative injury, and diminished quality control mechanisms precipitate the acceleration of muscular senescence. Notably, mitochondria exhibiting deficient energetic metabolism are pivotal in precipitating the shift from normative muscle aging to a pathogenic state. This analytical review meticulously examines the complex interplay between mitochondrial dysfunction, persistent inflammation, and the pathogenesis of sarcopenia. It underscores the imperative to alleviate inflammation and amend mitochondrial anomalies within geriatric populations as a strategy to forestall and manage sarcopenia. An initial overview provides a succinct exposition of sarcopenia and its clinical repercussions. The discourse then progresses to an examination of the direct correlation between mitochondrial dysfunction and the genesis of sarcopenia. Concomitantly, it accentuates potential synergistic effects between inflammatory responses and mitochondrial insufficiencies during the aging of skeletal muscle, thereby casting light upon emergent therapeutic objectives. In culmination, this review distills the prevailing comprehension of the mitochondrial and inflammatory pathways implicated in sarcopenia and delineates extant lacunae in knowledge to orient subsequent scientific inquiry.
Collapse
Affiliation(s)
- Xin Xu
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeShanghai, China
| | - Zixing Wen
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityShanghai, China
| |
Collapse
|
13
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
14
|
Dridi H, Yehya M, Barsotti R, Liu Y, Reiken S, Azria L, Yuan Q, Bahlouli L, Soni RK, Marks AR, Lacampagne A, Matecki S. Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation. PNAS NEXUS 2023; 2:pgad336. [PMID: 37954156 PMCID: PMC10635656 DOI: 10.1093/pnasnexus/pgad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Marc Yehya
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Lan Azria
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NewYork, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Alain Lacampagne
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Stefan Matecki
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| |
Collapse
|
15
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
16
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
17
|
Turkel I, Ozerklig B, Yılmaz M, Ulger O, Kubat GB, Tuncer M. Mitochondrial transplantation as a possible therapeutic option for sarcopenia. J Mol Med (Berl) 2023:10.1007/s00109-023-02326-3. [PMID: 37209146 DOI: 10.1007/s00109-023-02326-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
With advancing age, the skeletal muscle phenotype is characterized by a progressive loss of mass, strength, and quality. This phenomenon, known as sarcopenia, has a negative impact on quality of life and increases the risk of morbidity and mortality in older adults. Accumulating evidence suggests that damaged and dysfunctional mitochondria play a critical role in the pathogenesis of sarcopenia. Lifestyle modifications, such as physical activity, exercise, and nutrition, as well as medical interventions with therapeutic agents, are effective in the management of sarcopenia and offer solutions to maintain and improve skeletal muscle health. Although a great deal of effort has been devoted to the identification of the best treatment option, these strategies are not sufficient to overcome sarcopenia. Recently, it has been reported that mitochondrial transplantation may be a possible therapeutic approach for the treatment of mitochondria-related pathological conditions such as ischemia, liver toxicity, kidney injury, cancer, and non-alcoholic fatty liver disease. Given the role of mitochondria in the function and metabolism of skeletal muscle, mitochondrial transplantation may be a possible option for the treatment of sarcopenia. In this review, we summarize the definition and characteristics of sarcopenia and molecular mechanisms associated with mitochondria that are known to contribute to sarcopenia. We also discuss mitochondrial transplantation as a possible option. Despite the progress made in the field of mitochondrial transplantation, further studies are needed to elucidate the role of mitochondrial transplantation in sarcopenia. KEY MESSAGES: Sarcopenia is the progressive loss of skeletal muscle mass, strength, and quality. Although the specific mechanisms that lead to sarcopenia are not fully understood, mitochondria have been identified as a key factor in the development of sarcopenia. Damaged and dysfunctional mitochondria initiate various cellular mediators and signaling pathways, which largely contribute to the age-related loss of skeletal muscle mass and strength. Mitochondrial transplantation has been reported to be a possible option for the treatment/prevention of several diseases. Mitochondrial transplantation may be a possible therapeutic option for improving skeletal muscle health and treating sarcopenia. Mitochondrial transplantation as a possible treatment option for sarcopenia.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Merve Yılmaz
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Health Sciences Institute, Health Sciences University, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
- Department of Mitochondria and Cellular Research, Health Sciences Institute, Health Sciences University, Ankara, Turkey.
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
19
|
Handy RM, Holloway GP. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front Physiol 2023; 14:1151389. [PMID: 37153211 PMCID: PMC10157178 DOI: 10.3389/fphys.2023.1151389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.
Collapse
|
20
|
Ishkaeva RA, Salakhieva DV, Garifullin R, Alshadidi R, Laikov AV, Yergeshov AA, Kamalov MI, Abdullin TI. A new triphenylphosphonium-conjugated amphipathic cationic peptide with improved cell-penetrating and ROS-targeting properties. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100148. [PMID: 36593927 PMCID: PMC9804109 DOI: 10.1016/j.crphar.2022.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We study for the first time whether triphenylphosphonium (TPP) moiety can improve cellular delivery and redox properties of amphipathic cationic peptides based on YRFK/YrFK cell-penetrating and cytoprotective motif. TPP moiety was found to increase reducing activity of both stereoisomeric peptides in solution and on electrode surface in association with TPP-mediated intramolecular interactions. Among TPP-conjugated peptides, newly synthesized TPP3-YrFK featured both increased antioxidant efficacy and proteolytic resistance. TPP-conjugated peptides preferably mitigated endogenic ROS in mitochondria and cytoplasm of model glioblastoma cells with increased oxidative status. This anti-ROS effect was accompanied by mild reversible decrease of reduced glutathione level in the cells with relatively weak change in glutathione redox forms ratio. Such low interference with cell redox status is in accordance with non-cytotoxic nature of the compounds. Intracellular concentrations of label-free peptides were analyzed by LC-MS/MS, which showed substantial TPP-promoted penetration of YrFK motif across cell plasma membrane. However, according to ΔΨm analysis, TPP moiety did not profoundly enhance peptide interaction with mitochondrial inner membrane. Our study clarifies the role of TPP moiety in cellular delivery of amphipathic cationic oligopeptides. The results suggest TPP moiety as a multi-functional modifier for the oligopeptides which is capable of improving cellular pharmacokinetics and antioxidant activity as well as targeting increased ROS levels. The results encourage further investigation of TPP3-YrFK as a peptide antioxidant with multiple benefits.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
- Amphipathic cationic peptides
- CCCP, carbonyl cyanide 3-chlorophenylhydrazone
- CD, circular dichroism
- Cellular pharmacokinetics
- DCFDA, 2′,7′-dichlorofluorescin diacetate
- GSH, reduced glutathione
- HBSS, Hank's balanced salt solution
- Intramolecular interaction
- LC–MS/MS, liquid chromatography tandem mass-spectrometry
- MCB, monochlorobimane
- MRM, multiple reaction monitoring
- ROS targeting
- ROS, reactive oxygen species
- Redox activity
- SPPS, solid-phase peptide synthesis
- TPP, triphenylphosphonium
- Triphenylphosphonium cation
- aa, amino acid
Collapse
Affiliation(s)
- Rezeda A. Ishkaeva
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Diana V. Salakhieva
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Ruslan Garifullin
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia,Department of Aeronautical Engineering, University of Turkish Aeronautical Association, Türkkuşu Kampüsü, 06790, Ankara, Turkey
| | - Raghad Alshadidi
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Alexander V. Laikov
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Abdulla A. Yergeshov
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Marat I. Kamalov
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia
| | - Timur I. Abdullin
- Department of Biochemistry, Biotechnology, Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia,Corresponding author. Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russia.
| |
Collapse
|
21
|
Trinity JD, Drummond MJ, Fermoyle C, McKenzie AI, Supiano MA, Richardson RS. Reply to Horn et al. J Appl Physiol (1985) 2022; 133:322. [PMID: 35926222 DOI: 10.1152/japplphysiol.00339.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
22
|
Lee H, Kim YI, Kim MJ, Hahm JH, Seo HD, Ha TY, Jung CH, Ahn J. Castor Oil Plant (Ricinus communis L.) Leaves Improve Dexamethasone-Induced Muscle Atrophy via Nrf2 Activation. Front Pharmacol 2022; 13:891762. [PMID: 35865958 PMCID: PMC9294160 DOI: 10.3389/fphar.2022.891762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy is characterized by reduced muscle function and size. Oxidative stress contributes to muscle atrophy but can be treated with antioxidants. This study investigated the antioxidant activity of a castor oil plant leaf (Ricinus communis L.) extract (RC) and its effects on muscle atrophy. Rutin was identified as the major compound among the thirty compounds identified in RC via LC-MS/MS and was found to inhibit dexamethasone (DEX)-induced muscle atrophy and mitochondrial oxidative stress. Rutin-rich RC showed DPPH and ABTS radical scavenging activities and efficiently reduced the DEX-induced myotube atrophy and mitochondrial oxidative damage in C2C12 cells. RC supplementation prevented the loss of muscle function and muscle mass in DEX-administered mice and ameliorated DEX-induced oxidative stress via Nrf2 signaling. Taken together, both RC and rutin ameliorated muscle atrophy and helped in maintaining redox homeostasis; hence, rutin-rich RC could be a promising functional food that is beneficial for muscle health.
Collapse
Affiliation(s)
- Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young In Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Min Jung Kim
- Healthcare Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyo Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Tae Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si, South Korea
- *Correspondence: Jiyun Ahn,
| |
Collapse
|
23
|
Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022; 54:102374. [PMID: 35738088 PMCID: PMC9233275 DOI: 10.1016/j.redox.2022.102374] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are malleable and undergo rapid remodeling in response to increased contractile activity (i.e., exercise) or prolonged periods of muscle inactivity (e.g., prolonged bedrest). Exploration of the cell signaling pathways regulating these skeletal muscle adaptations reveal that redox signaling pathways play a key role in the control of muscle remodeling during both exercise and prolonged muscle inactivity. In this regard, muscular exercise results in an acute increase in the production of reactive oxygen species (ROS) in the contracting fibers; however, this contraction-induced rise in ROS production rapidly declines when contractions cease. In contrast, prolonged muscle disuse results in a chronic elevation in ROS production within the inactive fibers. This difference in the temporal pattern of ROS production in muscle during exercise and muscle inactivity stimulates divergent cell-signaling pathways that activate both genomic and nongenomic mechanisms to promote muscle remodeling. This review examines the role that redox signaling plays in skeletal muscle adaptation in response to both prolonged muscle inactivity and endurance exercise training. We begin with a summary of the sites of ROS production in muscle fibers followed by a review of the cellular antioxidants that are responsible for regulation of ROS levels in the cell. We then discuss the specific redox-sensitive signaling pathways that promote skeletal muscle adaptation in response to both prolonged muscle inactivity and exercise. To stimulate future research, we close with a discussion of unanswered questions in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA.
| | - Matthew Schrager
- Department of Health Sciences, Stetson University, Deland, FL, 32723, USA
| |
Collapse
|
24
|
Zhan B, Shen J. Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 2022; 24:479. [PMID: 35761815 PMCID: PMC9214601 DOI: 10.3892/etm.2022.11406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Biao Zhan
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
25
|
Graham ZA, DeBerry JJ, Cardozo CP, Bamman MM. SS-31 does not prevent or reduce muscle atrophy 7 days after a 65 kdyne contusion spinal cord injury in young male mice. Physiol Rep 2022; 10:e15266. [PMID: 35611788 PMCID: PMC9131615 DOI: 10.14814/phy2.15266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 05/02/2023] Open
Abstract
Spinal cord injury (SCI) leads to major reductions in function, independent living, and quality of life. Disuse and paralysis from SCI leads to rapid muscle atrophy, with chronic muscle loss likely playing a role in the development of the secondary metabolic disorders often seen in those with SCI. Muscle disuse is associated with mitochondrial dysfunction. Previous evidence has suggested targeting the mitochondria with the tetrapeptide SS-31 is beneficial for muscle health in preclinical models that lead to mitochondrial dysfunction, such as cast immobilization or burn injury. We gave young male mice a sham (n = 8) or 65 kdyne thoracic contusion SCI with (n = 9) or without (n = 9) daily administration of 5.0 mg/kg SS-31. Hindlimb muscle mass and muscle bundle respiration were measured at 7 days post-SCI and molecular targets were investigated using immunoblotting, RT-qPCR, and metabolomics. SS-31 did not preserve body mass or hindlimb muscle mass 7 days post-SCI. SS-31 had no effect on soleus or plantaris muscle bundle respiration. SCI was associated with elevated levels of protein carbonylation, led to reduced protein expression of activated DRP1 and reductions in markers of mitochondrial fusion. SS-31 administration did result in reduced total DRP1 expression, as well as greater expression of inhibited DRP1. Gene expression of proinflammatory cytokines and their receptors were largely stable across groups, although SS-31 treatment led to greater mRNA expression of IL1B, TNF, and TNFRSF12A. In summation, SS-31 was not an efficacious treatment acutely after a moderate thoracic contusion SCI in young male mice.
Collapse
Affiliation(s)
- Zachary A. Graham
- Research ServiceBirmingham VA Medical CenterBirminghamAlabamaUSA
- Department of Cell, Developmental, and Integrative BiologyUABBirminghamAlabamaUSA
| | - Jennifer J. DeBerry
- Department of Anesthesiology and Perioperative MedicineUABBirminghamAlabamaUSA
| | - Christopher P. Cardozo
- Center for the Medical Consequences of Spinal Cord InjuryBronxNew YorkUSA
- Medical ServiceJames J. Peters VA Medical CenterBronxNew YorkUSA
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marcas M. Bamman
- Research ServiceBirmingham VA Medical CenterBirminghamAlabamaUSA
- Department of Cell, Developmental, and Integrative BiologyUABBirminghamAlabamaUSA
- UAB Center for Exercise MedicineBirminghamAlabamaUSA
- Florida Institute for Human and Machine CognitionPensacolaFloridaUSA
| |
Collapse
|
26
|
Zhang D, Hao W, Li X, Han P, Niu Q. Aldh1a1 and Scl25a30 in diaphragmatic dysfunction. Exp Biol Med (Maywood) 2022; 247:1013-1029. [PMID: 35410502 DOI: 10.1177/15353702221085201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
New methods to prevent ventilator-induced diaphragmatic dysfunction (VIDD) are urgently needed, and the cellular basis of VIDD is poorly understood. This study evaluated whether transvenous phrenic nerve stimulation (PNS) could prevent VIDD in rabbits undergoing mechanical ventilation (MV) and explored whether oxidative stress-related genes might be candidate molecular markers for VIDD. Twenty-four adult male New Zealand white rabbits were allocated to control, MV, and PNS groups (n = 8 in each group). Rabbits in the MV and PNS groups underwent MV for 24 h. Intermittent bilateral transvenous PNS was performed in rabbits in the PNS group. Transdiaphragmatic pressure was recorded using balloon catheters. The diameters and cross-sectional areas (CSAs) of types I and II diaphragmatic fibers were measured using immunohistochemistry (IHC) techniques. Genes associated with VIDD were identified by RNA sequencing (RNA-seq), differentially expressed gene (DEG) analysis, and weighted gene co-expression network analysis (WGCNA). Reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and IHC analyses were carried out to verify the transcriptome profile. Pdi60Hz, Pdi80Hz, and Pdi100Hz were significantly higher in the PNS group than in the MV group at 12 and 24 h (P < 0.05 at both time points). The diameters and CSAs of types I (slow-twitch) and II (fast-twitch) fibers were significantly larger in the PNS group than in the MV group (P < 0.05). RNA-seq, RT-PCR, Western blotting, and IHC experiments identified two candidate genes associated with VIDD: Aldh1a1 and Scl25a30. The MV group had significantly higher mRNA and protein expressions of Aldh1a1/ALDH1A1 and significantly lower mRNA and protein expressions of Scl25a30/SCL25A30 than the control or PNS groups (P < 0.05). We have identified two candidate genes involved in the prevention of VIDD by transvenous PNS. These two key genes may provide a theoretical basis for targeted therapy against VIDD.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi 046000, China
| | - Xujiong Li
- Department of Physiology, Changzhi Medical College, Changzhi 046000, China
| | - Pengyong Han
- The Central Lab, Changzhi Medical College, Changzhi 046000, China
| | - Qi Niu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
27
|
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants (Basel) 2022; 11:antiox11040755. [PMID: 35453440 PMCID: PMC9026549 DOI: 10.3390/antiox11040755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
Collapse
|
28
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Identifying the key genes and functional enrichment pathways associated with feed efficiency in cattle. Gene 2022; 807:145934. [PMID: 34478820 DOI: 10.1016/j.gene.2021.145934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Residual feed intake (RFI) is a measurement of feed efficiency, and is inversely correlated with feed efficiency. The differentially expressed genes (DEGs) associated with RFI vary substantially among studies, posing great challenges in finding the RFI-related marker genes. This study attempted to resolve this issue by integrating and comparing the multiple transcriptome sequencing data associated with RFI in the cattle liver, using differential, functional enrichment, protein-protein interaction (PPI) network, weighted co-expression network (WGCNA), and gene set enrichment analyses (GSEA) to identify the candidate genes and functional enrichment pathways that are closely associated with RFI. Four candidate genes namely SHC1, GPX4, ACADL, and IGF1 were identified and validated as the marker genes for RFI. Four functional enrichment pathways, namely the fatty acid metabolism, sugar metabolism, energy metabolism, and protein ubiquitination were also found to be closely related to RFI. This study identified several genes and signaling pathways with shared characteristics, which will provide new insights into the molecular mechanisms related to the regulation of feed efficiency, and provide basis for molecular markers related to feed efficiency in beef cattle.
Collapse
|
30
|
Caldeira DDAF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol 2021; 12:782074. [PMID: 34887870 PMCID: PMC8649841 DOI: 10.3389/fimmu.2021.782074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are essential organelles for cell metabolism, growth, and function. Mitochondria in lung cells have important roles in regulating surfactant production, mucociliary function, mucus secretion, senescence, immunologic defense, and regeneration. Disruption in mitochondrial physiology can be the central point in several pathophysiologic pathways of chronic lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and interaction with the endoplasmic reticulum are involved in chronic lung diseases and highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested as a potential therapeutic target for lung diseases.
Collapse
Affiliation(s)
- Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
32
|
Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021; 82:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
Beside inherited muscle diseases many catabolic conditions such as insulin resistance, malnutrition, cancer growth, aging, infections, chronic inflammatory status, inactivity, obesity are characterized by loss of muscle mass, strength and function. The decrease of muscle quality and quantity increases morbidity, mortality and has a major impact on the quality of life. One of the pathogenetic mechanisms of muscle wasting is the dysregulation of the main protein and organelles quality control system of the cell: the autophagy-lysosome. This review will focus on the role of the autophagy-lysosome system in the different conditions of muscle loss. We will also dissect the signalling pathways that are involved in excessive or defective autophagy regulation. Finally, the state of the art of autophagy modulators that have been used in preclinical or clinical studies to ameliorate muscle mass will be also described.
Collapse
Affiliation(s)
- Anais Franco-Romero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Myology Center, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
33
|
Rossetti ML, Dunlap KR, Salazar G, Hickner RC, Kim JS, Chase BP, Miller BF, Gordon BS. Systemic delivery of a mitochondria targeted antioxidant partially preserves limb muscle mass and grip strength in response to androgen deprivation. Mol Cell Endocrinol 2021; 535:111391. [PMID: 34245847 PMCID: PMC8403153 DOI: 10.1016/j.mce.2021.111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Muscle mass is important for health. Decreased testicular androgen production (hypogonadism) contributes to the loss of muscle mass, with loss of limb muscle being particularly debilitating. Androgen replacement is the only pharmacological treatment, which may not be feasible for everyone. Prior work showed that markers of reactive oxygen species and markers of mitochondrial degradation pathways were higher in the limb muscle following castration. Therefore, we tested whether an antioxidant preserved limb muscle mass in male mice subjected to a castration surgery. Subsets of castrated mice were treated with resveratrol (a general antioxidant) or MitoQ (a mitochondria targeted antioxidant). Relative to the non-castrated control mice, lean mass, limb muscle mass, and grip strength were partially preserved only in castrated mice treated with MitoQ. Independent of treatment, markers of mitochondrial degradation pathways remained elevated in all castrated mice. Therefore, a mitochondrial targeted antioxidant may partially preserve limb muscle mass in response to hypogonadism.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA; Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Jeong-Su Kim
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA; Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Bryant P Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA; Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
34
|
Yong H, Zhou Y, Ye W, Li T, Wu G, Chen J, Liu L, Wei J. PINK1/Parkin-mediated mitophagy in mechanical ventilation-induced diaphragmatic dysfunction. Ther Adv Respir Dis 2021; 15:1753466621998246. [PMID: 34425730 PMCID: PMC8388225 DOI: 10.1177/1753466621998246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Mechanical ventilation (MV) often leads to ventilation-induced diaphragm dysfunction (VIDD). Although the development of this disorder had been linked to oxidative stress, mitochondrial energy deficiency, autophagy activation, and apoptosis in the diaphragm, it remains unclear whether the activation of mitophagy can induce VIDD. With our research, our endeavor is to uncover whether PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy affects the MV-caused diaphragmatic dysfunction Methods: Sprague-Dawley rats were subjected to MV treatment for 6 h (MV-6h), 12 h (MV-12h), or 24 h (MV-24h). Post MV, the diaphragm muscle compound action potential (CMAP) and cross-sectional areas (CSAs) of the diaphragm of these rats were measured. The levels of proteins of interest were examined to assess muscle health, mitochondrial dynamics, and mitophagy in the diaphragm. The co-localization of PINK1 with the mitochondrial protein marker tom20 was examined, as well as transmission electron microscopy analysis to detect changes in diaphragm mitochondrial ultrastructure. Results: MV-12h and MV-24h treatments resulted in a decrease in CSA of diaphragm and CMAP amplitude. In addition, the expressions of F-box (MFAbx), muscle-specific ring finger 1 (MURF1), PINK1, and p62 were elevated in rats treated with MV for 12 h and 24 h, while mfn2 expression was reduced. Rats following MV-24h treatment displayed an increase in mitochondrial dynamic protein (Drp1) and Parkin expression and microtubule-associated protein 1 light chain 3/1 (LC3II/I) ratio. Moreover, decreased SOD and GSH activity and membrane potential were observed after MV-12h and MV-24h treatment, while H2O2 activity increased after MV-24h treatment. In addition, a strong co-localization between PINK1 and tom20 was identified. Conclusion: These results reveal that MV leads to various changes in mitochondrial dynamics and significantly increases the mitophagy levels, which subsequently cause the variation in diaphragmatic function and muscle atrophy, indicating that mitophagy could be one of the possible mechanisms by which MV induces diaphragmatic dysfunction. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Hui Yong
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Yun Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Wanlin Ye
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Tianmei Li
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Gangming Wu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jingyuan Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | | | - Jicheng Wei
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
35
|
Broome SC, Braakhuis AJ, Mitchell CJ, Merry TL. Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr 2021; 18:58. [PMID: 34419082 PMCID: PMC8379793 DOI: 10.1186/s12970-021-00454-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exercise increases skeletal muscle reactive oxygen species (ROS) production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ, which contains a ubiquinone moiety and is targeted to mitochondria through the addition of a lipophilic triphenylphosphonium cation, are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here, we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial. METHOD In a randomized, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg- 1·min- 1, distance cycled per week during 6 months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg·day- 1) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rating of perceived exertion (RPE) were also collected. RESULTS Mean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, p = 0.04, 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (p = 0.82) despite there being a 4.4% increase in average power output during the time trial following MitoQ supplementation compared to placebo (placebo; 270 ± 51 W, MitoQ; 280 ± 53 W, p = 0.04, 95% CI [0.49, 8.22], d = 0.2). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg·ml- 1) compared to placebo (44.7 ± 16.9 pg·ml- 1 p = 0.03). CONCLUSION These data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.
Collapse
Affiliation(s)
- S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - A J Braakhuis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - C J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
36
|
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, Huel F, De Prost N, Silva S, Azabou E, Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care 2021; 11:104. [PMID: 34216304 PMCID: PMC8254847 DOI: 10.1186/s13613-021-00893-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. Main text Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. Conclusions Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00893-7.
Collapse
Affiliation(s)
- Sebastien Preau
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Boris Jung
- Medical Intensive Care Unit, Lapeyronie Teaching Hospital, Montpellier University Hospital and PhyMedExp, University of Montpellier, Montpellier, France
| | - Steve Lancel
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lara Zafrani
- Médecine Intensive Réanimation, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France.,INSERM UMR 976, Hôpital Saint Louis, Université de Paris, Paris, France
| | | | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France.,Faculté de Médecine de Tours, INSERM U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France
| | - Jeremie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA
| | - Fabrice Huel
- Réanimation médico-chirurgicale, Université de Paris, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Paris, France
| | - Nicolas De Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Stein Silva
- Réanimation URM CHU Purpan, Cedex 31300, Toulouse, France.,Toulouse NeuroImaging Center INSERM1214, Cedex 31300, Toulouse, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, AP-HP, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles (UVSQ), Paris-Saclay University, Paris, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
37
|
Ichinoseki-Sekine N, Smuder AJ, Morton AB, Hinkley JM, Mor Huertas A, Powers SK. Hydrogen sulfide donor protects against mechanical ventilation-induced atrophy and contractile dysfunction in the rat diaphragm. Clin Transl Sci 2021; 14:2139-2145. [PMID: 34080307 PMCID: PMC8604213 DOI: 10.1111/cts.13081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
Mechanical ventilation (MV) is a clinical tool providing adequate alveolar ventilation in patients that require respiratory support. Although a life-saving intervention for critically ill patients, prolonged MV results in the rapid development of inspiratory muscle weakness due to both diaphragmatic atrophy and contractile dysfunction; collectively known as "ventilator-induced diaphragm dysfunction" (VIDD). VIDD is a severe clinical problem because diaphragmatic weakness is a risk factor for difficulties in weaning patients from MV. Currently, no standard treatment to prevent VIDD exists. Nonetheless, growing evidence reveals that hydrogen sulfide (H2 S) possesses cytoprotective properties capable of protecting skeletal muscles against several hallmarks of VIDD, including oxidative damage, accelerated proteolysis, and mitochondrial damage. Therefore, we used an established animal model of MV to test the hypothesis that treatment with sodium sulfide (H2 S donor) will defend against VIDD. Our results confirm that sodium sulfide was sufficient to protect the diaphragm against both MV-induced fiber atrophy and contractile dysfunction. H2 S prevents MV-induced damage to diaphragmatic mitochondria as evidenced by protection against mitochondrial uncoupling. Moreover, treatment with sodium sulfide prevented the MV-induced activation of the proteases, calpain, and caspase-3 in the diaphragm. Taken together, these results support the hypothesis that treatment with a H2 S donor protects the diaphragm against VIDD. These outcomes provide the first evidence that H2 S has therapeutic potential to protect against MV-induced diaphragm weakness and to reduce difficulties in weaning patients from the ventilator. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Mechanical ventilation (MV) results in diaphragm atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). VIDD is important because diaphragm weakness is a risk factor for problems in weaning patients from MV. Currently, no accepted treatment exists to protect against VIDD. Growing evidence reveals that hydrogen sulfide (H2 S) donors protect skeletal muscle against ischemia-reperfusion-induced injury. Nonetheless, it is unknown if treatment with a H2 S donor can protect against VIDD. WHAT QUESTION DID THIS STUDY ADDRESS? Can treatment with an H2 S donor protect against VIDD? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? This study provides the first evidence that treatment with a H2 S donor protects against VIDD. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? These new findings provide the basis for further exploration of H2 S donors as a therapy to prevent VIDD and reduce the risk of problems in weaning patients from MV.
Collapse
Affiliation(s)
- Noriko Ichinoseki-Sekine
- Graduate School of Arts and Sciences, The Open University of Japan, Chiba, Japan.,School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - James M Hinkley
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | - Andres Mor Huertas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Preferent Diaphragmatic Involvement in TK2 Deficiency: An Autopsy Case Study. Int J Mol Sci 2021; 22:ijms22115598. [PMID: 34070501 PMCID: PMC8199166 DOI: 10.3390/ijms22115598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Our goal was to analyze postmortem tissues of an adult patient with late-onset thymidine kinase 2 (TK2) deficiency who died of respiratory failure. Compared with control tissues, we found a low mtDNA content in the patient’s skeletal muscle, liver, kidney, small intestine, and particularly in the diaphragm, whereas heart and brain tissue showed normal mtDNA levels. mtDNA deletions were present in skeletal muscle and diaphragm. All tissues showed a low content of OXPHOS subunits, and this was especially evident in diaphragm, which also exhibited an abnormal protein profile, expression of non-muscular β-actin and loss of GAPDH and α-actin. MALDI-TOF/TOF mass spectrometry analysis demonstrated the loss of the enzyme fructose-bisphosphate aldolase, and enrichment for serum albumin in the patient’s diaphragm tissue. The TK2-deficient patient’s diaphragm showed a more profound loss of OXPHOS proteins, with lower levels of catalase, peroxiredoxin 6, cytosolic superoxide dismutase, p62 and the catalytic subunits of proteasome than diaphragms of ventilated controls. Strong overexpression of TK1 was observed in all tissues of the patient with diaphragm showing the highest levels. TK2 deficiency induces a more profound dysfunction of the diaphragm than of other tissues, which manifests as loss of OXPHOS and glycolytic proteins, sarcomeric components, antioxidants and overactivation of the TK1 salvage pathway that is not attributed to mechanical ventilation.
Collapse
|
39
|
Yoshihara T, Deminice R, Hyatt HW, Ozdemir M, Nguyen BL, Powers SK. Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction. Clin Transl Sci 2021; 14:1512-1523. [PMID: 33742769 PMCID: PMC8301547 DOI: 10.1111/cts.13015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mechanical ventilation (MV) is a life‐saving instrument used to provide ventilatory support for critically ill patients and patients undergoing surgery. Unfortunately, an unintended consequence of prolonged MV is the development of inspiratory weakness due to both diaphragmatic atrophy and contractile dysfunction; this syndrome is labeled ventilator‐induced diaphragm dysfunction (VIDD). VIDD is clinically important because diaphragmatic weakness is an important contributor to problems in weaning patients from MV. Investigations into the pathogenesis of VIDD reveal that oxidative stress is essential for the rapid development of VIDD as redox disturbances in diaphragm fibers promote accelerated proteolysis. Currently, no standard treatment exists to prevent VIDD and, therefore, developing a strategy to avert VIDD is vital. Guided by evidence indicating that activation of the classical axis of the renin‐angiotensin system (RAS) in diaphragm fibers promotes oxidative stress and VIDD, we hypothesized that activation of the nonclassical RAS signaling pathway via angiotensin 1‐7 (Ang1‐7) will protect against VIDD. Using an established animal model of prolonged MV, our results disclose that infusion of Ang1‐7 protects the diaphragm against MV‐induced contractile dysfunction and fiber atrophy in both fast and slow muscle fibers. Further, Ang1‐7 shielded diaphragm fibers against MV‐induced mitochondrial damage, oxidative stress, and protease activation. Collectively, these results reveal that treatment with Ang1‐7 protects against VIDD, in part, due to diminishing oxidative stress and protease activation. These important findings provide robust evidence that Ang1‐7 has the therapeutic potential to protect against VIDD by preventing MV‐induced contractile dysfunction and atrophy of both slow and fast muscle fibers.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.,Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Hyatt HW, Powers SK. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants (Basel) 2021; 10:antiox10040588. [PMID: 33920468 PMCID: PMC8070615 DOI: 10.3390/antiox10040588] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the body and is required for numerous vital functions, including breathing and locomotion. Notably, deterioration of skeletal muscle mass is also highly correlated to mortality in patients suffering from chronic diseases (e.g., cancer). Numerous conditions can promote skeletal muscle wasting, including several chronic diseases, cancer chemotherapy, aging, and prolonged inactivity. Although the mechanisms responsible for this loss of muscle mass is multifactorial, mitochondrial dysfunction is predicted to be a major contributor to muscle wasting in various conditions. This systematic review will highlight the biochemical pathways that have been shown to link mitochondrial dysfunction to skeletal muscle wasting. Importantly, we will discuss the experimental evidence that connects mitochondrial dysfunction to muscle wasting in specific diseases (i.e., cancer and sepsis), aging, cancer chemotherapy, and prolonged muscle inactivity (e.g., limb immobilization). Finally, in hopes of stimulating future research, we conclude with a discussion of important future directions for research in the field of muscle wasting.
Collapse
|
41
|
Eyenga P, Roussel D, Rey B, Ndille P, Teulier L, Eyenga F, Romestaing C, Morel J, Gueguen-Chaignon V, Sheu SS. Mechanical ventilation preserves diaphragm mitochondrial function in a rat sepsis model. Intensive Care Med Exp 2021; 9:19. [PMID: 33825987 PMCID: PMC8025065 DOI: 10.1186/s40635-021-00384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To describe the effect of mechanical ventilation on diaphragm mitochondrial oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and cytochrome c oxidase activity and content, and their relationship to diaphragm strength in an experimental model of sepsis. METHODS A cecal ligation and puncture (CLP) protocol was performed in 12 rats while 12 controls underwent sham operation. Half of the rats in each group were paralyzed and mechanically ventilated. We performed blood gas analysis and lactic acid assays 6 h after surgery. Afterwards, we measured diaphragm strength and mitochondrial oxygen consumption, ATP and ROS generation, and cytochrome c oxidase activity. We also measured malondialdehyde (MDA) content as an index of lipid peroxidation, and mRNA expression of the proinflammatory interleukin-1β (IL-1β) in diaphragms. RESULTS CLP rats showed severe hypotension, metabolic acidosis, and upregulation of diaphragm IL-1β mRNA expression. Compared to sham controls, spontaneously breathing CLP rats showed lower diaphragm force and increased susceptibility to fatigue, along with depressed mitochondrial oxygen consumption and ATP production and cytochrome c oxidase activity. These rats also showed increased mitochondrial ROS generation and MDA content. Mechanical ventilation markedly restored mitochondrial oxygen consumption and ATP production in CLP rats; lowered mitochondrial ROS production by the complex 3; and preserved cytochrome c oxidase activity. CONCLUSION In an experimental model of sepsis, early initiation of mechanical ventilation restores diaphragm mitochondrial function.
Collapse
Affiliation(s)
- P. Eyenga
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - D. Roussel
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, Université de Lyon, Université Lyon1, CNRS, 69622 Villeurbanne, France
| | - B. Rey
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon1, CNRS, 69622 Villeurbanne, France
| | - P. Ndille
- Département de Chirurgie, Centre Hospitalier D’Ebomé, Kribi, Cameroun
| | - L. Teulier
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, Université de Lyon, Université Lyon1, CNRS, 69622 Villeurbanne, France
| | - F. Eyenga
- Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - C. Romestaing
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, Université de Lyon, Université Lyon1, CNRS, 69622 Villeurbanne, France
| | - J. Morel
- Service de réanimation chirurgicale, CHU de Saint Etienne, 42000 Saint Etienne, France
| | - V. Gueguen-Chaignon
- Protein Science Facility, ENS de Lyon, Inserm, US8, SFR Biosciences UMS 3444 - CNRS Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - S-S. Sheu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
42
|
Acute liver injury following acetaminophen administration does not activate atrophic pathways in the mouse diaphragm. Sci Rep 2021; 11:6302. [PMID: 33737702 PMCID: PMC7973759 DOI: 10.1038/s41598-021-85859-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
N-acetyl-para-amino phenol (APAP, usually named paracetamol), which is commonly used for its analgesic and antipyretic properties may lead to hepatotoxicity and acute liver damage in case of overdoses. Released cytokines and oxidative stress following acute liver damage may affect other organs' function notably the diaphragm, which is particularly sensitive to oxidative stress and circulating cytokines. We addressed this issue in a mouse model of acute liver injury induced by administration of APAP. C57BL/6J mice (each n = 8) were treated with N-acetyl-para-amino phenol (APAP) to induce acute drug caused liver injury and sacrificed 12 or 24 h afterwards. An untreated group served as controls. Key markers of inflammation, proteolysis, autophagy and oxidative stress were measured in diaphragm samples. In APAP treated animals, liver damage was proven by the enhanced serum levels of alanine aminotransferase and aspartate aminotransferase. In the diaphragm, besides a significant increase in IL 6 and lipid peroxidation, no changes were observed in key markers of the proteolytic, and autophagy signaling pathways, other inflammatory markers and fiber dimensions. The first 24 h of acute liver damage did not impair diaphragm atrophic pathways although it slightly enhanced IL-6 and lipid peroxidation. Whether longer exposure might affect the diaphragm needs to be addressed in future experiments.
Collapse
|
43
|
Graham ZA, DeBerry JJ, Cardozo CP, Bamman MM. A 50 kdyne contusion spinal cord injury with or without the drug SS-31 was not associated with major changes in muscle mass or gene expression 14 d after injury in young male mice. Physiol Rep 2021; 9:e14751. [PMID: 33611851 PMCID: PMC7897452 DOI: 10.14814/phy2.14751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) leads to rapid muscle atrophy due to paralysis/paresis and subsequent disuse. SS-31 is a mitochondrial-targeting peptide that has shown efficacy in protecting skeletal muscle mass and function in non-SCI models of muscle wasting. We aimed to determine if SS-31 could prevent muscle loss after SCI. Male C57BL/6 mice aged 9 weeks underwent sham surgery or 50 kdyne contusion SCI and were administered daily injections of vehicle or 5 mg/kg SS-31 for 14 d. Both SCI groups had sustained losses in body mass compared to Sham animals and ~10% reductions in gastrocnemius, plantaris and tibialis anterior muscle mass after SCI with no clear effect of SS-31. Measurements of protein synthesis in the soleus and plantaris were similar among all groups. mRNA expression of atrophy-associated proinflammatory cytokines was also similar among all groups. There was elevation in MYH7 mRNA and a statistical reduction in MYH2 mRNA expression in the SCI+SS-31 animals compared to Sham animals. There was an SCI-induced reduction in mRNA expression of the E3 ligase FBXO32 (MAFbx), but no effect of SS-31. In summary, a 50 kdyne contusion SCI was able to reduce body mass but was not associated with substantial muscle atrophy or alterations in gene expression profiles associated with muscle health and function 14 d post-injury. SS-31 was not associated with protection against SCI-related changes in body or muscle mass, protein synthesis or gene expression in hindlimb muscles.
Collapse
Affiliation(s)
- Zachary A. Graham
- Research ServiceBirmingham VA Medical CenterBirminghamALUSA
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama‐BirminghamBirminghamALUSA
| | - Jennifer J. DeBerry
- Department of Anesthesiology and Perioperative MedicineUniversity of Alabama‐BirminghamBirminghamALUSA
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical CenterBronxNYUSA
- Medical ServiceJames J. Peters VA Medical CenterBronxNYUSA
- Departments of Medicine and Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Marcas M. Bamman
- Research ServiceBirmingham VA Medical CenterBirminghamALUSA
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama‐BirminghamBirminghamALUSA
- UAB Center for Exercise MedicineUniversity of Alabama‐BirminghamBirminghamALUSA
| |
Collapse
|
44
|
Wang H, Sun X, Lu Q, Zemskov EA, Yegambaram M, Wu X, Wang T, Tang H, Black SM. The mitochondrial redistribution of eNOS is involved in lipopolysaccharide induced inflammasome activation during acute lung injury. Redox Biol 2021; 41:101878. [PMID: 33578126 PMCID: PMC7879038 DOI: 10.1016/j.redox.2021.101878] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
Acute lung injury (ALI) is a devastating clinical syndrome with no effective therapies. Inflammasome activation has been reported to play a critical role in the initiation and progression of ALI. The molecular mechanisms involved in regulating the activation of inflammasome in ALI remains unresolved, although increases in mitochondrial derived reactive oxygen species (mito-ROS) are involved. Our previous work has shown that the mitochondrial redistribution of uncoupled eNOS impairs mitochondrial bioenergetics and increases mito-ROS generation. Thus, the focus of our study was to determine if lipopolysaccharide (LPS)-mediated inflammasome activation involves the mitochondrial redistribution of uncoupled eNOS. Our data show that the increase in mito-ROS involved in LPS-mediated inflammasome activation is associated with the disruption of mitochondrial bioenergetics in human lung microvascular endothelial cells (HLMVEC) and the mitochondrial redistribution of eNOS. These effects are dependent on RhoA-ROCK signaling and are mediated via increased phosphorylation of eNOS at Threonine (T)-495. A derivative of the mitochondrial targeted Szeto-Schiller peptide (SSP) attached to the antioxidant Tiron (T-SSP), significantly attenuated LPS-mediated mito-ROS generation and inflammasome activation in HLMVEC. Further, T-SSP attenuated mitochondrial superoxide production in a mouse model of sepsis induced ALI. This in turn significantly reduced the inflammatory response and attenuated lung injury. Thus, our findings show that the mitochondrial redistribution of uncoupled eNOS is intimately involved in the activation of the inflammatory response in ALI and implicate attenuating mito-ROS as a therapeutic strategy in humans.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xutong Sun
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Manivannan Yegambaram
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Xiaomin Wu
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA.
| | - Stephen M Black
- Department of Medicine, Division of Translational & Regenerative Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
45
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
46
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
47
|
Hyatt HW, Powers SK. Disturbances in Calcium Homeostasis Promotes Skeletal Muscle Atrophy: Lessons From Ventilator-Induced Diaphragm Wasting. Front Physiol 2020; 11:615351. [PMID: 33391032 PMCID: PMC7773636 DOI: 10.3389/fphys.2020.615351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Mechanical ventilation (MV) is often a life-saving intervention for patients in respiratory failure. Unfortunately, a common and undesired consequence of prolonged MV is the development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is commonly labeled “ventilator-induced diaphragm dysfunction” (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a major risk factor for the failure to wean patients from MV; this inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. Although several processes contribute to the development of VIDD, it is clear that oxidative stress leading to the rapid activation of proteases is a primary contributor. While all major proteolytic systems likely contribute to VIDD, emerging evidence reveals that activation of the calcium-activated protease calpain plays a required role. This review highlights the signaling pathways leading to VIDD with a focus on the cellular events that promote increased cytosolic calcium levels and the subsequent activation of calpain within diaphragm muscle fibers. In particular, we discuss the emerging evidence that increased mitochondrial production of reactive oxygen species promotes oxidation of the ryanodine receptor/calcium release channel, resulting in calcium release from the sarcoplasmic reticulum, accelerated proteolysis, and VIDD. We conclude with a discussion of important and unanswered questions associated with disturbances in calcium homeostasis in diaphragm muscle fibers during prolonged MV.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
48
|
Shuler KT, Wilson BE, Muñoz ER, Mitchell AD, Selsby JT, Hudson MB. Muscle Stem Cell-Derived Extracellular Vesicles Reverse Hydrogen Peroxide-Induced Mitochondrial Dysfunction in Mouse Myotubes. Cells 2020; 9:E2544. [PMID: 33256005 PMCID: PMC7760380 DOI: 10.3390/cells9122544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) hold great potential as a regenerative therapeutic but have met numerous challenges in treating systemic muscle diseases. Muscle stem cell-derived extracellular vesicles (MuSC-EVs) may overcome these limitations. We assessed the number and size distribution of extracellular vesicles (EVs) released by MuSCs ex vivo, determined the extent to which MuSC-EVs deliver molecular cargo to myotubes in vitro, and quantified MuSC-EV-mediated restoration of mitochondrial function following oxidative injury. MuSCs released an abundance of EVs in culture. MuSC-EVs delivered protein cargo into myotubes within 2 h of incubation. Fluorescent labeling of intracellular mitochondria showed co-localization of delivered protein and mitochondria. Oxidatively injured myotubes demonstrated a significant decline in maximal oxygen consumption rate and spare respiratory capacity relative to untreated myotubes. Remarkably, subsequent treatment with MuSC-EVs significantly improved maximal oxygen consumption rate and spare respiratory capacity relative to the myotubes that were damaged but received no subsequent treatment. Surprisingly, MuSC-EVs did not affect mitochondrial function in undamaged myotubes, suggesting the cargo delivered is able to repair but does not expand the existing mitochondrial network. These data demonstrate that MuSC-EVs rapidly deliver proteins into myotubes, a portion of which co-localizes with mitochondria, and reverses mitochondria dysfunction in oxidatively-damaged myotubes.
Collapse
Affiliation(s)
- Kyle T. Shuler
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Brittany E. Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Eric R. Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Andrew D. Mitchell
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, 2356G Kildee Hall, Ames, IA 50011, USA;
| | - Matthew B. Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| |
Collapse
|
49
|
Hyatt HW, Ozdemir M, Yoshihara T, Nguyen BL, Deminice R, Powers SK. Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction. Redox Biol 2020; 38:101802. [PMID: 33279868 PMCID: PMC7724197 DOI: 10.1016/j.redox.2020.101802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, an unintended consequence of prolonged MV is the rapid development of diaphragmatic atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). Although the mechanism(s) responsible for VIDD are not fully understood, abundant evidence reveals that oxidative stress leading to the activation of the major proteolytic systems (i.e., autophagy, ubiquitin-proteasome, caspase, and calpain) plays a dominant role. Of the proteolytic systems involved in VIDD, calpain has received limited experimental attention due to the longstanding dogma that calpain plays a minor role in inactivity-induced muscle atrophy. Guided by preliminary experiments, we tested the hypothesis that activation of calpains play an essential role in MV-induced oxidative stress and the development of VIDD. This premise was rigorously tested by transgene overexpression of calpastatin, an endogenous inhibitor of calpains. Animals with/without transfection of the calpastatin gene in diaphragm muscle fibers were exposed to 12 h of MV. Results confirmed that overexpression of calpastatin barred MV-induced activation of calpain in diaphragm fibers. Importantly, deterrence of calpain activation protected the diaphragm against MV-induced oxidative stress, fiber atrophy, and contractile dysfunction. Moreover, prevention of calpain activation in the diaphragm forstalled MV-induced mitochondrial dysfunction and prevented MV-induced activation of caspase-3 along with the transcription of muscle specific E3 ligases. Collectively, these results support the hypothesis that calpain activation plays an essential role in the early development of VIDD. Further, these findings provide the first direct evidence that calpain plays an important function in inactivity-induced mitochondrial dysfunction and oxidative stress in skeletal muscle fibers. Inhibiting calpains during mechanical ventilation protects the diaphragm. Calpains play an important role in muscle atrophy and contractile dysfunction. Calpain inhibition during mechanical ventilation prevents mitochondrial dysfunction. Calpain-cleaved molecules may play important signaling roles. Calpain activation cross-talks with other proteolytic systems.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise and Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise Physiology, Juntendo University, Tokyo, Japan
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Hall SE, Ahn B, Smuder AJ, Morton AB, Hinkley JM, Wiggs MP, Sollanek KJ, Hyatt H, Powers SK. Comparative Efficacy of Angiotensin II Type 1 Receptor Blockers Against Ventilator-Induced Diaphragm Dysfunction in Rats. Clin Transl Sci 2020; 14:481-486. [PMID: 33222389 PMCID: PMC7993256 DOI: 10.1111/cts.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Mechanical ventilation (MV) is a life‐saving intervention for many critically ill patients. Unfortunately, prolonged MV results in the rapid development of inspiratory muscle weakness due to diaphragmatic atrophy and contractile dysfunction (termed ventilator‐induced diaphragm dysfunction (VIDD)). Although VIDD is a major risk factor for problems in weaning patients from MV, a standard therapy to prevent VIDD does not exist. However, emerging evidence suggests that pharmacological blockade of angiotensin II type 1 receptors (AT1Rs) protects against VIDD. Nonetheless, the essential characteristics of AT1R blockers (ARBs) required to protect against VIDD remain unclear. To determine the traits of ARBs that are vital for protection against VIDD, we compared the efficacy of two clinically relevant ARBs, irbesartan and olmesartan; these ARBs differ in molecular structure and effects on AT1Rs. Specifically, olmesartan blocks both angiotensin II (AngII) binding and mechanical activation of AT1Rs, whereas irbesartan prevents only AngII binding to AT1Rs. Using a well‐established preclinical model of prolonged MV, we tested the hypothesis that compared with irbesartan, olmesartan provides greater protection against VIDD. Our results reveal that irbesartan does not protect against VIDD whereas olmesartan defends against both MV‐induced diaphragmatic atrophy and contractile dysfunction. These findings support the hypothesis that olmesartan is superior to irbesartan in protecting against VIDD and are consistent with the concept that blockade of mechanical activation of AT1Rs is a required property of ARBs to shield against VIDD. These important findings provide a foundation for future clinical trials to evaluate ARBs as a therapy to protect against VIDD.
Collapse
Affiliation(s)
- Stephanie E Hall
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | | | - J Matthew Hinkley
- Advent Health Translational Research Institute, Orlando, Florida, USA
| | | | | | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|