1
|
Shi Y, Li X, Zhang J. Systematic review on the role of the gut microbiota in tumors and their treatment. Front Endocrinol (Lausanne) 2024; 15:1355387. [PMID: 39175566 PMCID: PMC11338852 DOI: 10.3389/fendo.2024.1355387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Tumors present a formidable health risk with limited curability and high mortality; existing treatments face challenges in addressing the unique tumor microenvironment (hypoxia, low pH, and high permeability), necessitating the development of new therapeutic approaches. Under certain circumstances, certain bacteria, especially anaerobes or parthenogenetic anaerobes, accumulate and proliferate in the tumor environment. This phenomenon activates a series of responses in the body that ultimately produce anti-tumor effects. These bacteria can target and colonize the tumor microenvironment, promoting responses aimed at targeting and fighting tumor cells. Understanding and exploiting such interactions holds promise for innovative therapeutic strategies, potentially augmenting existing treatments and contributing to the development of more effective and targeted approaches to fighting tumors. This paper reviews the tumor-promoting mechanisms and anti-tumor effects of the digestive tract microbiome and describes bacterial therapeutic strategies for tumors, including natural and engineered anti-tumor strategies.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, University College London, London, United Kingdom
- China Medical University Joint Queen’s University of Belfast, China Medical University, Shenyang, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Stastna M. The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria. Int J Mol Sci 2024; 25:8564. [PMID: 39201251 PMCID: PMC11354107 DOI: 10.3390/ijms25168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00 Brno, Czech Republic
| |
Collapse
|
3
|
Huang HL, Lai CH, Tsai WH, Chen KW, Peng SL, Lin JH, Lin YH. Nanoparticle-enhanced postbiotics: Revolutionizing cancer therapy through effective delivery. Life Sci 2024; 337:122379. [PMID: 38145711 DOI: 10.1016/j.lfs.2023.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
AIM Gastric cancer contributes to cancer-related fatalities. Conventional chemotherapy faces challenges due to severe adverse effects, prompting recent research to focus on postbiotics, which are safer biomolecules derived from nonviable probiotics. Despite promising in vitro results, efficient in vivo delivery systems remain a challenge. This study aimed to design a potential nanoparticle (NP) formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 (SGMNL-133) isolate to enhance its therapeutic efficacy in treating gastric cancer. MAIN METHODS We successfully isolated GMNL-133 (SGMNL-133) by optimizing the lysate extraction and column elution processes for L. paracasei GMNL-133, resulting in substantial enhancement of its capacity to inhibit the proliferation of gastric cancer cells. Additionally, we developed a potential NP utilizing arginine-chitosan and fucoidan encapsulating SGMNL-133. KEY FINDINGS This innovative approach protected the SGMNL-133 from degradation by gastric acid, facilitated its penetration through the mucus layer, and enabled interaction with gastric cancer cells. Furthermore, in vivo experiments demonstrated that the encapsulation of SGMNL-133 in NPs significantly enhanced its efficacy in the treatment of orthotopic gastric tumors while simultaneously reducing tissue inflammation levels. SIGNIFICANCE Recent research highlights postbiotics as a safe alternative, but in vivo delivery remains a challenge. Our study optimized the extraction of the lysate and column elution of GMNL-133, yielding SGMNL-133. We also developed NPs to protect SGMNL-133 from gastric acid, enhance mucus penetration, and improve the interaction with gastric cancer cells. This combination significantly enhanced drug delivery and anti-gastric tumor activity.
Collapse
Affiliation(s)
- Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | | | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Nair A, Tungare K, De A, Jobby R. Probing the Potential: Exploring Probiotics as a Novel Frontier in Cancer Prevention and Therapeutics. J Environ Pathol Toxicol Oncol 2024; 43:77-90. [PMID: 38505914 DOI: 10.1615/jenvironpatholtoxicoloncol.2023049792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Cancer has emerged as one of the most prevalent diseases worldwide, with a consistent rise in the number of cases observed over the past few decades. The rising mortality rates associated with cancer have transformed it into a significant global challenge. Despite the presence of various anti-cancer drugs, the complete eradication of cancer remains an elusive goal. The numerous undesirable effects associated with cancer therapy further emphasize the importance of developing an alternative technique of cancer treatment. Recent research has established the beneficial effects of a probiotic diet or supplementation against cancer without displaying any detrimental consequences. An alteration in the gut microbiome balance in humans can result in the development of various diseases, including cancer. Probiotics play a pivotal role in restoring the balance of gut flora, potentially contributing to cancer prevention. Furthermore, they have the capacity to curb the invasion and dissemination of infections that carry the risk of triggering cancer. Probiotics can combat cancer in various ways, such as by eliciting and boosting the immune response, secreting metabolites, preventing cancer cells from metastasizing, inhibiting carcinogenic chemicals, and mitigating their toxicity, etc. The present review intends to outline the significance of probiotics and their underlying mechanisms in combating various cancer types. Additionally, this review highlights the benefits of probiotic use in pre- and post-operative cancer patients.
Collapse
Affiliation(s)
- Akhil Nair
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, CBD Belapur-400614, Maharashtra, India
| | - Ameyota De
- D. Y. Patil School of Biotechnology and Bioinformatics
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra
| |
Collapse
|
5
|
Jain M, Stitt G, Son L, Enioutina EY. Probiotics and Their Bioproducts: A Promising Approach for Targeting Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Microorganisms 2023; 11:2393. [PMID: 37894051 PMCID: PMC10608974 DOI: 10.3390/microorganisms11102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a serious global health problem that poses a threat to the successful treatment of various bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Conventional treatment of MRSA and VRE infections is challenging and often requires alternative or combination therapies that may have limited efficacy, higher costs, and/or more adverse effects. Therefore, there is an urgent need to find new strategies to combat antibiotic-resistant bacteria. Probiotics and antimicrobial peptides (AMPs) are two promising approaches that have shown potential benefits in various diseases. Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. AMPs, usually produced with probiotic bacteria, are short amino acid sequences that have broad-spectrum activity against bacteria, fungi, viruses, and parasites. Both probiotics and AMPs can modulate the host immune system, inhibit the growth and adhesion of pathogens, disrupt biofilms, and enhance intestinal barrier function. In this paper, we review the current knowledge on the role of probiotics and AMPs in targeting multi-drug-resistant bacteria, with a focus on MRSA and VRE. In addition, we discuss future directions for the clinical use of probiotics.
Collapse
Affiliation(s)
| | | | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA; (M.J.); (G.S.); (L.S.)
| |
Collapse
|
6
|
Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, Rehman A, Riaz T, Aadil RM, Khan IM, Özogul F, Rocha JM, Esatbeyoglu T, Korma SA. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol 2023; 14:1216674. [PMID: 37664108 PMCID: PMC10470842 DOI: 10.3389/fmicb.2023.1216674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries.
Collapse
Affiliation(s)
- Anam Latif
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, ULR7519 - Transformations & Agro-resources, Normandie Université, Mont-Saint-Aignan, France
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Asna Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ashraf
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - João Miguel Rocha
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Hassan DS, Hasary HJ, Hassan ZS. Role of Probiotics in the Prevention and Treatment of GIT Cancers: Updated Review. AL-RAFIDAIN JOURNAL OF MEDICAL SCIENCES ( ISSN: 2789-3219 ) 2023; 4:52-59. [DOI: 10.54133/ajms.v4i.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer, one of the leading causes of death worldwide, has been the subject of extensive study by many researchers. Cancer is affected by both genetic and immune system factors in the human body. The gut microbiota plays an important role in the body's capacity to maintain homeostasis. Because of their beneficial effects on human health and their ability to successfully prevent and treat various chronic diseases, such as cancer, probiotics are becoming increasingly important in medicine. A wealth of research has shown that probiotic consumption can significantly helpful in cancer prevention and treatment. The goal of this review is to provide a thorough overview of the research on the function of probiotic bacteria in the prevention and treatment of gastrointestinal cancers.
Collapse
|
8
|
Ali MS, Lee EB, Lim SK, Suk K, Park SC. Isolation and Identification of Limosilactobacillus reuteri PSC102 and Evaluation of Its Potential Probiotic, Antioxidant, and Antibacterial Properties. Antioxidants (Basel) 2023; 12:238. [PMID: 36829797 PMCID: PMC9952246 DOI: 10.3390/antiox12020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
We isolated and characterized Limosilactobacillus reuteri PSC102 and evaluated its probiotic, antioxidant, and antibacterial properties. We preliminarily isolated 154 candidates from pig feces and analyzed their Gram nature, morphology, and lactic acid production ability. Based on the results, we selected eight isolates and tested their ability to produce digestive enzymes. Finally, we identified one isolate using 16S rRNA gene sequencing, namely, L. reuteri PSC102. We tested its probiotic properties in vitro, including extracellular enzyme activities, low pH and bile salt tolerance, autoaggregation and coaggregation abilities, adhesion to Caco-2 cells, antibiotic susceptibility, and hemolytic and gelatinase activities. Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging and reducing power assays. The antibacterial activity of this strain and its culture supernatant against enterotoxigenic Escherichia coli were evaluated using a time-kill assay and disk diffusion method, respectively. L. reuteri PSC102 exhibited tolerance toward low pH and bile salt and did not produce harmful enzymes or possess hemolytic and gelatinase activities. Its intact cells and cell-free extract exhibited potential antioxidant activities, and significantly inhibited the growth of enterotoxigenic E. coli. Our results demonstrate that L. reuteri PSC102 is a potential probiotic candidate for developing functional feed.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Jha SK, Pandey S, Karn A, Panthi VK. Synbiotics in Gastroesophageal Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:305-314. [DOI: 10.1007/978-981-19-7550-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Noor S, Ali S, Riaz S, Sardar I, Farooq MA, Sajjad A. Chemopreventive role of probiotics against cancer: a comprehensive mechanistic review. Mol Biol Rep 2023; 50:799-814. [PMID: 36324027 DOI: 10.1007/s11033-022-08023-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Probiotics use different mechanisms such as intestinal barrier improvement, bacterial translocation and maintaining gut microbiota homeostasis to treat cancer. Probiotics' ability to induce apoptosis against tumor cells makes them more effective to treat cancer. Moreover, probiotics stimulate immune function through an immunomodulation mechanism that induces an anti-tumor effect. There are different strains of probiotics, but the most important ones are lactic acid bacteria (LAB) having antagonistic and anti-mutagenic activities. Live and dead probiotics have anti-inflammatory, anti-proliferative, anti-oxidant and anti-metastatic properties which are useful to fight against different diseases, especially cancer. The main focus of this article is to review the anti-cancerous properties of probiotics and their role in the reduction of different types of cancer. However, further investigations are in progress to improve the efficiency of probiotics in cancer treatment.
Collapse
Affiliation(s)
- Shehzeen Noor
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shumaila Riaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Iqra Sardar
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Sajjad
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
11
|
Fang Y, Yang G, Yang J, Ren J, You L, Zhao Y. Human microbiota colonization and pancreatic ductal carcinoma. Crit Rev Microbiol 2022:1-14. [PMID: 35924947 DOI: 10.1080/1040841x.2022.2080526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and a poor prognosis. The human microbiota has been confirmed to participate in oncogenesis and may influence the treatment response to both chemotherapy and immunotherapy. Evidence for the association of the microbiota with PDAC risk, tumorigenesis, treatment response, and survival period is rapidly emerging. The oral microbiota and gut microbiota have the potential to be used in early diagnosis and risk stratification. Intratumor microbiota-targeted intervention strategies may be used as adjuvants to current treatments to improve therapeutic efficacy and overall survival. Here, we summarize the effect and association of the oral, gut and intratumor microbiota on the oncogenesis, progression and treatment of PDAC, as well as the potential of the microbiota to serve as a biomarker for the diagnosis and prognosis of PDAC, as well as a therapeutic target.
Collapse
Affiliation(s)
- Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Ghorbani E, Avan A, Ryzhikov M, Ferns G, Khazaei M, Soleimanpour S. Role of Lactobacillus strains in the management of colorectal cancer An overview of recent advances. Nutrition 2022; 103-104:111828. [PMID: 36162222 DOI: 10.1016/j.nut.2022.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
|
13
|
Hadinia N, Edalatian Dovom MR, Yavarmanesh M. The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing Short Chain Fatty Acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Shu X, Nie Z, Luo W, Zheng Y, Han Z, Zhang H, Xia Y, Deng H, Li F, Wang S, Zhao J, He L. Babesia microti Infection Inhibits Melanoma Growth by Activating Macrophages in Mice. Front Microbiol 2022; 13:862894. [PMID: 35814662 PMCID: PMC9257138 DOI: 10.3389/fmicb.2022.862894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Babesia microti is an obligate intraerythrocytic protozoan transmitted by an Ixodes tick. Infections caused by protozoa, including Plasmodium yoelii and Toxoplasma gondii, are shown to inhibit tumor development by activating immune responses. Th1 immune response and macrophages not only are essential key factors in Babesia infection control but also play an important role in regulating tumor development. In this study, we investigated the effects of B. microti infection on melanoma in tumor-bearing mice. The results showed that B. microti infection could inhibit the growth of melanoma, significantly enlarge the spleen size (p ≤ 0.0001), and increase the survival period (over 7 days) of tumor-bearing mice. Mouse spleen immune cell analysis revealed that B. microti-infected tumor-bearing mice could increase the number of macrophages and CD4+ T cells, as well as the proportion of CD4+ T cells and M1 macrophages in the tumor. Immunohistochemical assays showed that B. microti infection could inhibit tumor angiogenesis (p ≤ 0.0032). Meanwhile, both B. microti-infected erythrocytes and culture supernatant were observed to significantly (p ≤ 0.0021) induce the mRNA expression of iNOS, IL-6, and TNF-α in macrophages. Moreover, B. microti culture supernatant could also repolarize IL-4-induced M2 macrophages to the M1 type. Overall, B. microti exerted antitumor effects by stimulating the immune system of tumor-bearing mice and inducing the polarization of immunosuppressive M2 macrophages to pro-inflammatory M1 macrophages.
Collapse
Affiliation(s)
- Xiang Shu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhen Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Han Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Fangjie Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Junlong Zhao,
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Lan He,
| |
Collapse
|
15
|
Qin D, Bai Y, Li Y, Huang Y, Li L, Wang G, Qu Y, Wang J, Yu LY, Hou X. Changes in Gut Microbiota by the Lactobacillus casei Anchoring the K88 Fimbrial Protein Prevented Newborn Piglets From Clinical Diarrhea. Front Cell Infect Microbiol 2022; 12:842007. [PMID: 35372106 PMCID: PMC8972131 DOI: 10.3389/fcimb.2022.842007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
In the last 20 years, accumulating evidence indicates that the gut microbiota contribute to the development, maturation, and regulation of the host immune system and mediate host anti-pathogen defenses. Lactobacillus casei (L.casei) is a normal flora of the gastrointestinal tract in mammals and, as a great mucosal delivery vehicle, has wide use in bioengineering. However, the diarrhea prevention role of commensal intestinal microbiota interfered by the recombinant L.casei (rL.casei) in newborn piglets is not well understood. In our study, newborn piglets orally fed with the rL.casei surface displayed the fimbrial protein K88 of enterotoxigenic Escherichia coli (ETEC) and their feces were collected for a period of time after feeding. The next-generation sequencing of these fecal samples showed that the relative abundance of L.casei was significantly increased. The oral administration of rL.casei altered the intestinal microbial community as evidenced by altered microbial diversity and microbial taxonomic composition. Remarkably, the functional enhancing of the intestinal bacterial community by rL.casei was positively correlated with membrane transport, replication, and repair (p < 0.05). The specific antibody detection indicates that high levels of anti-K88 secretory immunoglobulin A (sIgA) were induced in fecal samples and systemic immunoglobulin G was produced in serum. The diarrhea rate in piglets caused by ETEC K88 was decreased by about 24%. Thus, the oral administration of rL.casei not only activated the mucosal and humoral immune responses in vivo but also contributed to shape the intestinal probiotics in newborn piglets and to significantly reduce the diarrhea rates of newborn piglets.
Collapse
Affiliation(s)
- Da Qin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongfei Bai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Li
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanmei Huang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liyang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Qu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiabin Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li-Yun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Li-Yun Yu, ; Xilin Hou,
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Li-Yun Yu, ; Xilin Hou,
| |
Collapse
|
16
|
Escherichia coli Nissle 1917 Enhances Efficacy of Oral Attenuated Human Rotavirus Vaccine in a Gnotobiotic Piglet Model. Vaccines (Basel) 2022; 10:vaccines10010083. [PMID: 35062744 PMCID: PMC8779073 DOI: 10.3390/vaccines10010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Human rotavirus (HRV) infection is a major cause of viral gastroenteritis in young children worldwide. Current oral vaccines perform poorly in developing countries where efficacious vaccines are needed the most. Therefore, an alternative affordable strategy to enhance efficacy of the current RV vaccines is necessary. This study evaluated the effects of colonization of neonatal gnotobiotic (Gn) pigs with Escherichia coli Nissle (EcN) 1917 and Lacticaseibacillus rhamnosus GG (LGG) probiotics on immunogenicity and protective efficacy of oral attenuated (Att) HRV vaccine. EcN-colonized pigs had reduced virulent HRV (VirHRV) shedding and decreased diarrhea severity compared with the LGG-colonized group. They also had enhanced HRV-specific IgA antibody titers in serum and antibody secreting cell numbers in tissues pre/post VirHRV challenge, HRV-specific IgA antibody titers in intestinal contents, and B-cell subpopulations in tissues post VirHRV challenge. EcN colonization also enhanced T-cell immune response, promoted dendritic cells and NK cell function, reduced production of proinflammatory cytokines/Toll like receptor (TLR), and increased production of immunoregulatory cytokines/TLR expression in various tissues pre/post VirHRV challenge. Thus, EcN probiotic adjuvant with AttHRV vaccine enhances the immunogenicity and protective efficacy of AttHRV to a greater extent than LGG and it can be used as a safe and economical oral vaccine adjuvant.
Collapse
|
17
|
Manzoor S, Wani SM, Mir SA, Rizwan D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition 2022; 96:111602. [PMID: 35182833 DOI: 10.1016/j.nut.2022.111602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
18
|
main mechanisms of the effect of intestinal microflora on the immune system and their importance in clinical practice. Fam Med 2021. [DOI: 10.30841/2307-5112.4.2021.249409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut Microbiota Modulation in the Context of Immune-Related Aspects of Lactobacillus spp. and Bifidobacterium spp. in Gastrointestinal Cancers. Nutrients 2021; 13:nu13082674. [PMID: 34444834 PMCID: PMC8401094 DOI: 10.3390/nu13082674] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression and recently several investigators have evaluated the therapeutic effectiveness of targeting the microbiota. This gut microbiota-related approach is especially attractive in the treatment of gastrointestinal cancers. Probiotics supplementation is a microbiota-targeted strategy that appears to improve treatment efficacy; Lactobacillus spp. and Bifidobacterium spp. are among the most commonly used probiotic agents. These bacteria seem to exert immunomodulatory effects, impacting on the immune system both locally and systemically. The gut microbiota are able to affect the efficiency of immunotherapy, mainly acting as inhibitors at immune checkpoints. The effects of immunotherapy may be modulated using traditional probiotic strains and/or next generation probiotics, such as Akkermansia municiphila. It is possible that probiotics might enhance the efficiency of immunotherapy based on PD-1/PD-L1 and CTLA-4 but more data are needed to confirm this speculation. Indeed, although there is experimental evidence for the efficacy of several strains, the health-promoting effects of numerous probiotics have not been demonstrated in human patients and furthermore the potential risks of these products, particularly in oncologic patients, are rarely mentioned.
Collapse
Affiliation(s)
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Karol Polom
- Department of Surgical Oncology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| |
Collapse
|
20
|
The addition of royal jelly to dairy probiotic dessert produced with predictive microbiology: Influence on physicochemical, rheological, microbial and sensorial properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhang Z, Gu M, You X, Sela DA, Xiao H, McClements DJ. Encapsulation of bifidobacterium in alginate microgels improves viability and targeted gut release. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106634] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Bai Y, Huang Y, Li Y, Zhang B, Xiao C, Hou X, Yu L. The Murine Reg3a Stimulated by Lactobacillus casei Promotes Intestinal Cell Proliferation and Inhibits the Multiplication of Porcine Diarrhea Causative Agent in vitro. Front Microbiol 2021; 12:675263. [PMID: 34220758 PMCID: PMC8249746 DOI: 10.3389/fmicb.2021.675263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus casei (L. casei), a normal resident of the gastrointestinal tract of mammals, has been extensively studied over the past few decades for its probiotic properties in clinical and animal models. Some studies have shown that some bacterium of Lactobacillus stimulate the production of antimicrobial peptides in intestinal cells to clear enteric pathogens, however, which antimicrobial peptides are produced by L. casei stimulation and its function are still not completely understood. In this study, we investigated the changes of antimicrobial peptides' expression after intragastric administration of L. casei to mice. The bioinformatics analysis revealed there were nine genes strongly associated with up-regulated DEGs. But, of these, only the antimicrobial peptide mReg3a gene was continuously up-regulated, which was also confirmed by qRT-PCR. We found out the mReg3a expressed in engineering E.coli promoted cell proliferation and wound healing proved by CCK-8 assay and wound healing assay. Moreover, the tight junction proteins ZO-1 and E-cadherin in mReg3a treatment group were significantly higher than that in the control group under the final concentration of 0.2 mg/ml both in Porcine intestinal epithelial cells (IPEC-J2) and Mouse intestinal epithelial cells (IEC-6) (p < 0.05). Surprisingly, the recombinant mReg3a not only inhibited Enterotoxigenic Escherichia coli (ETEC), but also reduced the copy number of the piglet diarrheal viruses, porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus (PoRV), indicating the antimicrobial peptides mReg3a may be feed additives to resist the potential of the intestinal bacterial and viral diarrhea disease.
Collapse
Affiliation(s)
- Yongfei Bai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanmei Huang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cuihong Xiao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liyun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
23
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
24
|
Escherichia coli Nissle 1917 Enhances Innate and Adaptive Immune Responses in a Ciprofloxacin-Treated Defined-Microbiota Piglet Model of Human Rotavirus Infection. mSphere 2021; 6:6/2/e00074-21. [PMID: 33789939 PMCID: PMC8546683 DOI: 10.1128/msphere.00074-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human rotavirus (HRV) infection is a major cause of gastroenteritis in children worldwide. Broad-spectrum antibiotic-induced intestinal microbial imbalance and the ensuing immune-metabolic dysregulation contribute to the persistence of HRV diarrhea. Escherichia coli Nissle 1917 (EcN), a Gram-negative probiotic, was shown to be a potent immunostimulant and alleviated HRV-induced diarrhea in monocolonized gnotobiotic (Gn) piglets. Our goal was to determine how EcN modulates immune responses in ciprofloxacin (Cipro)-treated Gn piglets colonized with a defined commensal microbiota (DM) and challenged with virulent HRV (VirHRV). Cipro given in therapeutic doses for a short term reduced serum and intestinal total and HRV-specific antibody titers, while EcN treatment alleviated this effect. Similarly, EcN treatment increased the numbers of total immunoglobulin-secreting cells, HRV-specific antibody-secreting cells, activated antibody-forming cells, resting/memory antibody-forming B cells, and naive antibody-forming B cells in systemic and/or intestinal tissues. Decreased levels of proinflammatory but increased levels of immunoregulatory cytokines and increased frequencies of Toll-like receptor-expressing cells were evident in the EcN-treated VirHRV-challenged group. Moreover, EcN treatment increased the frequencies of T helper and T cytotoxic cells in systemic and/or intestinal tissues pre-VirHRV challenge and the frequencies of T helper cells, T cytotoxic cells, effector T cells, and T regulatory cells in systemic and/or intestinal tissues postchallenge. Moreover, EcN treatment increased the frequencies of systemic and mucosal conventional and plasmacytoid dendritic cells, respectively, and the frequencies of systemic natural killer cells. Our findings demonstrated that Cipro use altered immune responses of DM-colonized neonatal Gn pigs, while EcN supplementation rescued these immune parameters partially or completely. IMPORTANCE Rotavirus (RV) is a primary cause of malabsorptive diarrhea in children and is associated with significant morbidity and mortality, especially in developing countries. The use of antibiotics exacerbates intestinal microbial imbalance and results in the persistence of RV-induced diarrhea. Probiotics are now being used to treat enteric infections and ulcerative colitis. We showed previously that probiotics partially protected gnotobiotic (Gn) piglets against human RV (HRV) infection and decreased the severity of diarrhea by modulating immune responses. However, the interactions between antibiotic and probiotic treatments and HRV infection in the context of an established gut microbiota are poorly understood. In this study, we developed a Gn pig model to study antibiotic-probiotic-HRV interactions in the context of a defined commensal microbiota (DM) that mimics aspects of the infant gut microbiota. Our results provide valuable information that will contribute to the treatment of antibiotic- and/or HRV-induced diarrhea and may be applicable to other enteric infections in children.
Collapse
|
25
|
A Newly Characterized Potentially Probiotic Strain, Lactobacillus brevis MK05, and the Toxicity Effects of its Secretory Proteins Against MCF-7 Breast Cancer Cells. Probiotics Antimicrob Proteins 2021; 13:982-992. [PMID: 33687634 DOI: 10.1007/s12602-021-09766-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Among seven strains of lactic acid bacteria (LAB) isolated from traditional dairy products, a Lactobacillus strain was identified through 16S rRNA gene sequencing and tentatively designated as Lactobacillus brevis MK05. This strain demonstrated the highest probiotic potential through biochemical analysis, including acid and bile salt resistance, as well as antibacterial activity. The collected cell-free supernatant (CFC) of L. brevis MK05 culture, compared with MRS broth with pH equal to the pH for CFC, revealed antimicrobial activity against Escherichia coli (ATCC 25922) and Staphylococcus aureus subsp. aureus (ATCC 25923), possibly due to the presence of antibacterial metabolites other than organic acids. This strain was, therefore, selected to assess the biological activity of its partially purified secretory proteins against MCF-7 cancer cells and normal fibroblast cells via the MTT assay. The partially purified cell-secreted proteins of this strain (hereafter referred to as Lb-PPSPs) showed a time and dose-dependent anti-cancer and apoptosis induction function. There was a remarkable decline in the survival rate of MCF-7 cells at doses equal to and higher than 0.5 mg/mL after 48 h. The changes in expression of the three genes involved in the apoptosis pathway (BAX, BCL-2, and BCL2L11) in MCF-7 cells treated with the Lb-PPSPs confirm its cytotoxic activity and apoptosis induction.
Collapse
|
26
|
Kiousi DE, Rathosi M, Tsifintaris M, Chondrou P, Galanis A. Pro-biomics: Omics Technologies To Unravel the Role of Probiotics in Health and Disease. Adv Nutr 2021; 12:1802-1820. [PMID: 33626128 PMCID: PMC8483974 DOI: 10.1093/advances/nmab014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
The comprehensive characterization of probiotic action has flourished during the past few decades, alongside the evolution of high-throughput, multiomics platforms. The integration of these platforms into probiotic animal and human studies has provided valuable insights into the holistic effects of probiotic supplementation on intestinal and extraintestinal diseases. Indeed, these methodologies have informed about global molecular changes induced in the host and residing commensals at multiple levels, providing a bulk of metagenomic, transcriptomic, proteomic, and metabolomic data. The meaningful interpretation of generated data remains a challenge; however, the maturation of the field of systems biology and artificial intelligence has supported analysis of results. In this review article, we present current literature on the use of multiomics approaches in probiotic studies, we discuss current trends in probiotic research, and examine the possibility of tailor-made probiotic supplementation. Lastly, we delve deeper into newer technologies that have been developed in the last few years, such as single-cell multiomics analyses, and provide future directions for the maximization of probiotic efficacy.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Rathosi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Pelagia Chondrou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
27
|
Davoodvandi A, Marzban H, Goleij P, Sahebkar A, Morshedi K, Rezaei S, Mahjoubin-Tehran M, Tarrahimofrad H, Hamblin MR, Mirzaei H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19:4. [PMID: 33430873 PMCID: PMC7798223 DOI: 10.1186/s12964-020-00668-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics are beneficial bacteria that exist within the human gut, and which are also present in different food products and supplements. They have been investigated for some decades, due to their potential beneficial impact on human health. Probiotics compete with pathogenic microorganisms for adhesion sites within the gut, to antagonize them or to regulate the host immune response resulting in preventive and therapeutic effects. Therefore, dysbiosis, defined as an impairment in the gut microbiota, could play a role in various pathological conditions, such as lactose intolerance, gastrointestinal and urogenital infections, various cancers, cystic fibrosis, allergies, inflammatory bowel disease, and can also be caused by antibiotic side effects. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate gene expression in a post-transcriptional manner. miRNAs are biochemical biomarkers that play an important role in almost all cellular signaling pathways in many healthy and disease states. For the first time, the present review summarizes current evidence suggesting that the beneficial properties of probiotics could be explained based on the pivotal role of miRNAs. Video Abstract.
Collapse
Affiliation(s)
| | - Havva Marzban
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology,Sana Institute of Higher Education, Sari, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
28
|
Silva DR, Sardi JDCO, Pitangui NDS, Roque SM, Silva ACBD, Rosalen PL. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Daniali M, Nikfar S, Abdollahi M. Antibiotic resistance propagation through probiotics. Expert Opin Drug Metab Toxicol 2020; 16:1207-1215. [PMID: 32938241 DOI: 10.1080/17425255.2020.1825682] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The widespread use of probiotics globally has established an argument against their safety profile. Recent studies investigated the gastrointestinal tract (GIT) as a reservoir for antibiotic resistance genes and horizontal gene transfer (HGT) amongst opportunistic pathogens, probiotics, and the normal microbiota which might cause severe clinical implications. AREAS COVERED In this review, we aimed to discuss the potential role of probiotics in spreading antibiotic resistance. All relevant data were found through online/updated databases such as PubMed, Google Scholar, and Clinicaltrials.gov. This review is based on the studies undertaken over the past two decades (2000-2020). EXPERT OPINION Microorganisms are capable of transferring resistance genes to survive against antimicrobial medications. Transference of resistance genes among pathogens, probiotics, and gut microbiota in the GIT through HGT endow probiotics as a possible source for antimicrobial resistance genes, which is responsible for the development of the antibiotic resistance crisis. According to the expression of genes in mechanisms of antibiotics resistance and probiotics HGT, the hypothesis of the role of these microorganisms in personalized medicine and gene therapy could also be considered.
Collapse
Affiliation(s)
- Marzieh Daniali
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Shekoufeh Nikfar
- Personalized Medicine Research Center (PMRC), the Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences , Tehran, Iran.,Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, Pharmaceutical Sciences Research Center (PSRC), and the Pharmaceutical Management and Economics Research Center (PMERC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran.,Personalized Medicine Research Center (PMRC), the Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
30
|
Nallanchakravarthula S, Amruta N, Ramamurthy C. Cancer Microbiome; Opportunities and Challenges. Endocr Metab Immune Disord Drug Targets 2020; 21:215-229. [PMID: 32819239 DOI: 10.2174/1871530320999200818134942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbe-host association has emerged as a modulator in modern medicine. Cancer and its associated host microbes are collectively referred to as the cancer microbiome. The cancer microbiome is complex, and many aspects remain unclear including metabolic plasticity, microenvironment remodeling, cellular communications, and unique signatures within the host, all of which have a vital role in homeostasis and pathogenesis of host physiology. However, the role of the microbiome in cancer initiation, progression, and therapy is still poorly understood and remains to be explored. OBJECTIVE The objective of this review is to elucidate the role of the microbiome in cancer metabolism and the tumor microenvironment. It also focuses on the importance of therapeutic opportunities and challenges in the manipulation of the cancer microbiome. METHODS A literature search was conducted on the role of the microbiome in cancer initiation, progression, and therapy. CONCLUSION The tumor microenvironment and cancer metabolism are significant in host-microbiome interactions. The microbiome can modulate standard cancer therapies like chemotherapy and immunotherapy. Microbiome transplantation has also been demonstrated as an effective therapy against cancer. Furthermore, the modulation of the microbiome also has potential clinical outcomes in modern medicine.
Collapse
Affiliation(s)
| | - Narayanappa Amruta
- Department of Neurosurgery, Tulane University, New Orleans, Louisiana, United States
| | - Chitteti Ramamurthy
- C.G. Bhakta Institute of Biotechnology, UkaTarsadia University, Maliba campus, Bardoli Surat (Dist), Gujarat, India
| |
Collapse
|
31
|
Saberian M, Shahidi Delshad E, Habibi M. The Effect of Bifidobacterium Bifidum Supernatant and Cell Mass on the Proliferation Potential of Rat Bone Marrow-Derived Stromal Cells. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:269-276. [PMID: 32801416 PMCID: PMC7395953 DOI: 10.30476/ijms.2019.45772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Mesenchymal stem cells (MSCs) are widely used to treat various diseases, however, their proliferative potential reduces after a number of passages. It has been shown that some probiotics such as Bifidobacterium Bifidum (B. bifidum) affect the proliferation of various cell lineages. The present study aimed to investigate the effect of B. bifidum on the proliferation of rat bone marrow stromal cells (rBMSCs) and to develop a method for compensating their proliferation reduction after some passages. Methods The present experimental study was conducted at Tehran University of Medical Sciences, Tehran, Iran, in 2017. The stromal cells were isolated from rBMSCs and their mesenchymal properties were confirmed by osteogenic and adipogenic differentiation media and staining. B. bifidum was cultured and the B. bifidum supernatant (BS) and bacterial cell mass (BCM) were extracted. The rBMSCs were treated with different concentrations of BS and BCM. The MTT assay was performed to measure the number of viable cells in the culture. Cell proliferation was analyzed using the paired-sample t test. Results Cell proliferation increased as the concentration of bacteria was increased logarithmically (0, 0.1, 0.3, 0.9, 3, 9, 30 μL/mL). In comparison with BS, cells treated with BCM showed increased cell proliferation at lower concentrations. This effect was caused by removing the "de Man, Rogosa, and Sharpe" (MRS) broth medium from the BCM culture. The optimal concentration of bacteria with the most significant effect on rBMSCs proliferation was determined. Conclusion A significant increase in the proliferation of stromal cells was observed; confirming the stimulatory potential of probiotics (B. bifidum) on various cells. The use of products containing probiotic bacteria can increase the proliferation potential of BMSCs.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences. Tehran, Iran
| | - Elham Shahidi Delshad
- Shahid Rajaei Cardiovascular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Habibi
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
32
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
33
|
Ren C, Faas MM, de Vos P. Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Crit Rev Food Sci Nutr 2020; 61:1365-1393. [PMID: 32366110 DOI: 10.1080/10408398.2020.1758625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of lactic acid bacteria (LAB) has been suggested to confer health-promoting effects on the host. However, effects of LABs have been reported to be species- and strain-specific and the mechanisms involved are subjects of discussion. Here, the possible mechanisms by which LABs induce antipathogenic, gut barrier enhancing and immune modulating effects in consumers are reviewed. Specific strains for which it has been proven that health is improved by these mechanisms are discussed. However, most strains probably act via several or combinations of mechanisms depending on which effector molecules they express. Current insight is that these effector molecules are either present on the cell wall of LAB or are excreted. These molecules are reviewed as well as the ligand binding receptors in the host. Also postbiotics are discussed. Finally, we provide an overview of the efficacy of LABs in combating infections caused by Helicobacter pylori, Salmonella, Escherichia coli, Streptococcus pneumoniae, and influenza virus, in controlling gut inflammatory diseases, in managing allergic disorders, and in alleviating cancer.
Collapse
Affiliation(s)
- Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Pourmollaei S, Barzegari A, Farshbaf-Khalili A, Nouri M, Fattahi A, Shahnazi M, Dittrich R. Anticancer effect of bacteria on cervical cancer: Molecular aspects and therapeutic implications. Life Sci 2020; 246:117413. [PMID: 32035929 DOI: 10.1016/j.lfs.2020.117413] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Cervical cancer is the second common cancer and the third leading cause of cancer deaths among women in less developed countries. It has been indicated that changes in vaginal microbiome play an important role in the occurrence and development of cervical cancer. However, studies have shown that probiotics play an effective role in fighting cancer by affecting pathogenic bacteria, inducing cancer cells apoptosis, and other anticancer activities. Therefore, the purpose of the present study is reviewing the anticancer effect of cervicovaginal bacteria and their potential for cervical cancer treatment.
Collapse
Affiliation(s)
- Soraya Pourmollaei
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität of Erlangen-Nürnberg, Germany.
| | - Mahnaz Shahnazi
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander-Universität of Erlangen-Nürnberg, Germany
| |
Collapse
|
35
|
|
36
|
Ghanavati R, Asadollahi P, Shapourabadi MB, Razavi S, Talebi M, Rohani M. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways. Microb Pathog 2020; 139:103829. [PMID: 31682995 DOI: 10.1016/j.micpath.2019.103829] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Probiotics could be considered as attractive candidates for preventing tumor growth through maintaining homeostasis. The aim of this study was to evaluate the inhibitory effect of a cocktail of five Lactobacillus species on human colorectal carcinoma cell line HT-29. The anti-proliferative and apoptotic effects of Lactobacilli cocktail were evaluated using MTT and flow cytometry tests, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to analyze the expression of several genes in the Notch (notch, hes1, msi1, and numb) and Wnt/β-catenin (CTNNB1 and CCND1) pathways, following the treatment of HT-29 cells with Lactobacilli cocktail. The treatment by Lactobacilli cocktail induced a significant anti-proliferative effect and late stage apoptosis among the cancer cells (p < 0.05). Compared to the untreated cells, Lactobacilli cocktail induced the down-regulation of notch, hes1, and msi1 genes and up-regulation of numb gene in the Notch pathway as well as the down-regulation of CTNNB1 and CCND1 genes in the Wnt/β-catenin pathway in a time-dependent manner (p < 0.05). CONCLUSION: Lactobacilli cocktail was shown to have beneficial anti-tumor effects on HT-29 cells by modulating the Notch and Wnt/β-catenin pathways; therefore, the use of Lactobacilli probiotics as nutritional supplements may prevent the incidence of colon cancer.
Collapse
Affiliation(s)
- Roya Ghanavati
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr 2019; 60:3387-3399. [PMID: 31729242 DOI: 10.1080/10408398.2019.1688250] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lactic acid-producing bacteria are the most commonly used probiotics that play an important role in protecting the host against harmful microorganisms, strengthening the host immune system, improving feed digestibility, and reducing metabolic disorders. Lactobacillus fermentum (Lb. fermentum) is a Gram-positive bacterium belonging to Lactobacillus genus, and many reportedly to enhance the immunologic response as well as prevent community-acquired gastrointestinal and upper respiratory infections. Additionally, Lb. fermentum strains produce diverse and potent antimicrobial peptides, which can be applied as food preservative agents or as alternatives to antibiotics. Further functions attributed to probiotic Lb. fermentum strains are their abilities to decrease the level of blood stream cholesterol (as cholesterol-lowering agents) and to potentially help prevent alcoholic liver disease and colorectal cancer among humans. Finally, Lb. fermentum is a key microorganism in sourdough technology, contributing to flavor, texture, or health-promoting dough ingredients, and has recently been used to develop new foods stuffs such as fortified and functional foods with beneficial attributes for human health. Development of such new foodstuffs are currently taking important proportions of the food industry market. Furthermore, an increasing awareness of the consumers prompts the food-makers to implement alternative environmental friendly solutions in the production processes and/or suitable biological alternative to limit the use of antibiotics in feed and food. Here, we give an account on the application of Lb. fermentum strains in the biomedical and food preservation fields, with a focus on probiotic features such as bacteriocin production. We also summarize the use of Lb. fermentum as cell factories with the aim to improve the efficacy and health value of functional food.
Collapse
Affiliation(s)
- Karim Naghmouchi
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Al Baha University, Saudi Arabia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, LR01ES05 Biochimie et Biotechnologie, Tunis, Tunisie
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Giuseppe Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Foggia, Italy
| | - Bruce S Seal
- Biology Program, Oregon State University Cascades, Bend, Oregon, USA
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| |
Collapse
|
38
|
Maleki-Kakelar H, Dehghani J, Barzegari A, Barar J, Shirmohamadi M, Sadeghi J, Omidi Y. Lactobacillus plantarum induces apoptosis in gastric cancer cells via modulation of signaling pathways in Helicobacter pylori. BIOIMPACTS : BI 2019; 10:65-72. [PMID: 32363150 PMCID: PMC7186545 DOI: 10.34172/bi.2020.09] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Introduction: Gastric cancer is considered the second prevalent cause of death around the world. This type of cancer is generally induced by Helicobacter pylori which could colonize within the gastric mucosa of the infected cases. To date, triple antibiotic therapy has routinely been utilized for controlling the H. pylori- induced infection. However, this strategy has been unsuccessful, in large part because of issues such as occurring point mutations in the H. pylori genome that can induce resistance to the antibiotics administered. Recently, it has been shown that different probiotics may have strong anti-cancer effects, in which they are capable of inhibiting H. pylori by both immunological and non-immunological mechanisms. Here, we aimed at finding possible anti-cancer impacts of the probiotic bacterium Lactobacillus plantarum on gastric cancer, AGS cells. Methods: The anti-cancer effects of the conditioned media of the locally isolated L. plantarum on the AGS cells were evaluated by different analyses such as flow cytometry, DNA ladder assay, DAPI staining, and RT-PCR. Results: Our findings showed that the conditioned media of L. plantarum can inhibit both H. pylori and AGS cells through up-/down-regulation of PTEN, Bax, TLR4, and AKT genes. The exudates of the probiotic L. plantarum bacteria can increase the expression of PTEN, Bax, and TLR4, and also decrease the expression of AKT gene. Conclusion: In agreement with different reports, our results proved the anti-cancer effects of the locally isolated L. plantarum through some immunological cell signaling pathways. Accordingly, it seems the probiotics could be considered as at least a complementary treatment for different types of malignancies.
Collapse
Affiliation(s)
- Hadi Maleki-Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, Abdul Rahim R, Yusoff K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. Altern Ther Health Med 2019; 19:114. [PMID: 31159791 PMCID: PMC6547513 DOI: 10.1186/s12906-019-2528-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022]
Abstract
Background Lactobacillus plantarum, a major species of Lactic Acid Bacteria (LAB), are capable of producing postbiotic metabolites (PM) with prominent probiotic effects that have been documented extensively for rats, poultry and pigs. Despite the emerging evidence of anticancer properties of LAB, very limited information is available on cytotoxic and antiproliferative activity of PM produced by L. plantarum. Therefore, the cytotoxicity of PM produced by six strains of L. plantarum on various cancer and normal cells are yet to be evaluated. Methods Postbiotic metabolites (PM) produced by six strains of L. plantarum were determined for their antiproliferative and cytotoxic effects on normal human primary cells, breast, colorectal, cervical, liver and leukemia cancer cell lines via MTT assay, trypan blue exclusion method and BrdU assay. The toxicity of PM was determined for human and various animal red blood cells via haemolytic assay. The cytotoxicity mode was subsequently determined for selected UL4 PM on MCF-7 cells due to its pronounced cytotoxic effect by fluorescent microscopic observation using AO/PI dye reagents and flow cytometric analyses. Results UL4 PM exhibited the lowest IC50 value on MCF-7, RG14 PM on HT29 and RG11 and RI11 PM on HL60 cell lines, respectively from MTT assay. Moreover, all tested PM did not cause haemolysis of human, dog, rabbit and chicken red blood cells and demonstrated no cytotoxicity on normal breast MCF-10A cells and primary cultured cells including human peripheral blood mononuclear cells, mice splenocytes and thymocytes. Antiproliferation of MCF-7 and HT-29 cells was potently induced by UL4 and RG 14 PM respectively after 72 h of incubation at the concentration of 30% (v/v). Fluorescent microscopic observation and flow cytometric analyses showed that the pronounced cytotoxic effect of UL4 PM on MCF-7 cells was mediated through apoptosis. Conclusion In conclusion, PM produced by the six strains of L. plantarum exhibited selective cytotoxic via antiproliferative effect and induction of apoptosis against malignant cancer cells in a strain-specific and cancer cell type-specific manner whilst sparing the normal cells. This reveals the vast potentials of PM from L. plantarum as functional supplement and as an adjunctive treatment for cancer.
Collapse
|
40
|
PETRUŢ ŞTEFANAMARIA, SÂRBU IONELA, CORBU VIORICAMARIA, PELINESCU DIANA, IFTIME OANA, VASSU-DIMOV TATIANA. Screening of lactic acid bacteria from spontaneously fermented products of Romania. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/254.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Ding H, Zhou L, Zeng Q, Yu Y, Chen B. Heterologous Expression of a Thermostable β-1,3-Galactosidase and Its Potential in Synthesis of Galactooligosaccharides. Mar Drugs 2018; 16:E415. [PMID: 30380738 PMCID: PMC6267478 DOI: 10.3390/md16110415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023] Open
Abstract
A thermostable β-1,3-galactosidase from Marinomonas sp. BSi20414 was successfully heterologously expressed in Escherichia coli BL21 (DE3), with optimum over-expression conditions as follows: the recombinant cells were induced by adding 0.1 mM of IPTG to the medium when the OD600 of the culture reached between 0.6 and 0.9, followed by 22 h incubation at 20 °C. The recombinant enzyme β-1,3-galactosidase (rMaBGA) was further purified to electrophoretic purity by immobilized metal affinity chromatography and size exclusion chromatography. The specific activity of the purified enzyme was 126.4 U mg-1 at 37 °C using ONPG (o-nitrophenyl-β-galactoside) as a substrate. The optimum temperature and pH of rMaBGA were determined as 60 °C and 6.0, respectively, resembling with its wild-type counterpart, wild type (wt)MaBGA. However, rMaBGA and wtMaBGA displayed different thermal stability and steady-state kinetics, although they share identical primary structures. It is postulated that the stability of the enzyme was altered by heterologous expression with the absence of post-translational modifications such as glycosylation, as well as the steady-state kinetics. To evaluate the potential of the enzyme in synthesis of galactooligosaccharides (GOS), the purified recombinant enzyme was employed to catalyze the transgalactosylation reaction at the lab scale. One of the transgalactosylation products was resolved as 3'-galactosyl-lactose, which had been proven to be a better bifidogenic effector than GOS with β-1,4 linkage and β-1,6 linkages. The results indicated that the recombinant enzyme would be a promising alternative for biosynthesis of GOS mainly with β-1,3 linkage.
Collapse
Affiliation(s)
- Haitao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Lili Zhou
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Qian Zeng
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
42
|
Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. The Lactobacillus casei Group: History and Health Related Applications. Front Microbiol 2018; 9:2107. [PMID: 30298055 PMCID: PMC6160870 DOI: 10.3389/fmicb.2018.02107] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023] Open
Abstract
The Lactobacillus casei group (LCG), composed of the closely related Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus rhamnosus are some of the most widely researched and applied probiotic species of lactobacilli. The three species have been extensively studied, classified and reclassified due to their health promoting properties. Differentiation is often difficult by conventional phenotypic and genotypic methods and therefore new methods are being continually developed to distinguish the three closely related species. The group remain of interest as probiotics, and their use is widespread in industry. Much research has focused in recent years on their application for health promotion in treatment or prevention of a number of diseases and disorders. The LCG have the potential to be used prophylactically or therapeutically in diseases associated with a disturbance to the gut microbiota. The group have been extensively researched with regard to stress responses, which are crucial for their survival and therefore application as probiotics.
Collapse
Affiliation(s)
- Daragh Hill
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Ivan Sugrue
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Conor Tobin
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | | |
Collapse
|
43
|
Yu LCH, Wei SC, Ni YH. Impact of microbiota in colorectal carcinogenesis: lessons from experimental models. Intest Res 2018; 16:346-357. [PMID: 30090033 PMCID: PMC6077307 DOI: 10.5217/ir.2018.16.3.346] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
A role of gut microbiota in colorectal cancer (CRC) growth was first suggested in germ-free rats almost 50 years ago, and the existence of disease-associated bacteria (termed pathobionts) had becoming increasingly evident from experimental data of fecal transplantation, and microbial gavage or monoassociation. Altered bacterial compositions in fecal and mucosal specimens were observed in CRC patients compared to healthy subjects. Microbial fluctuations were found at various cancer stages; an increase of bacterial diversity was noted in the adenoma specimens, while a reduction of bacterial richness was documented in CRC samples. The bacterial species enriched in the human cancerous tissues included Escherichia coli, Fusobacterium nucleatum, and enterotoxigenic Bacteroides fragilis. The causal relationship of gut bacteria in tumorigenesis was established by introducing particular bacterial strains in in situ mouse CRC models. Detailed experimental protocols of bacterial gavage and the advantages and caveats of different experimental models are summarized in this review. The microbial genotoxins, enterotoxins, and virulence factors implicated in the mechanisms of bacteria-driven tumorigenesis are described. In conclusion, intestinal microbiota is involved in colon tumorigenesis. Bacteria-targeting intervention would be the next challenge for CRC.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: A review. J Food Drug Anal 2018; 26:927-939. [PMID: 29976412 PMCID: PMC9303019 DOI: 10.1016/j.jfda.2018.01.002] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023] Open
Abstract
Humans are a unique reservoir of heterogeneous and vivacious group of microbes, which together forms the human-microbiome superorganism. Human gut serves as a home to over 100-1000 microbial species, which primarily modulate the host internal environment and thereby, play a major role in host health. This spectacular symbiotic relationship has attracted extensive research in this field. More specifically, these organisms play key roles in defense function, eupepsia along with catabolism and anabolism, and impact brain-gut responses. The emergence of microbiota with resistance and tolerance to existing conventional drugs and antibiotics has decreased the drug efficacies. Furthermore, the modern biotechnology mediated nano-encapsulated multiplex supplements appear to be high cost and inconvenient. Henceforth, a simple, low-cost, receptive and intrinsic approach to achieve health benefits is vital in the present era. Supplementation with probiotics, prebiotics, and synbiotics has shown promising results against various enteric pathogens due to their unique ability to compete with pathogenic microbiota for adhesion sites, to alienate pathogens or to stimulate, modulate and regulate the host's immune response by initiating the activation of specific genes in and outside the host intestinal tract. Probiotics have also been shown to regulate fat storage and stimulate intestinal angiogenesis. Hence, this study aims to underline the possible beneficial impact of probiotics for human health and medical sectors and for better lifestyle.
Collapse
Affiliation(s)
- Rout George Kerry
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
| | - Jayanta Kumar Patra
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Noida, 201303, Uttar Pradesh,
India
| | - Yooheon Park
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
- Corresponding author. E-mail address: (G. Das)
| |
Collapse
|
45
|
Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. Biogenic Synthesis of Novel Functionalized Selenium Nanoparticles by Lactobacillus casei ATCC 393 and Its Protective Effects on Intestinal Barrier Dysfunction Caused by Enterotoxigenic Escherichia coli K88. Front Microbiol 2018; 9:1129. [PMID: 29967593 PMCID: PMC6015882 DOI: 10.3389/fmicb.2018.01129] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Selenium (Se) is an essential element for human and animal health. Biogenic selenium nanoparticles (SeNPs) by microorganism possess unique physical and chemical properties and biological activities compared with inorganic Se and organic Se. The study was conducted to investigate the mainly biological activities of SeNPs by Lactobacillus casei ATCC 393 (L. casei 393). The results showed that L. casei 393 transformed sodium selenite to red SeNPs with the size of 50–80 nm, and accumulated them intracellularly. L. casei 393-SeNPs promoted the growth and proliferation of porcine intestinal epithelial cells (IPEC-J2), human colonic epithelial cells (NCM460), and human acute monocytic leukemia cell (THP-1)-derived macrophagocyte. L. casei 393-SeNPs significantly inhibited the growth of human liver tumor cell line-HepG2, and alleviated diquat-induced IPEC-J2 oxidative damage. Moreover, in vivo and in vitro experimental results showed that administration with L. casei 393-SeNPs protected against Enterotoxigenic Escherichia coli K88 (ETEC K88)-caused intestinal barrier dysfunction. ETEC K88 infection-associated oxidative stress (glutathione peroxidase activity, total superoxide dismutase activity, total antioxidant capacity, and malondialdehyde) was ameliorated in L. casei 393-SeNPs-treated mice. These findings suggest that L. casei 393-SeNPs with no cytotoxicity play a key role in maintaining intestinal epithelial integrity and intestinal microflora balance in response to oxidative stress and infection.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yiyi Cheng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
46
|
|
47
|
|
48
|
Tsilimigras MCB, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2017; 2:17008. [PMID: 28225000 PMCID: PMC6423540 DOI: 10.1038/nmicrobiol.2017.8] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Cancer arises from the acquisition of multiple genetic and epigenetic changes in host cells over the span of many years, promoting oncogenic traits and carcinogenesis. Most cancers develop following random somatic alterations of key oncogenic genes, which are favoured by a number of risk factors, including lifestyle, diet and inflammation. Importantly, the environment where tumours evolve provides a unique source of signalling cues that affects cancer cell growth, survival, movement and metastasis. Recently, there has been increased interest in how the microbiota, the collection of microorganisms inhabiting the host body surface and cavities, shapes a micro-environment for host cells that can either promote or prevent cancer formation. The microbiota, particularly the intestinal biota, plays a central role in host physiology, and the composition and activity of this consortium of microorganisms is directly influenced by known cancer risk factors such as lifestyle, diet and inflammation. In this REVIEW, we discuss the pro- and anticarcinogenic role of the microbiota, as well as highlighting the therapeutic potential of microorganisms in tumourigenesis. The broad impacts, and, at times, opposing roles of the microbiota in carcinogenesis serve to illustrate the complex and sometimes conflicted relationship between microorganisms and the host-a relationship that could potentially be harnessed for therapeutic benefits.
Collapse
Affiliation(s)
- Matthew C. B. Tsilimigras
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida 32611, USA
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
49
|
Shonyela SM, Wang G, Yang W, Yang G, Wang C. New Progress regarding the Use of Lactic Acid Bacteria as Live Delivery Vectors, Treatment of Diseases and Induction of Immune Responses in Different Host Species Focusing on <i>Lactobacillus</i> Species. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/wjv.2017.74004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
More chinks in the armor of cancer: potential for new therapies. Curr Opin Oncol 2017; 29:33-34. [DOI: 10.1097/cco.0000000000000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|