1
|
Wang Z, Liu H. Roles of Lysine Methylation in Glucose and Lipid Metabolism: Functions, Regulatory Mechanisms, and Therapeutic Implications. Biomolecules 2024; 14:862. [PMID: 39062577 PMCID: PMC11274642 DOI: 10.3390/biom14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose and lipid metabolism are essential energy sources for the body. Dysregulation in these metabolic pathways is a significant risk factor for numerous acute and chronic diseases, including type 2 diabetes (T2DM), Alzheimer's disease (AD), obesity, and cancer. Post-translational modifications (PTMs), which regulate protein structure, localization, function, and activity, play a crucial role in managing cellular glucose and lipid metabolism. Among these PTMs, lysine methylation stands out as a key dynamic modification vital for the epigenetic regulation of gene transcription. Emerging evidence indicates that lysine methylation significantly impacts glucose and lipid metabolism by modifying key enzymes and proteins. This review summarizes the current understanding of lysine methylation's role and regulatory mechanisms in glucose and lipid metabolism. We highlight the involvement of methyltransferases (KMTs) and demethylases (KDMs) in generating abnormal methylation signals affecting these metabolic pathways. Additionally, we discuss the chemical biology and pharmacology of KMT and KDM inhibitors and targeted protein degraders, emphasizing their clinical implications for diseases such as diabetes, obesity, neurodegenerative disorders, and cancers. This review suggests that targeting lysine methylation in glucose and lipid metabolism could be an ideal therapeutic strategy for treating these diseases.
Collapse
Affiliation(s)
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China;
| |
Collapse
|
2
|
Bae G, Berezhnoy G, Flores A, Cannet C, Schäfer H, Dahlke MH, Michl P, Löffler MW, Königsrainer A, Trautwein C. Quantitative Metabolomics and Lipoprotein Analysis of PDAC Patients Suggests Serum Marker Categories for Pancreatic Function, Pancreatectomy, Cancer Metabolism, and Systemic Disturbances. J Proteome Res 2024; 23:1249-1262. [PMID: 38407039 PMCID: PMC11003419 DOI: 10.1021/acs.jproteome.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose in the early stages and lacks reliable biomarkers. The scope of this project was to establish quantitative nuclear magnetic resonance (NMR) spectroscopy to comprehensively study blood serum alterations in PDAC patients. Serum samples from 34 PDAC patients obtained before and after pancreatectomy as well as 83 age- and sex-matched control samples from healthy donors were analyzed with in vitro diagnostics research (IVDr) proton NMR spectroscopy at 600 MHz. Uni- and multivariate statistics were applied to identify significant biofluid alterations. We identified 29 significantly changed metabolites and 98 lipoproteins when comparing serum from healthy controls with those of PDAC patients. The most prominent features were assigned to (i) markers of pancreatic function (e.g., glucose and blood triglycerides), (ii) markers related to surgery (e.g., ketone bodies and blood cholesterols), (iii) PDAC-associated markers (e.g., amino acids and creatine), and (iv) markers for systemic disturbances in PDAC (e.g., gut metabolites DMG, TMAO, DMSO2, and liver lipoproteins). Quantitative serum NMR spectroscopy is suited as a diagnostic tool to investigate PDAC. Remarkably, 2-hydroxybutyrate (2-HB) as a previously suggested marker for insulin resistance was found in extraordinarily high levels only after pancreatectomy, suggesting this metabolite is the strongest marker for pancreatic loss of function.
Collapse
Affiliation(s)
- Gyuntae Bae
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
| | - Georgy Berezhnoy
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
| | - Alejandra Flores
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
| | - Claire Cannet
- Bruker
BioSpin GmbH & Co. KG, BioPharma and Applied Division, Ettlingen 76275, Germany
| | - Hartmut Schäfer
- Bruker
BioSpin GmbH & Co. KG, BioPharma and Applied Division, Ettlingen 76275, Germany
| | - Marc H. Dahlke
- Department
of General and Visceral Surgery, Robert-Bosch-Krankenhaus, Stuttgart 70376, Germany
| | - Patrick Michl
- Dept
of Internal Medicine IV, University Hospital
Heidelberg, Heidelberg 69120, Germany
| | - Markus W. Löffler
- Department
of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
- German Cancer
Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner
Site Tübingen, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
- Department
of Immunology, University of Tübingen, Tübingen 72076, Germany
- Department
of Clinical Pharmacology, University Hospital
Tübingen, Tübingen 72076, Germany
| | - Alfred Königsrainer
- Department
of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen 72076, Germany
- German Cancer
Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner
Site Tübingen, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
| | - Christoph Trautwein
- Werner
Siemens Imaging Center, Department of Preclinical
Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally
Instructed Tumor Therapies’, University
of Tübingen, Tübingen 72076, Germany
- M3
Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
3
|
Shan L, Hao C, Jun Z, Qinghe C. Histone methyltransferase Dot1L inhibits pancreatic cancer cell apoptosis by promoting NUPR1 expression. J Int Med Res 2022; 50:3000605221088431. [PMID: 35350907 PMCID: PMC8973069 DOI: 10.1177/03000605221088431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective To explore functions of the histone H3 lysine 79 (K79) methyltransferase Dot1L in the development of pancreatic cancer and evaluate the possibility of targeting Dot1L to inhibit pancreatic cancer progression. Methods Patient samples were used to detect differences in Dot1L expression between tumor and adjacent tissues and to determine correlations between Dot1L expression in patients with different stages of pancreatic cancer. Lentiviral-mediated knockdown of Dot1L expression and flow cytometry were used to detect apoptosis in pancreatic cancer lacking Dot1L expression; chromatin immunoprecipitation and quantitative PCR were used to detect downstream target genes of Dot1L. Results We show that Dot1L is highly expressed in pancreatic cancer, and that its expression is related to pancreatic cancer stage. Knocking down Dot1L significantly promoted apoptosis in pancreatic cancer cells, while overexpressing Dot1L inhibited apoptosis. Mechanistically, Dot1L regulated apoptosis in pancreatic cancer cells by promoting NUPR1 expression. The enriched H3K79 trimethylation in the transcription initiation region of NUPR1 promoted its expression. Overexpressing NUPR1 inhibited the pancreatic cancer cell apoptosis caused by Dot1L knockdown. Conclusions Dot1L inhibits pancreatic cancer cell apoptosis by targeting NUPR1; thus, Dot1L is a promising target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lin Shan
- Affiliated Hospital of Putian University
| | - Chen Hao
- Affiliated Hospital of Putian University
| | - Zheng Jun
- Affiliated Hospital of Putian University
| | - Cai Qinghe
- Affiliated Hospital of Putian University
| |
Collapse
|
4
|
Wei M, Tan C, Tang Z, Lian Y, Huang Y, Chen Y, Chen C, Zhou W, Cai T, Hu J. Proteome-Wide Alterations of Asymmetric Arginine Dimethylation Associated With Pancreatic Ductal Adenocarcinoma Pathogenesis. Front Cell Dev Biol 2020; 8:545934. [PMID: 33344439 PMCID: PMC7744470 DOI: 10.3389/fcell.2020.545934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023] Open
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) performs essential roles in regulating cancer initiation and progression, but its implication in pancreatic ductal adenocarcinoma (PDAC) requires further elucidation. In this study, asymmetric dimethylarginine (ADMA)-containing peptides in PDAC cell line PANC-1 were identified by label-free quantitative proteomics combined with affinity purification, using human non-cancerous pancreatic ductal epithelium cell line HPDE6c7 as the control. In total, 289 ADMA sites in 201 proteins were identified in HPDE6c7 and PANC-1 cells, including 82 sites with lower dimethylation and 37 sites with higher dimethylation in PANC-1 cells compared with HPDE6c7 cells. These ADMA-containing peptides demonstrated significant enrichment of glycine and proline residues in both cell lines. Importantly, leucine residues were significantly enriched in ADMA-containing peptides identified only in HPDE6c7 cells or showing lower dimethylation in PANC-1 cells. ADMA-containing proteins were significantly enriched in multiple biological processes and signaling cascades associated with cancer development, such as spliceosome machinery, the Wnt/β-catenin, Hedgehog, tumor growth factor beta (TGF-β), and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDAC cell lines with enhanced cell viability showed lower PRMT4 protein abundance and global ADMA-containing protein levels compared with HPDE6c7. PRMT4 overexpression partially recovered ADMA-containing protein levels and repressed viability in PANC-1 cells. These results revealed significantly altered ADMA-containing protein profiles in human pancreatic carcinoma cells, which provided a basis for elucidating the pathogenic roles of PRMT-mediated protein methylation in pancreatic cancer.
Collapse
Affiliation(s)
- Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congwei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Cai
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
6
|
Tan C, Li Y, Huang X, Wei M, Huang Y, Tang Z, Huang H, Zhou W, Wang Y, Hu J. Extensive protein S-nitrosylation associated with human pancreatic ductal adenocarcinoma pathogenesis. Cell Death Dis 2019; 10:914. [PMID: 31801946 PMCID: PMC6892852 DOI: 10.1038/s41419-019-2144-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
NO (nitric oxide)-mediated protein S-nitrosylation has been established as one major signaling mechanism underlying cancer initiation and development, but its roles in PDAC (pancreatic ductal adenocarcinoma) pathogenesis still remain largely unexplored. In this study, we identified 585 unique S-nitrosylation sites among 434 proteins in PDAC patients and PANC-1 cell line by a site-specific proteomics. Larger number of S-nitrosylated proteins were identified in PDAC tissues and PANC-1 cells than adjacent non-cancerous tissues. These S-nitrosylated proteins are significantly enriched in a multitude of biological processes associated with tumorigenesis, including carbohydrate metabolism, cytoskeleton regulation, cell cycle, focal adhesion, adherent junctions, and cell migration. Components of the pancreatic cancer pathway were extensively S-nitrosylated, such as v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) and Signal transducer and activator of transcription 3 (STAT3). Moreover, NOS (NO synthase) inhibitor significantly repressed STAT3 S-nitrosylation in PANC-1 cells, which caused significant increase of STAT3 phosphorylation and PANC-1 cell viability, suggesting important roles of protein S-nitrosylation in PDAC development. These results revealed extensive protein S-nitrosylation associated with PDAC pathogenesis, which provided a basis for protein modification-based cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
- Clinical Laboratory of Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Yunfeng Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of Histology and Embryology, School of Pre-clinical Medicine, Xinjiang Medical University, Urumqi, 830011, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Gao Y, Lee H, Kwon OK, Tan M, Kim KT, Lee S. Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio). J Proteome Res 2019; 18:3762-3769. [DOI: 10.1021/acs.jproteome.9b00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjia Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Li SS, Jiang WL, Xiao WQ, Li K, Zhang YF, Guo XY, Dai YQ, Zhao QY, Jiang MJ, Lu ZJ, Wan R. KMT2D deficiency enhances the anti-cancer activity of L48H37 in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2019; 11:599-621. [PMID: 31435462 PMCID: PMC6700028 DOI: 10.4251/wjgo.v11.i8.599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for patients with a delayed diagnosis of pancreatic ductal adenocarcinoma (PDAC) in order to improve their chances of survival. Recent studies have shown potent anti-neoplastic effects of curcumin and its analogues. In addition, the role of histone methyltransferases on cancer therapeutics has also been elucidated. However, the relationship between these two factors in the treatment of pancreatic cancer remains unknown. Our working hypothesis was that L48H37, a novel curcumin analog, has better efficacy in pancreatic cancer cell growth inhibition in the absence of histone-lysine N-methyltransferase 2D (KMT2D).
AIM To determine the anti-cancer effects of L48H37 in PDAC, and the role of KMT2D on its therapeutic efficacy.
METHODS The viability and proliferation of primary (PANC-1 and MIA PaCa-2) and metastatic (SW1990 and ASPC-1) PDAC cell lines treated with L48H37 was determined by CCK8 and colony formation assay. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) levels, and cell cycle profile were determined by staining the cells with Annexin-V/7-AAD, JC-1, DCFH-DA, and PI respectively, as well as flow cytometric acquisition. In vitro migration was assessed by the wound healing assay. The protein and mRNA levels of relevant factors were analyzed using Western blotting, immunofluorescence and real time-quantitative PCR. The in situ expression of KMT2D in both human PDAC and paired adjacent normal tissues was determined by immunohistochemistry. In vivo tumor xenografts were established by injecting nude mice with PDAC cells. Bioinformatics analyses were also conducted using gene expression databases and TCGA.
RESULTS L48H37 inhibited the proliferation and induced apoptosis in SW1990 and ASPC-1 cells in a dose- and time-dependent manner, while also reducing MMP, increasing ROS levels, arresting cell cycle at the G2/M stages and activating the endoplasmic reticulum (ER) stress-associated protein kinase RNA-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 (ATF4)/CHOP signaling pathway. Knocking down ATF4 significantly upregulated KMT2D in PDAC cells, and also decreased L48H37-induced apoptosis. Furthermore, silencing KMT2D in L48H37-treated cells significantly augmented apoptosis and the ER stress pathway, indicating that KMT2D depletion is essential for the anti-neoplastic effects of L48H37. Administering L48H37 to mice bearing tumors derived from control or KMT2D-knockdown PDAC cells significantly decreased the tumor burden. We also identified several differentially expressed genes in PDAC cell lines expressing very low levels of KMT2D that were functionally categorized into the extrinsic apoptotic signaling pathway. The KMT2D high- and low-expressing PDAC patients from the TCGA database showed similar survival rates,but higher KMT2D expression was associated with poor tumor grade in clinical and pathological analyses.
CONCLUSION L48H37 exerts a potent anti-cancer effect in PDAC, which is augmented by KMT2D deficiency.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wei-Liang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wen-Qin Xiao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ye-Fei Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xing-Ya Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Qi Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qiu-Yan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ming-Jie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhan-Jun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|