1
|
He Y, Berrueta L, Wang Y, Badger GJ, Langevin HM. A novel mouse model of voluntary stretching and its application in breast cancer research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634735. [PMID: 39975006 PMCID: PMC11838233 DOI: 10.1101/2025.01.24.634735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Stretching exercises such as yoga are recommended for cancer survivors to manage symptoms and promote wellbeing in clinical settings. Although other types of exercise (e.g. running) can reduce the growth of tumors in animal models, the role of stretching on tumor growth remains unclear, and the lack of a preclinical self-stretching model has impeded mechanistic studies on health benefits of stretching. We sought to develop a voluntary stretching animal model to address this research gap and apply it to breast cancer research. Methods Using food, water, and enrichment in the home cage as motivators for stretching, a two-week 24/7 behavior monitoring was conducted in a video-based customizable home-cage behavior tracking system, Noldus PhenoTyper, to promote self-stretching in FVB mice. Subsequently, this model was utilized in a comparative study of voluntary stretching and voluntary running on tumor growth and plasma protein profiles in the MET-1 orthotopic mammary tumor FVB mouse model. Results The new voluntary stretching model effectively elicited mouse self-stretching in the custom cage setting in the long-term observation and significantly inhibited tumor growth as effectively as voluntary wheel running. Moreover, plasma proteomic analysis demonstrated that voluntary stretch versus voluntary running distinctly impacted systemic protein profiles, possibly linking to different cellular and molecular mechanisms underlying anti-cancer effects and, potentially, exercise-induced benefits in other health conditions. Conclusion Our work provides the first preclinical voluntary stretching model, which may be well suited to breast cancer research and a valuable research tool to facilitate investigations of stretching health benefits across various research fields.
Collapse
|
2
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
3
|
Callegari IOM, Rocha GZ, Oliveira AG. Physical exercise, health, and disease treatment: The role of macrophages. Front Physiol 2023; 14:1061353. [PMID: 37179836 PMCID: PMC10166825 DOI: 10.3389/fphys.2023.1061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Subclinical inflammation is linked to comorbidities and risk factors, consolidating the diagnosis of chronic non-communicable diseases, such as insulin resistance, atherosclerosis, hepatic steatosis, and some types of cancer. In this context, the role of macrophages is highlighted as a marker of inflammation as well as for the high power of plasticity of these cells. Macrophages can be activated in a wide range between classical or proinflammatory, named M1, and alternative or anti-inflammatory, also known as M2 polarization. All nuances between M1 and M2 macrophages orchestrate the immune response by secreting different sets of chemokines, while M1 cells promote Th1 response, the M2 macrophages recruit Th2 and Tregs lymphocytes. In turn, physical exercise has been a faithful tool in combating the proinflammatory phenotype of macrophages. This review proposes to investigate the cellular and molecular mechanisms in which physical exercise can help control inflammation and infiltration of macrophages within the non-communicable diseases scope. During obesity progress, proinflammatory macrophages predominate in adipose tissue inflammation, which reduces insulin sensitivity until the development of type 2 diabetes, progression of atherosclerosis, and diagnosis of non-alcoholic fatty liver disease. In this case, physical activity restores the balance between the proinflammatory/anti-inflammatory macrophage ratio, reducing the level of meta-inflammation. In the case of cancer, the tumor microenvironment is compatible with a high level of hypoxia, which contributes to the advancement of the disease. However, exercise increases the level of oxygen supply, favoring macrophage polarization in favor of disease regression.
Collapse
Affiliation(s)
- Irineu O. M. Callegari
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Physical Education, Bioscience Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
4
|
Giallauria F, Testa C, Cuomo G, Di Lorenzo A, Venturini E, Lauretani F, Maggio MG, Iannuzzo G, Vigorito C. Exercise Training in Elderly Cancer Patients: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061671. [PMID: 36980559 PMCID: PMC10046194 DOI: 10.3390/cancers15061671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Due to the aging of the population, in 70% of cases, a new cancer diagnosis equals a cancer diagnosis in a geriatric patient. In this population, beyond the concept of mortality and morbidity, functional capacity, disability, and quality of life remain crucial. In fact, when the functional status is preserved, the pathogenetic curve towards disability will stop or even regress. The present systematic review investigated the effectiveness of physical exercise, as part of a holistic assessment of the patient, for preventing disability and improving the patient’s quality of life, and partially reducing all-cause mortality. This evidence must point towards decentralization of care by implementing the development of rehabilitation programs for elderly cancer patients either before or after anti-cancer therapy.
Collapse
Affiliation(s)
- Francesco Giallauria
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
- Faculty of Sciences and Technology, University of New England, Armidale, NSW 2351, Australia
- Correspondence:
| | - Crescenzo Testa
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy
| | - Gianluigi Cuomo
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Anna Di Lorenzo
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Elio Venturini
- Cardiac Rehabilitation Unit and Department of Cardiology, Azienda USL Toscana Nord-Ovest, “Cecina Civil Hospital”, 57023 Cecina, Italy
| | - Fulvio Lauretani
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University Hospital of Parma, 43126 Parma, Italy
| | - Marcello Giuseppe Maggio
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University Hospital of Parma, 43126 Parma, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Carlo Vigorito
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
5
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of what is currently known about the impacts of mechanical stimuli on metastatic tumor-induced bone disease (TIBD). Further, we focus on the role of the osteocyte, the skeleton's primary mechanosensory cell, which is central to the skeleton's mechanoresponse, sensing and integrating local mechanical stimuli, and then controlling the downstream remodeling balance as appropriate. RECENT FINDINGS Exercise and controlled mechanical loading have anabolic effects on bone tissue in models of bone metastasis. They also have anti-tumorigenic properties, in part due to offsetting the vicious cycle of osteolytic bone loss as well as regulating inflammatory signals. The impacts of metastatic cancer on the mechanosensory function of osteocytes remains unclear. Increased mechanical stimuli are a potential method for mitigating TIBD.
Collapse
Affiliation(s)
- Blayne A Sarazin
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA
| | - Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, 80045, USA
| | - Maureen E Lynch
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA.
- Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
7
|
Esteves M, Monteiro MP, Duarte JA. Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu. Int J Sports Med 2020; 42:389-406. [PMID: 33307553 DOI: 10.1055/a-1308-3476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor vessel network has been investigated as a precursor of an inhospitable tumor microenvironment, including its repercussions in tumor perfusion, oxygenation, interstitial fluid pressure, pH, and immune response. Dysfunctional tumor vasculature leads to the extravasation of blood to the interstitial space, hindering proper perfusion and causing interstitial hypertension. Consequently, the inadequate delivery of oxygen and clearance of by-products of metabolism promote the development of intratumoral hypoxia and acidification, hampering the action of immune cells and resulting in more aggressive tumors. Thus, pharmacological strategies targeting tumor vasculature were developed, but the overall outcome was not satisfactory due to its transient nature and the higher risk of hypoxia and metastasis. Therefore, physical exercise emerged as a potential favorable modulator of tumor vasculature, improving intratumoral vascularization and perfusion. Indeed, it seems that regular exercise practice is associated with lasting tumor vascular maturity, reduced vascular resistance, and increased vascular conductance. Higher vascular conductance reduces intratumoral hypoxia and increases the accessibility of circulating immune cells to the tumor milieu, inhibiting tumor development and improving cancer treatment. The present paper describes the implications of abnormal vasculature on the tumor microenvironment and the underlying mechanisms promoted by regular physical exercise for the re-establishment of more physiological tumor vasculature.
Collapse
Affiliation(s)
- Mário Esteves
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal.,Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Gondomar, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Jose Alberto Duarte
- CIAFEL - Faculty of Sport, University of Porto, Porto, Portugal.,Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| |
Collapse
|
8
|
Lee JJ, Beak S, Ahn SH, Moon BS, Kim J, Lee KP. Suppressing breast cancer by exercise: consideration to animal models and exercise protocols. Phys Act Nutr 2020; 24:22-29. [PMID: 32698258 PMCID: PMC7451835 DOI: 10.20463/pan.2020.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Exercise is thought to have a significant effect on chemotherapy, and previous studies have reported that exercise can increase patient survival. Thus, in this review, we aimed to summarize various animal models to analyze the effects of exercise on breast cancer. METHODS We summarized types of breast cancer animal models from various reports and analyzed the effects of exercise on anti-cancer factors in breast cancer animal models. RESULTS This review aimed to systematically investigate if exercise could aid in suppressing breast cancer. Our study includes (a) increase in survival rate through exercise; (b) the intensity of exercise should be consistent and increased; (c) a mechanism for inhibiting carcinogenesis through exercise; (d) effects of exercise on anti-cancer function. CONCLUSION This review suggested the necessity of a variety of animal models for preclinical studies prior to breast cancer clinical trials. It also provides evidence to support the view that exercise plays an important role in the prevention or treatment of breast cancer by influencing anticancer factors.
Collapse
Affiliation(s)
- Jea Jun Lee
- Laboratory Animal Center, Osong Medical Innovation Foundation, CheongjuRepublic of Korea
| | - Suji Beak
- Research and Development Center, UMUST R&D Corporation, SeoulRepublic of Korea
| | - Sang Hyun Ahn
- Department of Anatomy, Semyung University, JecheonRepublic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, SeoulRepublic of Korea
| | - Jisu Kim
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Kang Pa Lee
- Research and Development Center, UMUST R&D Corporation, SeoulRepublic of Korea
| |
Collapse
|
9
|
Pollán M, Casla-Barrio S, Alfaro J, Esteban C, Segui-Palmer MA, Lucia A, Martín M. Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clin Transl Oncol 2020; 22:1710-1729. [PMID: 32052383 PMCID: PMC7423809 DOI: 10.1007/s12094-020-02312-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Due to improvements in the number of cancer survivors and survival time, there is a growing interest in healthy behaviors, such as physical activity (PA), and their potential impact on cancer- and non-cancer-related morbidity in individuals with cancer. Commissioned by the Spanish Society of Medical Oncology (SEOM), in this review, we sought to distill the most recent evidence on this topic, focusing on the mechanisms that underpin the effects of PA on cancer, the role of PA in cancer prevention and in the prognosis of cancer and practical recommendations for clinicians regarding PA counseling. Despite the available information, the introduction of exercise programs into the global management of cancer patients remains a challenge with several areas of uncertainty. Among others, the most effective behavioral interventions to achieve long-term changes in a patient’s lifestyle and the optimal intensity and duration of PA should be defined with more precision in future studies.
Collapse
Affiliation(s)
- M Pollán
- Cancer and Environmental Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - S Casla-Barrio
- Exercise-Oncology Unit, Spanish Cancer Association, Madrid, Spain.,GEICAM (Spanish Breast Cancer Group), Madrid, Spain
| | - J Alfaro
- Medical Oncology, Hospital de Terrassa, Barcelona, Spain
| | - C Esteban
- Medical Oncology, Hospital Virgen de la Salud, Toledo, Spain
| | - M A Segui-Palmer
- Medical Oncology, Parc Taulí Hospital Universitari, Sabadell, Spain
| | - A Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Calle Tajo, s/n, 28670, Villaviciosa de Odón, Madrid, Spain. .,Instituto de Investigación Hospital 12 de Octubre and CIBER de Envejecimiento Saludable y Fragilidad (CIBERFES), Madrid, Spain.
| | - M Martín
- GEICAM (Spanish Breast Cancer Group), Madrid, Spain. .,Instituto de Investigacion Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. .,Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Calle Dr. Esquerdo 46, 28007, Madrid, Spain.
| |
Collapse
|
10
|
Gholamian S, Attarzadeh Hosseini SR, Rashidlamir A, Aghaalinejad H. The effects of interval aerobic training on mesenchymal biomarker gene expression, the rate of tumor volume, and cachexia in mice with breast cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:244-250. [PMID: 32405368 PMCID: PMC7211355 DOI: 10.22038/ijbms.2019.39535.9375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES It seems that regular exercise can have inhibitory effects on the progression of breast cancer. This study, therefore, aimed to investigate the influences of interval aerobic training on mesenchymal biomarker gene expression, muscle cachexia, and tumor volume changes in mice with breast cancer. MATERIALS AND METHODS Thirty-two female Balb/c mice were allocated to four groups: Exercise Tumor Exercise, Rest Tumor Rest (Control), Rest Tumor Exercise, and Exercise Tumor Rest. Interval aerobic training was done 6 weeks before and 4 weeks after tumor induction. Weight test and inverted screen test were carried out as muscle function tests. Data were analyzed using one-way ANOVA and HSD post hoc. RESULTS The results showed a significant decrease in gene expressions of Twist, Vimentin, and TGF-β in Exercise Tumor Exercise group in comparison with the Control group (P<0.05). Remarkable reduction of the rate of tumor volume was also observed in two training groups (Rest Tumor Exercise, Exercise Tumor Exercise) compared with the control group. According to function tests' results, muscle functions were diminished due to cancer, but interval aerobic training can keep muscles in a normally-functioning state in cancer (P<0.05). CONCLUSION Considering final results, a period of interval aerobic training can be used not only as a prevention method, but also help cancer treatment and impede cachexia by tumor volume reduction, decrease mesenchymal biomarker gene expression, and increase muscle strength functions.
Collapse
Affiliation(s)
- Samira Gholamian
- Department of Exercise Physiology (Biochemistry and Metabolism), Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Amir Rashidlamir
- Department of Exercise Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Aghaalinejad
- Department of Sports Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Zhang X, Ashcraft KA, Betof Warner A, Nair SK, Dewhirst MW. Can Exercise-Induced Modulation of the Tumor Physiologic Microenvironment Improve Antitumor Immunity? Cancer Res 2019; 79:2447-2456. [PMID: 31068341 DOI: 10.1158/0008-5472.can-18-2468] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The immune system plays an important role in controlling cancer growth. However, cancers evolve to evade immune detection. Immune tolerance and active immune suppression results in unchecked cancer growth and progression. A major contributor to immune tolerance is the tumor physiologic microenvironment, which includes hypoxia, hypoglucosis, lactosis, and reduced pH. Preclinical and human studies suggest that exercise elicits mobilization of leukocytes into circulation (also known as "exercise-induced leukocytosis"), especially cytotoxic T cells and natural killer cells. However, the tumor physiologic microenvironment presents a significant barrier for these cells to enter the tumor and, once there, properly function. We hypothesize that the effect of exercise on the immune system's ability to control cancer growth is linked to how exercise affects the tumor physiologic microenvironment. Normalization of the microenvironment by exercise may promote more efficient innate and adaptive immunity within the tumor. This review summarizes the current literature supporting this hypothesis.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Smita K Nair
- Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
12
|
Patient performance status and cancer immunotherapy efficacy: a meta-analysis. Med Oncol 2018; 35:132. [PMID: 30128793 DOI: 10.1007/s12032-018-1194-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
Abstract
Immune checkpoint inhibitors (CKIs) are therapeutic weapons in several advanced malignancies. Performance status is a validated prognostic variable in cancer patients; it possibly affects the efficiency of the immune system. We performed a systematic review and meta-analysis to investigate the predictive role of PS toward treatment with CKIs in cancer patients. Following PRISMA guidelines, an electronic search from PubMed, The Cochrane Library and Embase was performed, from the inception of each database to May 31, 2018. Inclusion criteria were (1) randomized trials comparing CKI with standard therapy for the treatment of patients with solid tumors; (2) information on overall survival (OS) according to PS; (3) full text available; and (4) reported in English language. Data were pooled using HRs for OS according to random effect model. The effect of experimental versus control arms was evaluated in PS = 0 and 1-2 subgroups, and the heterogeneity between the two estimates was assessed using an interaction test. The OS differences between PS = 0 and PS = 1-2 strata were evaluated in all studies and according to predefined subgroups. Eighteen studies were eligible, with 11,354 patients [PS = 0 group 5217 patients (46%); PS = 1-2 group 6137 patients (54%)]. The pooled HR for OS was 0.78 (95% CI 0.69-0.89) in PS = 0 patients. In PS = 1-2 patients, the pooled OS HR was 0.78 (95% CI 0.71-0.86). The OS difference between PS = 0 and PS = 1-2 patients treated with CKI was not significant (P = 0.99). CKI improves survival irrespective of patients' PS. PS should not guide treatment choice for anticancer immunotherapy.
Collapse
|
13
|
Idorn M, Thor Straten P. Chemokine Receptors and Exercise to Tackle the Inadequacy of T Cell Homing to the Tumor Site. Cells 2018; 7:E108. [PMID: 30126117 PMCID: PMC6115859 DOI: 10.3390/cells7080108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023] Open
Abstract
While cancer immune therapy has revolutionized the treatment of metastatic disease across a wide range of cancer diagnoses, a major limiting factor remains with regard to relying on adequate homing of anti-tumor effector cells to the tumor site both prior to and after therapy. Adoptive cell transfer (ACT) of autologous T cells have improved the outlook of patients with metastatic melanoma. Prior to the approval of checkpoint inhibitors, this strategy was the most promising. However, while response rates of up to 50% have been reported, this strategy is still rather crude. Thus, improvements are needed and within reach. A hallmark of the developing tumor is the evasion of immune destruction. Achieved through the recruitment of immune suppressive cell subsets, upregulation of inhibitory receptors and the development of physical and chemical barriers (such as poor vascularization and hypoxia) leaves the microenvironment a hostile destination for anti-tumor T cells. In this paper, we review the emerging strategies of improving the homing of effector T cells (TILs, CARs, TCR engineered T cells, etc.) through genetic engineering with chemokine receptors matching the chemokines of the tumor microenvironment. While this strategy has proven successful in several preclinical models of cancer and the strategy has moved into the first phase I/II clinical trial in humans, most of these studies show a modest (doubling) increase in tumor infiltration of effector cells, which raises the question of whether road blocks must be tackled for efficient homing. We propose a role for physical exercise in modulating the tumor microenvironment and preparing the platform for infiltration of anti-tumor immune cells. In a time of personalized medicine and genetic engineering, this "old tool" may be a way to augment efficacy and the depth of response to immune therapy.
Collapse
Affiliation(s)
- Manja Idorn
- Center for Cancer Immune Therapy, Herlev Gentofte University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark.
| | - Per Thor Straten
- Center for Cancer Immune Therapy, Herlev Gentofte University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Bianco TM, Abdalla DR, Desidério CS, Thys S, Simoens C, Bogers JP, Murta EFC, Michelin MA. The influence of physical activity in the anti-tumor immune response in experimental breast tumor. Immunol Lett 2017; 190:148-158. [PMID: 28818640 DOI: 10.1016/j.imlet.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the influence of physical activity in innate immunity to conduce to an effective antitumoral immune response analyzing the phenotype and activation status of infiltrating cells. We analysed the intracellular cytokines and the transcription factors of tumor infiltrating lymphocytes (TILS) and spleen leukocytes. The Nos2 gene expression was evaluated in spleen cells and futhermore the ROS production was measured and spleen cells; another cell evaluated was dendritic cells (TIDCs), their cytokines expression and membrane molecules; finally to understood the results obtained, we analysed the dendritic cells obtained from bone marrow. Were used female Balb/c mice divided into 4 groups: two controls without tumor, sedentary (GI) and trained (GII) and two groups with tumor, sedentary (GIII) or trained (GIV). The physical activity (PA) was realized acoording swimming protocol. Tumor was induced by injection of 4T1 cells. All experiments were performed in biological triplicate. After the experimental period, the tumor was removed and the cells were identified by flow cytometry with labeling to CD4, CD8, CD11c, CD11b, CD80, CD86 and Ia, and intracelular staining IL-10, IL-12, TNF-α, IFN-γ, IL-17, Tbet, GATA3, RORγt and FoxP3. The bone marrow of the animals was obtained to analyse the derivated DCs by flow cytometry and culture cells to obtain the supernatant to measure the cytokines. Our results demonstrated that the PA inhibit the tumoral growth although not to change the number of TILS, but reduced expression of GATA-3, ROR-γT, related with poor prognosis, and TNF-α intracellular; however occur one significantly reduction in TIDCS, but these cells expressed more co-stimulatory and presentation molecules. Furthermore, we observed that the induced PA stimulated the gene expression of Tbet and the production of inflammatory cytokines suggesting an increase of Th1 systemic response. The results evaluating the systemic influence in DCs showed that the PA improve significantly the number of those cells in bone marrow as well the number of co-stimulatory molecules. Therefore, we could conclude that PA influence the innate immunity by interfering to promote in process of maturation of DCs both in tumor and systemically, that by its turn promote a modification in acquired immune cells, representing by T helper to induce an important alteration transcription factors that are responsible to maintain a suppressive microenviroment, and thereby, allowing the latter cells can thus activate antitumor immune response. The PA was able improve the Th1 systemic response by enhance to Tbet gene expression, promote a slightly increased of Th1-type cytokines and decrease Gata3 and Foxp3 gene expression in which can inhibit the Th1 immune response.
Collapse
Affiliation(s)
- Thiago M Bianco
- Oncology Research Institute (Instituto de Pesquisa em Oncologia-IPON), Federal University of the Triângulo Mineiro (UFTM), Brazil
| | - Douglas R Abdalla
- Oncology Research Institute (Instituto de Pesquisa em Oncologia-IPON), Federal University of the Triângulo Mineiro (UFTM), Brazil
| | - Chamberttan S Desidério
- Oncology Research Institute (Instituto de Pesquisa em Oncologia-IPON), Federal University of the Triângulo Mineiro (UFTM), Brazil
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | - Cindy Simoens
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | - John-Paul Bogers
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | - Eddie F C Murta
- Oncology Research Institute (IPON)/Discipline of Gynecology and Obstetrics, UFTM, Brazil
| | - Márcia A Michelin
- Oncology Research Institute (IPON)/Discipline of Immunology, UFTM, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Exercise and the Hallmarks of Cancer. Trends Cancer 2017; 3:423-441. [DOI: 10.1016/j.trecan.2017.04.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
|
16
|
Abdalla DR, Gomes BBM, Murta EFC, Michelin MA. Bone marrow-derived dendritic cells under influence of experimental breast cancer and physical activity. Oncol Lett 2017; 13:1406-1410. [PMID: 28454269 DOI: 10.3892/ol.2017.5589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Immune cells are required in the immune response against tumours, although sometimes without success. The present study aimed to investigate dendritic cell (DC) maturation in animals with induced immunosuppression that were subjected to physical activity (PA). Immunosuppression was induced using 7,12-dimethyl-benzanthracene (DMBA). A total of 56 Balb/c mice were divided into four groups, including the control group, non-DMBA administered/PA group (GII), DMBA administered/non-PA group (GIII) and the DMBA administered/PA group (GIV). Bone marrow was removed from the leg bones following sacrifice. Bone marrow-derived DCs were stimulated to differentiate by granulocyte-macrophage colony-stimulating factor, interleukin (IL)-4 and tumour necrosis factor-α, after which the phenotype was assessed by flow cytometry and the cytokine profile was assessed using ELISAs. PA significantly increased the percentage of DCs in GII (55.38±2.63%) and GIV (50.1±3.1%) mice, as compared with GI (34.61±1.28%) and GIII (36.25±1.85%) mice (P<0.05). In addition, GIV mice showed a significantly higher level of cluster of differentiation (CD) 80+/CD86+ DCs (76.38±6.31%), as compared with GI (54.03±6.52%) and GIII (52.07±5.74%) mice (P<0.05). Furthermore, GIV mice showed a significantly higher level of CD80+/major histocompatibility complex class II double labelling (P<0.05), as compared with GIV (95.35±1.22%) and GIII (76.15±5.53%) mice. The expression of interferon-γ was significantly increased in GIV mice [5.89 (5.2-7.12)], as compared with GIII mice [2.75 (1.33-4.4)] (P<0.05). Similarly, the expression of IL-12 was markedly increased in GIV mice [1.27 (0.26-2.57)] compared with GIII mice [0.73 (0.44-1.47)], although the difference was not significant (P=0.063). The results of the present study suggested that PA was able to promote the maturation of DCs and their secretion of anti-tumour cytokines. Therefore, PA may emerge as a tool in immunotherapy.
Collapse
Affiliation(s)
- Douglas R Abdalla
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | - Bruno B M Gomes
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | - Eddie F C Murta
- Discipline of Gynecology and Obstetrics, Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | - Márcia A Michelin
- Discipline of Immunology, Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| |
Collapse
|
17
|
Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and Mechanisms of Aerobic Exercise on Cancer Initiation, Progression, and Metastasis: A Critical Systematic Review of In Vivo Preclinical Data. Cancer Res 2016; 76:4032-50. [PMID: 27381680 DOI: 10.1158/0008-5472.can-16-0887] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
A major objective of the emerging field of exercise-oncology research is to determine the efficacy of, and biological mechanisms by which, aerobic exercise affects cancer incidence, progression, and/or metastasis. There is a strong inverse association between self-reported exercise and the primary incidence of several forms of cancer; similarly, emerging data suggest that exercise exposure after a cancer diagnosis may improve outcomes for early-stage breast, colorectal, or prostate cancer. Arguably, critical next steps in the development of exercise as a candidate treatment in cancer control require preclinical studies to validate the biological efficacy of exercise, identify the optimal "dose", and pinpoint mechanisms of action. To evaluate the current evidence base, we conducted a critical systematic review of in vivo studies investigating the effects of exercise in cancer prevention and progression. Studies were evaluated on the basis of tumor outcomes (e.g., incidence, growth, latency, metastasis), dose-response, and mechanisms of action, when available. A total of 53 studies were identified and evaluated on tumor incidence (n = 24), tumor growth (n = 33), or metastasis (n = 10). We report that the current evidence base is plagued by considerable methodologic heterogeneity in all aspects of study design, endpoints, and efficacy. Such heterogeneity precludes meaningful comparisons and conclusions at present. To this end, we provide a framework of methodologic and data reporting standards to strengthen the field to guide the conduct of high-quality studies required to inform translational, mechanism-driven clinical trials. Cancer Res; 76(14); 4032-50. ©2016 AACR.
Collapse
Affiliation(s)
| | - Ralph M Peace
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
18
|
Zhang QB, Meng XT, Jia QA, Bu Y, Ren ZG, Zhang BH, Tang ZY. Herbal Compound Songyou Yin and Moderate Swimming Suppress Growth and Metastasis of Liver Cancer by Enhancing Immune Function. Integr Cancer Ther 2015; 15:368-75. [PMID: 26699805 PMCID: PMC5739186 DOI: 10.1177/1534735415622011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective. Both the Chinese herbal compound Songyou Yin (SYY) and swimming exercise have been shown to have protective effects against liver cancer in animal models. In this study, we investigated whether SYY and moderate swimming (MS) have enhanced effect on suppressing progression of liver cancer by immunomodulation. Methods. C57BL/6 mice were transplanted with Hepa1-6 murine liver cancer cell lines and received treatment with SYY alone or SYY combined with MS. The green fluorescent protein (GFP)-positive metastatic foci in lungs were imaged with a stereoscopic fluorescence microscope. Flow cytometry was used to test the proportion of CD4 +, CD8 + T cells in peripheral blood and the proportions of CD4 + CD25 + Foxp3 + Treg cells in peripheral blood, spleen, and tumor tissues. Cytokine transforming growth factor (TGF)-β1 level in serum was detected by ELISA. Results. SYY plus MS significantly suppressed the growth and lung metastasis of liver cancer and prolonged survival in tumor-burdened mice. SYY plus MS markedly raised the CD4 to CD8 ratio in peripheral blood and lowered the serum TGF-β1 level and the proportions of Treg cells in peripheral blood, spleen, and tumor tissue. The effects of the combined intervention were significantly superior to SYY or MS alone. Conclusion. The combined application of SYY and MS exerted an enhanced effect on suppressing growth and metastasis of liver cancer by strengthening immunity.
Collapse
Affiliation(s)
- Quan-Bao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China Cancer Metastasis Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang-Ting Meng
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Qing-An Jia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Bu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo-Heng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
|
20
|
Goh J, Ladiges WC. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity. Mech Ageing Dev 2014; 139:41-8. [PMID: 24932991 DOI: 10.1016/j.mad.2014.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/28/2014] [Accepted: 06/04/2014] [Indexed: 12/14/2022]
Abstract
Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans.
Collapse
Affiliation(s)
- Jorming Goh
- Interdisciplinary Program in Nutritional Sciences, University of Washington, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
ABDALLA DOUGLASR, ALEIXO ANDRÉADRIANOROCHA, MURTA EDDIEF, MICHELIN MÁRCIAA. Innate immune response adaptation in mice subjected to administration of DMBA and physical activity. Oncol Lett 2014; 7:886-890. [PMID: 24520305 PMCID: PMC3919953 DOI: 10.3892/ol.2013.1774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/09/2013] [Indexed: 01/22/2023] Open
Abstract
Although there is growing interest in studies that promote the benefits of exercise and the correlation between exercise and fighting cancer, previous studies have not been able to elucidate the underlying mechanisms. The aim of the present study was to investigate cytokine synthesis by peritoneal macrophages in the presence of mammary tumors and the effect of physical activity. Female BALB/c virgin mice (age, eight weeks) were obtained for the present study and divided into four groups: A no tumor/non-trained control group; a no tumor/trained group subjected to swim training; a tumor/non-trained group in which the mice received the carcinogenic drug, DMBA and a tumor/trained group in which the mice were subjected to DMBA and swim training protocols. Following the experimental period, immune cells were collected from the peritoneal fluid, placed in culture medium and stimulated with lipopolysaccharide. The presence of the cluster of differentiation-14 marker and expression of the interleukin (IL)-12 cytokine was assessed by flow cytometry and measured via an enzyme-linked immunosorbent assay. The following cytokines were also identified: Interferon-γ, IL-4, IL-10, IL-12, tumor necrosis factor-α and transforming growth factor-β. Physical activity increased the quantity of IL-12 producing macrophages, whereas the presence of a tumor decreased the quantity of macrophages expressing IL-12. Tumor induction, in the absence of swim training, reduced macrophage-profile 1 (M1) cytokine levels while increasing the presence of macrophage-profile 2 cytokines. Physical activity in mice with tumors resulted in reductions in tumor development and promoted immune system polarization towards an antitumor M1 response pattern profile.
Collapse
Affiliation(s)
- DOUGLAS R. ABDALLA
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, Minas Gerais, CEP 38100-000, Brazil
| | - ANDRÉ ADRIANO ROCHA ALEIXO
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, Minas Gerais, CEP 38100-000, Brazil
| | - EDDIE F.C. MURTA
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, Minas Gerais, CEP 38100-000, Brazil
- Discipline of Gynecology and Obstetrics, Federal University of the Triângulo Mineiro, Uberaba, Minas Gerais, CEP 38100-000, Brazil
| | - MÁRCIA A. MICHELIN
- Discipline of Immunology, Federal University of the Triângulo Mineiro, Uberaba, Minas Gerais, CEP 38100-000, Brazil
| |
Collapse
|
22
|
Goh J, Tsai J, Bammler TK, Farin FM, Endicott E, Ladiges WC. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS One 2013; 8:e80123. [PMID: 24312199 PMCID: PMC3842299 DOI: 10.1371/journal.pone.0080123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/29/2013] [Indexed: 01/28/2023] Open
Abstract
Epidemiological research suggests that regular physical activity confers beneficial effects that mediate an anti-tumor response and may reduce cancer recurrence. It is unclear what amount of physical activity is necessary to exert such a protective effect and what mechanisms are involved. We investigated the effects of voluntary wheel running on tumor progression and cytokine gene expression in the transgenic polyoma middle T oncoprotein (PyMT) mouse model of invasive breast cancer. Runners showed significantly reduced tumor sizes compared with non-runners after 3 weeks of running (p ≤ 0.01), and the greater the running distance the smaller the tumor size (Pearson's r = -0.61, p ≤ 0.04, R(2) = 0.38). Mice running greater than 150 km per week had a significantly attenuated tumor size compared with non-runners (p ≤ 0.05). Adipose tissue mass was inversely correlated with tumor size in runners (Pearson's r = -0.77, p = 0.014) but not non-runners. Gene expression of CCL22, a cytokine associated with recruitment of immunosuppressive T regulatory cells, was decreased in tumors of runners compared to non-runners (p ≤ 0.005). No differences in tumor burden or metastatic burden were observed between runners and non-runners after ten weeks of running when the study was completed. We conclude that voluntary wheel running in PyMT mice correlates with an attenuation in tumor progression early during the course of invasive breast cancer. This effect is absent in the later stages of overwhelming tumor burden even though cytokine signaling for immunosuppressive regulatory T cells was down regulated. These observations suggest that the initiation of moderate exercise training for adjunctive therapeutic benefit early in the course of invasive breast cancer should be considered for further investigation.
Collapse
Affiliation(s)
- Jorming Goh
- Interdisciplinary Program in Nutritional Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Frederico M. Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Emma Endicott
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|