1
|
Kennedy LB, Salama AKS. Multiple Options: How to Choose Therapy in Frontline Metastatic Melanoma. Curr Oncol Rep 2024; 26:915-923. [PMID: 38837107 DOI: 10.1007/s11912-024-01547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Given the rapid development of multiple targeted and immune therapies for patients with advanced melanoma, it can be challenging to select a therapy based on currently available data. This review aims to provide an overview of frontline options for metastatic melanoma, with practical guidance for selecting a treatment regimen. RECENT FINDINGS Recently reported data from randomized trials suggests that the majority of patients with unresectable melanoma should receive a PD-1 checkpoint inhibitor as part of their first line therapy, irrespective of BRAF mutation status. Additional data also suggests that combination immunotherapies result in improved outcomes compared to single agent, albeit at the cost of increased toxicity, though to date no biomarker exists to help guide treatment selection. As the number therapeutic options continue to grow for patients with advanced melanoma, there is likely to be a continued focus on combination strategies. Defining the optimal treatment approach in order to maximize efficacy while minimizing toxicity remains an area of active investigation.
Collapse
Affiliation(s)
- Lucy Boyce Kennedy
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, 44195, USA
| | - April K S Salama
- Division of Medical Oncology, Duke University Hospital, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Leong SP. Immune responses and immunotherapeutic approaches in the treatment against cancer. Clin Exp Metastasis 2024; 41:473-493. [PMID: 39155358 PMCID: PMC11374840 DOI: 10.1007/s10585-024-10300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/15/2024] [Indexed: 08/20/2024]
Abstract
Cancer cells within a population are heterogeneous due to genomic mutations or epigenetic changes. The immune response to cancer especially the T cell repertoire within the cancer microenvionment is important to the control and growth of cancer cells. When a cancer clone breaks through the surveillance of the immune system, it wins the battle to overcome the host's immune system. In this review, the complicated profile of the cancer microenvironment is emphasized. The molecular evidence of immune responses to cancer has been recently established. Based on these molecular mechanisms of immune interactions with cancer, clinical trials based on checkpoint inhibition therapy against CTLA-4 and/or PD-1 versus PD-L1 have been successful in the treatment of melanoma, lung cancer and other types of cancer. The diversity of the T cell repertoire is described and the tumor infiltrating lymphocytes within the cancer may be expanded ex vivo and infused back to the patient as a treatment modality for adoptive immunotherapy.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, University of California School of Medicine, San Francisco, USA.
| |
Collapse
|
3
|
Knox A, Wang T, Shackleton M, Ameratunga M. Symptomatic brain metastases in melanoma. Exp Dermatol 2024; 33:e15075. [PMID: 38610093 DOI: 10.1111/exd.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Although clinical outcomes in metastatic melanoma have improved in recent years, the morbidity and mortality of symptomatic brain metastases remain challenging. Response rates and survival outcomes of patients with symptomatic melanoma brain metastases (MBM) are significantly inferior to patients with asymptomatic disease. This review focusses upon the specific challenges associated with the management of symptomatic MBM, discussing current treatment paradigms, obstacles to improving clinical outcomes and directions for future research.
Collapse
Affiliation(s)
- Andrea Knox
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
| | - Tim Wang
- Department of Radiation Oncology, Westmead Hospital, Sydney, Australia
| | - Mark Shackleton
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. J Immunother Cancer 2024; 12:e008640. [PMID: 38485186 PMCID: PMC10941183 DOI: 10.1136/jitc-2023-008640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated durable clinical responses in patients with metastatic melanoma, substantiated by recent positive results of the first phase III trial on TIL therapy. Being a demanding and logistically complex treatment, extensive preclinical and clinical effort is required to optimize patient selection by identifying predictive biomarkers of response. This review aims to comprehensively summarize the current evidence regarding the potential impact of tumor-related factors (such as mutational burden, neoantigen load, immune infiltration, status of oncogenic driver genes, and epigenetic modifications), patient characteristics (including disease burden and location, baseline cytokines and lactate dehydrogenase serum levels, human leucocyte antigen haplotype, or prior exposure to immune checkpoint inhibitors and other anticancer therapies), phenotypic features of the transferred T cells (mainly the total cell count, CD8:CD4 ratio, ex vivo culture time, expression of exhaustion markers, costimulatory signals, antitumor reactivity, and scope of target tumor-associated antigens), and other treatment-related factors (such as lymphodepleting chemotherapy and postinfusion administration of interleukin-2).
Collapse
Affiliation(s)
- Víctor Albarrán Fernández
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Ramón y Cajal University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Pablo Ballestín Martínez
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Clínico San Carlos University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
5
|
Los C, Klobuch S, Haanen JBAG. Tumor-Infiltrating Lymphocyte and Other Cell Therapies for Metastatic Melanoma. Cancer J 2024; 30:113-119. [PMID: 38527265 DOI: 10.1097/ppo.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Major progress in prolonging survival of patients with advanced melanoma has been made in the past decade because of the development and approval of immune checkpoint inhibitor and targeted therapies. However, for nonresponding or relapsing patients, their prognosis is still dismal. Based on clinical trial data, treatment with adoptive cell therapies holds great promise. In patients with metastatic melanoma progressing on or nonresponsive to single-agent anti-programmed cell death 1, infusion of tumor-infiltrating lymphocytes can produce responses in up to half of patients, with durable complete responses in up to 20%. Genetic modification of peripheral blood T cells with T-cell receptors derived from tumor-specific T cells, or with chimeric antigen receptors, has the potential to further improve treatment outcomes in this refractory population. In this review, we will discuss the historical development, current status, and future perspectives of adoptive T-cell therapies in melanoma.
Collapse
Affiliation(s)
- Christy Los
- From the Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute
| | - Sebastian Klobuch
- Department of Medical Oncology, Antoni van Leeuwenhoek/Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
6
|
Klobuch S, Seijkens TTP, Schumacher TN, Haanen JBAG. Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat Rev Clin Oncol 2024; 21:173-184. [PMID: 38191921 DOI: 10.1038/s41571-023-00848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Immunotherapy with immune-checkpoint inhibitors (ICIs) and targeted therapy with BRAF and MEK inhibitors have revolutionized the treatment of melanoma over the past decade. Despite these breakthroughs, the 5-year survival rate of patients with advanced-stage melanoma is at most 50%, emphasizing the need for additional therapeutic strategies. Adoptive cell therapy with tumour-infiltrating lymphocytes (TILs) is a therapeutic modality that has, in the past few years, demonstrated long-term clinical benefit in phase II/III trials involving patients with advanced-stage melanoma, including those with disease progression on ICIs and/or BRAF/MEK inhibitors. In this Review, we summarize the current status of TIL therapies for patients with advanced-stage melanoma, including potential upcoming marketing authorization, the characteristics of TIL therapy products, as well as future strategies that are expected to increase the efficacy of this promising cellular immunotherapy.
Collapse
Affiliation(s)
- Sebastian Klobuch
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom T P Seijkens
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - John B A G Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands.
- Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
7
|
Betof Warner A, Hamid O, Komanduri K, Amaria R, Butler MO, Haanen J, Nikiforow S, Puzanov I, Sarnaik A, Bishop MR, Schoenfeld AJ. Expert consensus guidelines on management and best practices for tumor-infiltrating lymphocyte cell therapy. J Immunother Cancer 2024; 12:e008735. [PMID: 38423748 PMCID: PMC11005706 DOI: 10.1136/jitc-2023-008735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Adoptive cell therapy with autologous, ex vivo-expanded, tumor-infiltrating lymphocytes (TILs) is being investigated for treatment of solid tumors and has shown robust responses in clinical trials. Based on the encouraging efficacy, tolerable safety profile, and advancements in a central manufacturing process, lifileucel is now the first US Food and Drug Administration (FDA)-approved TIL cell therapy product. To this end, treatment management and delivery practice guidance is needed to ensure successful integration of this modality into clinical care. This review includes clinical and toxicity management guidelines pertaining to the TIL cell therapy regimen prepared by the TIL Working Group, composed of internationally recognized hematologists and oncologists with expertize in TIL cell therapy, and relates to patient care and operational aspects. Expert consensus recommendations for patient management, including patient eligibility, screening tests, and clinical and toxicity management with TIL cell therapy, including tumor tissue procurement surgery, non-myeloablative lymphodepletion, TIL infusion, and IL-2 administration, are discussed in the context of potential standard of care TIL use. These recommendations provide practical guidelines for optimal clinical management during administration of the TIL cell therapy regimen, and recognition of subsequent management of toxicities. These guidelines are focused on multidisciplinary teams of physicians, nurses, and stakeholders involved in the care of these patients.
Collapse
Affiliation(s)
| | - Omid Hamid
- The Angeles Clinic and Research Institute - West Los Angeles Office, Los Angeles, California, USA
| | - Krishna Komanduri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Rodabe Amaria
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcus O Butler
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - John Haanen
- Medical Oncology, Antoni van Leeuwenhoek Nederlands Kanker Instituut, Amsterdam, Netherlands
| | | | - Igor Puzanov
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Roswell Park Cancer Institute
| | | | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, Chicago, Illinois, USA
| | - Adam J Schoenfeld
- Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
García-Domínguez DJ, López-Enríquez S, Alba G, Garnacho C, Jiménez-Cortegana C, Flores-Campos R, de la Cruz-Merino L, Hajji N, Sánchez-Margalet V, Hontecillas-Prieto L. Cancer Nano-Immunotherapy: The Novel and Promising Weapon to Fight Cancer. Int J Mol Sci 2024; 25:1195. [PMID: 38256268 PMCID: PMC10816838 DOI: 10.3390/ijms25021195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is a complex disease that, despite advances in treatment and the greater understanding of the tumor biology until today, continues to be a prevalent and lethal disease. Chemotherapy, radiotherapy, and surgery are the conventional treatments, which have increased the survival for cancer patients. However, the complexity of this disease together with the persistent problems due to tumor progression and recurrence, drug resistance, or side effects of therapy make it necessary to explore new strategies that address the challenges to obtain a positive response. One important point is that tumor cells can interact with the microenvironment, promoting proliferation, dissemination, and immune evasion. Therefore, immunotherapy has emerged as a novel therapy based on the modulation of the immune system for combating cancer, as reflected in the promising results both in preclinical studies and clinical trials obtained. In order to enhance the immune response, the combination of immunotherapy with nanoparticles has been conducted, improving the access of immune cells to the tumor, antigen presentation, as well as the induction of persistent immune responses. Therefore, nanomedicine holds an enormous potential to enhance the efficacy of cancer immunotherapy. Here, we review the most recent advances in specific molecular and cellular immunotherapy and in nano-immunotherapy against cancer in the light of the latest published preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain;
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
| | - Rocío Flores-Campos
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Medicine, University of Seville, 41009 Seville, Spain
| | - Nabil Hajji
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Cancer Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain; (D.J.G.-D.); (S.L.-E.); (G.A.); (C.J.-C.); (R.F.-C.); (N.H.)
- Institute of Biomedicine of Seville, IBiS, 41013 Seville, Spain;
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, 41009 Seville, Spain
| |
Collapse
|
9
|
Fenton GA, Mitchell DA. Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clin Cancer Res 2023; 29:843-857. [PMID: 36383184 PMCID: PMC9975672 DOI: 10.1158/1078-0432.ccr-22-2257] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
The transfusion of naturally derived or modified cellular therapies, referred to as adoptive cell therapy (ACT), has demonstrated clinical efficacy in the treatment of hematologic malignancies and metastatic melanoma. In addition, cellular vaccination, such as dendritic cell-based cancer vaccines, continues to be actively explored. The manufacturing of these therapies presents a considerable challenge to expanding the use of ACT as a viable treatment modality, particularly at academic production facilities. Furthermore, the expanding commercial interest in ACT presents new opportunities as well as strategic challenges for the future vision of cellular manufacturing in academic centers. Current trends in the production of ACT at tertiary care centers and prospects for improved manufacturing practices that will foster further clinical benefit are reviewed herein.
Collapse
Affiliation(s)
- Graeme A Fenton
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.,Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida.,Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Pillai M, Jiang Y, Lorigan PC, Thistlethwaite FC, Thomas M, Kirillova N, Bridgeman JS, Kueberuwa G, Biswas S, Velazquez P, Chonzi D, Guest RD, Roberts ZJ, Hawkins RE. Clinical feasibility and treatment outcomes with nonselected autologous tumor-infiltrating lymphocyte therapy in patients with advanced cutaneous melanoma. Am J Cancer Res 2022; 12:3967-3984. [PMID: 36119832 PMCID: PMC9441996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023] Open
Abstract
Nonselected autologous tumor-infiltrating lymphocytes (TILs) may provide advantages over other treatments for solid tumors, including checkpoint inhibitor-refractory melanoma. This retrospective analysis reports a single-center experience of nonselected autologous TILs derived from digested tumors for compassionate use treatment of advanced cutaneous melanoma, including after programmed cell death protein 1 (PD-1) inhibition. Patients with histologically confirmed metastatic cutaneous melanoma and no standard-of-care treatment options underwent tumor resection for TIL product manufacturing. Patients received lymphodepleting chemotherapy with cyclophosphamide for 2 days and fludarabine for 5 days, followed by a single TIL infusion and post-TIL high-dose interleukin (IL)-2. Safety assessments included clinically significant adverse events (AEs). Efficacy assessments included overall response rate (ORR), complete response (CR) rate, disease control rate (DCR), and overall survival. Between October 2011 and August 2019, 21 patients underwent treatment (median follow-up time, 52.2 months from TIL infusion). Among all treated patients, median age was 45 years, median number of disease sites was 4, 100% had M1c or M1d disease, and 90% received prior checkpoint inhibitor. Twelve patients received TILs after prior PD-1 inhibition. The safety profile among all treated patients and the prior PD-1 inhibitor subgroup was generally consistent with lymphodepletion and high-dose IL-2. No treatment-related deaths occurred. Among all patients, the ORR was 67%, CR rate was 19%, and the DCR was 86%, which was consistent with that observed in the prior PD-1 inhibitor subgroup (58%, 8%, and 75%, respectively). Median overall survival in all treated patients and the prior PD-1 inhibitor subgroup was 21.3 months. In total, 5 patients (24%) had durable ongoing responses (>30 months post-TIL infusion) at data cutoff, and all patients who achieved CR remained alive and disease free. To further illustrate how TIL therapy may integrate into established treatment paradigms, several case studies of patients treated in this series were included. Overall, these data demonstrate that manufacturing of nonselected autologous TILs from tumor digests is feasible and resulted in high rates of durable response in poor-risk patient populations, which may address significant unmet medical need.
Collapse
Affiliation(s)
- Manon Pillai
- Department of Medical Oncology, The Christie, NHS Foundation TrustManchester, UK
| | | | - Paul C Lorigan
- Department of Medical Oncology, The Christie, NHS Foundation TrustManchester, UK
- Division of Cancer Sciences, The University of ManchesterManchester, UK
| | - Fiona C Thistlethwaite
- Department of Medical Oncology, The Christie, NHS Foundation TrustManchester, UK
- Division of Cancer Sciences, The University of ManchesterManchester, UK
| | | | | | | | | | | | | | | | | | | | - Robert E Hawkins
- Department of Medical Oncology, The Christie, NHS Foundation TrustManchester, UK
- Instil Bio, Inc.Dallas, TX, USA
- Division of Cancer Sciences, The University of ManchesterManchester, UK
| |
Collapse
|
11
|
Site-Specific Considerations on Engineered T Cells for Malignant Gliomas. Biomedicines 2022; 10:biomedicines10071738. [PMID: 35885047 PMCID: PMC9312945 DOI: 10.3390/biomedicines10071738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has revolutionized cancer treatment. Despite the recent advances in immunotherapeutic approaches for several tumor entities, limited response has been observed in malignant gliomas, including glioblastoma (GBM). Conversely, one of the emerging immunotherapeutic modalities is chimeric antigen receptors (CAR) T cell therapy, which demonstrated promising clinical responses in other solid tumors. Current pre-clinical and interventional clinical studies suggest improved efficacy when CAR-T cells are delivered locoregionally, rather than intravenously. In this review, we summarize possible CAR-T cell administration routes including locoregional therapy, systemic administration with and without focused ultrasound, direct intra-arterial drug delivery and nanoparticle-enhanced delivery in glioma. Moreover, we discuss published as well as ongoing and planned clinical trials involving CAR-T cell therapy in malignant glioma. With increasing neoadjuvant and/or adjuvant combinatorial immunotherapeutic concepts and modalities with specific modes of action for malignant glioma, selection of administration routes becomes increasingly important.
Collapse
|
12
|
Okamura K, Nagayama S, Tate T, Chan HT, Kiyotani K, Nakamura Y. Lymphocytes in tumor-draining lymph nodes co-cultured with autologous tumor cells for adoptive cell therapy. J Transl Med 2022; 20:241. [PMID: 35606862 PMCID: PMC9125345 DOI: 10.1186/s12967-022-03444-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Background Tumor-draining lymph nodes (TDLNs) are primary sites, where anti-tumor lymphocytes are primed to tumor-specific antigens and play pivotal roles in immune responses against tumors. Although adoptive cell therapy (ACT) using lymphocytes isolated from TDLNs were reported, characterization of immune activity of lymphocytes in TDLNs to tumor cells was not comprehensively performed. Here, we demonstrate TDLNs to have very high potential as cell sources for immunotherapy. Methods Lymphocytes from TDLNs resected during surgical operation were cultured with autologous-tumor cells for 2 weeks and evaluated tumor-reactivity by IFNγ ELISPOT assay. We investigated the commonality of T cell receptor (TCR) clonotypes expanded by the co-culture with tumor cells with those of tumor infiltrating lymphocytes (TILs). Results We found that that TCR clonotypes of PD-1-expressing CD8+ T cells in lymph nodes commonly shared with those of TILs in primary tumors and lymphocytes having tumor-reactivity and TCR clonotypes shared with TILs could be induced from non-metastatic lymph nodes when they were co-cultured with autologous tumor cells. Conclusion Our results imply that tumor-reactive effector T cells were present even in pathologically non-metastatic lymph nodes and could be expanded in vitro in the presence of autologous tumor cells and possibly be applied for ACT. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03444-1.
Collapse
|
13
|
Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant 2022; 57:1217-1239. [PMID: 35589997 PMCID: PMC9119216 DOI: 10.1038/s41409-022-01691-w] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
|
14
|
Melanoma Brain Metastases: An Update on the Use of Immune Checkpoint Inhibitors and Molecularly Targeted Agents. Am J Clin Dermatol 2022; 23:523-545. [PMID: 35534670 DOI: 10.1007/s40257-022-00678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/01/2022]
Abstract
Brain metastases from melanoma are no longer uniformly associated with dismal outcomes. Impressive tumor tissue-based (craniotomy) translational research has consistently shown that distinct patient subgroups may have a favorable prognosis. This review provides a historical overview of the standard-of-care treatments until the early 2010s. It subsequently summarizes more recent advances in understanding the biology of melanoma brain metastases (MBMs) and treating patients with MBMs, mainly focusing upon prospective clinical trials of BRAF/MEK and PD-1/CTLA-4 inhibitors in patients with previously untreated MBMs. These additional systemic treatments have provided effective complementary treatment approaches and/or alternatives to radiation and craniotomy. The current role of radiation therapy, especially in conjunction with systemic therapies, is also discussed through the lens of various retrospective studies. The combined efficacy of systemic treatments with radiation has improved overall survival over the last 10 years and has sparked considerable research interest regarding optimal dosing and sequencing of radiation treatments with systemic treatments. Finally, the review describes ongoing clinical trials in patients with MBMs.
Collapse
|
15
|
Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, Rahmanpour D, Fattahi S, Shabani H, Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathol Res Pract 2021; 229:153723. [PMID: 34952426 DOI: 10.1016/j.prp.2021.153723] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Although cancer immunotherapy has taken center stage in mainstream oncology inducing complete and long-lasting tumor regression, only a subset of patients receiving treatment respond and others relapse after an initial response. Different tumor types respond differently, and even in cancer types that respond (hot tumors), we still observe tumors that are unresponsive (cold tumors), suggesting the presence of resistance. Hence, the development of intrinsic or acquired resistance is a big challenge for the cancer immunotherapy field. Resistance to immunotherapy, including checkpoint inhibitors, CAR-T cell therapy, oncolytic viruses, and recombinant cytokines arises due to cancer cells employing several mechanisms to evade immunosurveillance.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aram Parhizkar
- Faculty of Natural Science, Tabriz University, Tabriz, Iran
| | - Shima Hayati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Morteza Mousapour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Amin Mahmoudpour
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Liliane Eleid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Fattahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hadi Shabani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Kilian M, Bunse T, Wick W, Platten M, Bunse L. Genetically Modified Cellular Therapies for Malignant Gliomas. Int J Mol Sci 2021; 22:12810. [PMID: 34884607 PMCID: PMC8657496 DOI: 10.3390/ijms222312810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, 69120 Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Michael Platten
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Helmholtz-Institute of Translational Oncology (HI-TRON), 55131 Mainz, Germany
| | - Lukas Bunse
- DKTK (German Cancer Consortium), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
18
|
Seitter SJ, Sherry RM, Yang JC, Robbins PF, Shindorf ML, Copeland AR, McGowan CT, Epstein M, Shelton TE, Langhan MM, Franco Z, Danforth DN, White DE, Rosenberg SA, Goff SL. Impact of Prior Treatment on the Efficacy of Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma. Clin Cancer Res 2021; 27:5289-5298. [PMID: 34413159 DOI: 10.1158/1078-0432.ccr-21-1171] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Adoptive cell transfer (ACT) of autologous tumor-infiltrating lymphocytes (TIL) can mediate durable responses in patients with metastatic melanoma. This retrospective analysis provides long-term follow-up and describes the effect of prior therapy on outcomes after ACT-TIL. PATIENTS AND METHODS Patients with metastatic melanoma underwent surgical resection of a tumor for generation of TILs and were treated with a lymphodepleting preparative regimen followed by adoptive transfer of TILs and intravenous IL2. Clinical characteristics of enrolled patients and treatment characteristics of TIL infusion products over two decades of ACT were analyzed to identify predictors of objective response. RESULTS Adoptive transfer of TILs mediated an objective response rate of 56% (108/192) and median melanoma-specific survival of 28.5 months in patients naïve to anti-programmed cell death-1 (PD-1) therapy compared with 24% (8/34) and 11.6 months in patients refractory to anti-PD-1 (aPD-1). Among patients with BRAF V600E/K-mutated disease, prior treatment with targeted molecular therapy was also associated with a decreased response rate (21% vs. 60%) and decreased survival (9.3 vs. 50.7 months) when compared with those patients naïve to targeted therapy. With a median potential follow-up of 89 months, 46 of 48 complete responders in the aPD-1-naïve cohort have ongoing responses after a single treatment and 10-year melanoma-specific survival of 96%. CONCLUSIONS Patients previously treated with PD-1 or MAPK inhibition are significantly less likely to develop durable objective responses to ACT-TIL. While ACT-TIL is currently being investigated for treatment-refractory patients, it should also be considered as an initial treatment option for eligible patients with metastatic melanoma.
Collapse
Affiliation(s)
- Samantha J Seitter
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Richard M Sherry
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Paul F Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mackenzie L Shindorf
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Amy R Copeland
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Christine T McGowan
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Monica Epstein
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Thomas E Shelton
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Michelle M Langhan
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zulmarie Franco
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Donald E White
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
19
|
MacFarlane AW, Yeung HM, Alpaugh RK, Dulaimi E, Engstrom PF, Dasari A, Campbell KS, Vijayvergia N. Impacts of pembrolizumab therapy on immune phenotype in patients with high-grade neuroendocrine neoplasms. Cancer Immunol Immunother 2021; 70:1893-1906. [PMID: 33398390 PMCID: PMC8195815 DOI: 10.1007/s00262-020-02811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
High grade neuroendocrine neoplasms (G3 NENs) are rare aggressive tumors with limited treatment options. Twenty-one previously treated patients with metastatic extra-pulmonary G3 NENs were treated with pembrolizumab. Baseline tumor samples were assessed for PD-L1 and tumor infiltrating lymphocytes (TIL). Peripheral blood samples drawn pre-treatment, prior to cycle three, and at disease progression were analyzed by flow cytometry. One patient achieved partial response, two had stable disease, and 18 exhibited progressive disease. The partially responding patient did not progress after 392 days, and the median progression-free survival (PFS) was 59 days. Longer PFS correlated independently with higher pre-treatment peripheral blood T-cell counts and lower pre-treatment activation state (CD69 expression) of naïve T cells and NK cells. Peripheral T-cell viability was reduced in patients with greater TILs. Post-treatment, T cells had reduced numbers of CD4+ cells, reduced PD-1 expression, increased activation of effector (CD62L-) cells, and increased expression of TIGIT. Baseline TIGIT expression on peripheral T cells also correlated positively with Ki67 in tumor. Patients with higher baseline T-cell expression of TIM-3 had shorter PFS. Despite limited activity of pembrolizumab, this study highlights the immune phenotype in this rare tumor type before and after treatment. High baseline peripheral T-cell count and reduced activation of T and NK cell subsets were associated with improved outcomes. Furthermore, increased post-treatment TIGIT and elevated baseline TIM-3 expression suggest that these may limit the efficacy of pembrolizumab, providing a rationale for combination immunotherapy (PD-1 with TIGIT and/or TIM-3 antibodies) to treat extra-pulmonary G3 NENs.
Collapse
Affiliation(s)
- Alexander W MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Ho-Man Yeung
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - R Katherine Alpaugh
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Paul F Engstrom
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Namrata Vijayvergia
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
20
|
Haydar D, Houke H, Chiang J, Yi Z, Odé Z, Caldwell K, Zhu X, Mercer KS, Stripay JL, Shaw TI, Vogel P, DeRenzo C, Baker SJ, Roussel MF, Gottschalk S, Krenciute G. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro Oncol 2021; 23:999-1011. [PMID: 33320196 PMCID: PMC8168826 DOI: 10.1093/neuonc/noaa278] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immunotherapy with chimeric antigen receptor (CAR) T cells is actively being explored for pediatric brain tumors in preclinical models and early phase clinical studies. At present, it is unclear which CAR target antigens are consistently expressed across different pediatric brain tumor types. In addition, the extent of HLA class I expression is unknown, which is critical for tumor recognition by conventional αβTCR T cells. METHODS We profiled 49 low- and high-grade pediatric brain tumor patient-derived orthotopic xenografts (PDOX) by flow analysis for the expression of 5 CAR targets (B7-H3, GD2, IL-13Rα2, EphA2, and HER2), and HLA class I. In addition, we generated B7-H3-CAR T cells and evaluated their antitumor activity in vitro and in vivo. RESULTS We established an expression hierarchy for the analyzed antigens (B7-H3 = GD2 >> IL-13Rα2 > HER2 = EphA2) and demonstrated that antigen expression is heterogenous. All high-grade gliomas expressed HLA class I, but only 57.1% of other tumor subtypes had detectable expression. We then selected B7-H3 as a target for CAR T-cell therapy. B7-H3-CAR T cells recognized tumor cells in an antigen-dependent fashion. Local or systemic administration of B7-H3-CAR T cells induced tumor regression in PDOX and immunocompetent murine glioma models resulting in a significant survival advantage. CONCLUSIONS Our study highlights the importance of studying target antigen and HLA class I expression in PDOX samples for the future design of immunotherapies. In addition, our results support active preclinical and clinical exploration of B7-H3-targeted CAR T-cell therapies for a broad spectrum of pediatric brain tumors.
Collapse
Affiliation(s)
- Dalia Haydar
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Haley Houke
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jason Chiang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zhongzhen Yi
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zelda Odé
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kenneth Caldwell
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kimberly S Mercer
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jennifer L Stripay
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
21
|
Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, Miftakhova R, Fainshtein M, Rizvanov A, Bulatov E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel) 2021; 13:743. [PMID: 33670139 PMCID: PMC7916861 DOI: 10.3390/cancers13040743] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Laboratory of Transplantation Immunology, National Hematology Research Centre, 125167 Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Alexey Petukhov
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
22
|
Wilson TG, Winter H, Taylor H, Herbert C. Treating brain metastases in melanoma: What is the optimal CNS-directed and systemic management? JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:279-285. [PMID: 34631229 PMCID: PMC8492052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Treatments for melanoma have significantly advanced with the approval of targeted treatments against the BRAF/MEK pathway and immunotherapy in the form of checkpoint inhibitors. Studies have shown the effectiveness of these treatments against brain metastases. However, the optimum treatment strategy utilising CNS-directed treatments such as stereotactic radiosurgery (SRS) and neurosurgical resection is less clear. Over six years, 70 patients with metastatic melanoma were treated for brain metastases at a tertiary treatment centre. The median overall survival (OS) for all patients was 10.2 months. 51 patients received localised treatment; 7 resection (median OS 10 months), 11 resection and SRS (median OS 17.3 months) and 33 SRS alone (median OS 17.4 months). For patients treated with SRS those who had <2 cm3 treated had a better median OS (20.5 months) compared to those who had >2 cm3 treated (12 months). 69 Patients received systemic treatment. The median OS of patients who did not have CNS-directed treatment was poor (median OS 1.2 months). Patients treated with first line dual immunotherapy had the best median OS (26.7 months), compared to anti-PD-1 (14.1 months), ipilimumab (14.3 months) and kinase inhibitors (10.9 months). Despite advancements in treatment, the development of brain metastases in melanoma is associated with worse outcomes. A combination of CNS-directed and systemic treatment is important to improve survival. Dual immunotherapy appears to be the most effective systemic treatment and the use of SRS improved outcomes. As metastatic melanoma treatments evolve there need to be an ongoing focus to ensure these strategies adequately treat intracranial disease.
Collapse
Affiliation(s)
| | - Helen Winter
- Bristol Haematology and Oncology Centre, Bristol, UK
| | - Hannah Taylor
- Bristol Haematology and Oncology Centre, Bristol, UK
| | | |
Collapse
|
23
|
Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020; 49:101437. [PMID: 33262066 DOI: 10.1016/j.smim.2020.101437] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
Cellular therapies have shown increasing promise as a cancer treatment. Encouraging results against hematologic malignancies are paving the way to move into solid tumors. In this review, we will focus on T-cell therapies starting from tumor infiltrating lymphocytes (TILs) to optimized T-cell receptor-modified (TCR) cells and chimeric antigen receptor-modified T cells (CAR-Ts). We will discuss the positive preclinical and clinical findings of these approaches, along with some of the persisting barriers that need to be overcome to improve outcomes.
Collapse
Affiliation(s)
- Ernesto Leon
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Raghuveer Ranganathan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Igarashi Y, Sasada T. Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res 2020; 2020:5825401. [PMID: 33282961 PMCID: PMC7685825 DOI: 10.1155/2020/5825401] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Until now, three types of well-recognized cancer treatments have been developed, i.e., surgery, chemotherapy, and radiotherapy; these either remove or directly attack the cancer cells. These treatments can cure cancer at earlier stages but are frequently ineffective for treating cancer in the advanced or recurrent stages. Basic and clinical research on the tumor microenvironment, which consists of cancerous, stromal, and immune cells, demonstrates the critical role of antitumor immunity in cancer development and progression. Cancer immunotherapies have been proposed as the fourth cancer treatment. In particular, clinical application of immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1/PD-L1 antibodies, in various cancer types represents a major breakthrough in cancer therapy. Nevertheless, accumulating data regarding immune checkpoint inhibitors demonstrate that these are not always effective but are instead only effective in limited cancer populations. Indeed, several issues remain to be solved to improve their clinical efficacy; these include low cancer cell antigenicity and poor infiltration and/or accumulation of immune cells in the cancer microenvironment. Therefore, to accelerate the further development of cancer immunotherapies, more studies are necessary. In this review, we will summarize the current status of cancer immunotherapies, especially cancer vaccines, and discuss the potential problems and solutions for the next breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuka Igarashi
- Kanagawa Cancer Center, Research Institute, Division of Cancer Immunotherapy, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center, Research Institute, Division of Cancer Immunotherapy, Japan
- Kanagawa Cancer Center, Cancer Vaccine and Immunotherapy Center, Japan
| |
Collapse
|
25
|
Lin B, Du L, Li H, Zhu X, Cui L, Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother 2020; 132:110873. [PMID: 33068926 DOI: 10.1016/j.biopha.2020.110873] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are infiltrating lymphocytes in tumor tissues. After isolation, screening and amplification in vitro, they will be implanted into patients and play a specific killing effect on tumors. Since TILs have not been genetically modified and come from the body of patients, there will be relatively few adverse reactions. This is also the advantage of TIL treatment. In recent years, its curative effect on solid tumors began to show its sharpness. However, due to the limitations of the immune microenvironment and the mutation of antigens, TIL's development was slowed down. This article reviews the research progress, biological characteristics, preparation and methods of enhancing the therapeutic effect of tumor-infiltrating lymphocytes, their roles in different tumors and prognosis, and emphasizes the important value of tumor-infiltrating lymphocytes in anti-tumor.
Collapse
Affiliation(s)
- Baisheng Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Hongmei Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Meng Q, Wu Y, Sui X, Meng J, Wang T, Lin Y, Wang Z, Zhou X, Qi Y, Du J, Gao Y. POTN: A Human Leukocyte Antigen-A2 Immunogenic Peptides Screening Model and Its Applications in Tumor Antigens Prediction. Front Immunol 2020; 11:02193. [PMID: 33133063 PMCID: PMC7579403 DOI: 10.3389/fimmu.2020.02193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Whole genome/exome sequencing data for tumors are now abundant, and many tumor antigens, especially mutant antigens (neoantigens), have been identified for cancer immunotherapy. However, only a small fraction of the peptides from these antigens induce cytotoxic T cell responses. Therefore, efficient methods to identify these antigenic peptides are crucial. The current models of major histocompatibility complex (MHC) binding and antigenic prediction are still inaccurate. In this study, 360 9-mer peptides with verified immunological activity were selected to construct a prediction of tumor neoantigen (POTN) model, an immunogenic prediction model specifically for the human leukocyte antigen-A2 allele. Based on the physicochemical properties of amino acids, such as the residue propensity, hydrophobicity, and organic solvent/water, we found that the predictive capability of POTN is superior to that of the prediction programs SYPEITHI, IEDB, and NetMHCpan 4.0. We used POTN to screen peptides for the cancer-testis antigen located on the X chromosome, and we identified several peptides that may trigger immunogenicity. We synthesized and measured the binding affinity and immunogenicity of these peptides and found that the accuracy of POTN is higher than that of NetMHCpan 4.0. Identifying the properties related to the T cell response or immunogenicity paves the way to understanding the MHC/peptide/T cell receptor complex. In conclusion, POTN is an efficient prediction model for screening high-affinity immunogenic peptides from tumor antigens, and thus provides useful information for developing cancer immunotherapy.
Collapse
Affiliation(s)
- Qingqing Meng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jingjie Meng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Lin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Monaco SE, Pantanowitz L, Xing J, Cuda J, Kammula US. Cytologic Evaluation of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy. Am J Clin Pathol 2020; 153:513-523. [PMID: 31895425 PMCID: PMC11485275 DOI: 10.1093/ajcp/aqz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Novel immunotherapeutic options for refractory metastatic cancer patients include adoptive cell therapies such as tumor infiltrating lymphocytes (TILs). This study characterizes the clinicopathologic findings in a cohort of TIL specimens. METHODS Patients with metastatic malignancy who were eligible had TILs from their metastases grown and expanded and then sent to pathology. RESULTS A total of 11 TIL specimens (10 melanoma, 1 adenocarcinoma) from patients enrolled in an experimental clinical trial were reviewed. All specimens showed more than 200 lymphoid cells, stained positive for lymphoid markers confirming an activated cytotoxic T-cell immunophenotype, and morphologically showed an intermediate-sized population with immature chromatin and frequent mitoses. Six cases (55%) showed large cells with nucleomegaly and prominent nucleoli. CONCLUSIONS This report is the first describing cytopathologic findings of autologous TIL therapy including adequacy guidelines and expected cytomorphologic and immunophenotypic findings. To meet this novel clinical demand, a predefined cytology protocol to rapidly process and interpret these specimens needs to be established.
Collapse
Affiliation(s)
- Sara E Monaco
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Juan Xing
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jackie Cuda
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Udai S Kammula
- Solid Tumor Cellular Immunotherapy Program, Hillman Cancer Center, Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
28
|
Cohen JV, Wang N, Venur VA, Hadfield MJ, Cahill DP, Oh K, Brastianos PK. Neurologic complications of melanoma. Cancer 2020; 126:477-486. [DOI: 10.1002/cncr.32619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Justine V. Cohen
- Division of Medical Oncology and Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| | - Nancy Wang
- Division of Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| | - Vyshak A. Venur
- Division of Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| | - Matthew J. Hadfield
- Division of Internal Medicine University of Connecticut Hartford Connecticut
| | - Daniel P. Cahill
- Division of Neurosurgery Massachusetts General Hospital Boston Massachusetts
| | - Kevin Oh
- Division of Radiation Oncology Massachusetts General Hospital Boston Massachusetts
| | - Priscilla K. Brastianos
- Division of Medical Oncology and Neuro‐Oncology Massachusetts General Hospital Cancer Center Boston Massachusetts
| |
Collapse
|
29
|
Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:109-131. [PMID: 32483735 DOI: 10.1007/978-3-030-43032-0_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen-presenting cells ex vivo is time-consuming and often results in T-cell products with a low frequency of tumor-specific T cells. Furthermore, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models; however, early clinical phase trials are in progress. In this chapter, we will review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
|
30
|
Dafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM, Ohashi PS, Kammula US, Orcurto A, Zimmermann S, Trueb L, Klebanoff CA, Lotze MT, Kandalaft LE, Coukos G. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 2019; 30:1902-1913. [PMID: 31566658 DOI: 10.1093/annonc/mdz398] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) has been tested in advanced melanoma patients at various centers. We conducted a systematic review and meta-analysis to assess its efficacy on previously treated advanced metastatic cutaneous melanoma. The PubMed electronic database was searched from inception to 17 December 2018 to identify studies administering TIL-ACT and recombinant interleukin-2 (IL-2) following non-myeloablative chemotherapy in previously treated metastatic melanoma patients. Objective response rate (ORR) was the primary end point. Secondary end points were complete response rate (CRR), overall survival (OS), duration of response (DOR) and toxicity. Pooled estimates were derived from fixed or random effect models, depending on the amount of heterogeneity detected. Analysis was carried out separately for high dose (HD) and low dose (LD) IL-2. Sensitivity analyses were carried out. Among 1211 records screened, 13 studies (published 1988 - 2016) were eligible for meta-analysis. Among 410 heavily pretreated patients (some with brain metastasis), 332 received HD-IL-2 and 78 LD-IL-2. The pooled overall ORR estimate was 41% [95% confidence interval (CI) 35% to 48%], and the overall CRR was 12% (95% CI 7% to 16%). For the HD-IL-2 group, the ORR was 43% (95% CI 36% to 50%), while for the LD-IL-2 it was 35% (95% CI 25% to 45%). Corresponding pooled estimates for CRR were 14% (95% CI 7% to 20%) and 7% (95% CI 1% to 12%). The majority of HD-IL-2 complete responders (27/28) remained in remission during the extent of follow-up after CR (median 40 months). Sensitivity analyses yielded similar results. Higher number of infused cells was associated with a favorable response. The ORR for HD-IL-2 compared favorably with the nivolumab/ipilimumab combination following anti-PD-1 failure. TIL-ACT therapy, especially when combined with HD-IL-2, achieves durable clinical benefit and warrants further investigation. We discuss the current position of TIL-ACT in the therapy of advanced melanoma, particularly in the era of immune checkpoint blockade therapy, and review future opportunities for improvement of this approach.
Collapse
Affiliation(s)
- U Dafni
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - O Michielin
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Martin Lluesma
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - V Polydoropoulou
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - D Karlis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - M J Besser
- Ella Institute for the Treatment and Research of Melanoma and Skin Cancer, Sheba Medical Center, Tel Aviv; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I-M Svane
- Department of Hematology and Oncology, Center for Cancer Immune Therapy, Herlev Hospital, Herlev, Denmark
| | - P S Ohashi
- Department of Immunology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - U S Kammula
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh
| | - A Orcurto
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Zimmermann
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - L Trueb
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - C A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York; Parker Institute for Cancer Immunotherapy, New York; Weill Cornell Medical College, New York
| | - M T Lotze
- Department of Immunology, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, USA
| | - L E Kandalaft
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Magalhaes I, Carvalho-Queiroz C, Hartana CA, Kaiser A, Lukic A, Mints M, Nilsson O, Grönlund H, Mattsson J, Berglund S. Facing the future: challenges and opportunities in adoptive T cell therapy in cancer. Expert Opin Biol Ther 2019; 19:811-827. [PMID: 30986360 DOI: 10.1080/14712598.2019.1608179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In recent years, immunotherapy for the treatment of solid cancer has emerged as a promising therapeutic alternative. Adoptive cell therapy (ACT), especially T cell-based, has been found to cause tumor regression and even cure in a percentage of treated patients. Checkpoint inhibitors further underscore the potential of the T cell compartment in the treatment of cancer. Not all patients respond to these treatments; however, many challenges remain. AREAS COVERED This review covers the challenges and progress in tumor antigen target identification and selection, and cell product manufacturing for T cell ACT. Tumor immune escape mechanisms and strategies to overcome those in the context of T cell ACT are also discussed. EXPERT OPINION The immunotherapy toolbox is rapidly expanding and improving, and the future promises further breakthroughs in the T cell ACT field. The heterogeneity of the tumor microenvironment and the multiplicity of tumor immune escape mechanisms pose formidable challenges to successful T cell immunotherapy in solid tumors, however. Individualized approaches and strategies combining treatments targeting different immunotherapeutic aspects will be needed in order to expand the applicability and improve the response rates in future.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden
| | - Claudia Carvalho-Queiroz
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Ciputra Adijaya Hartana
- c Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital , Cambridge , MA , USA
| | - Andreas Kaiser
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Ana Lukic
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Michael Mints
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden.,d Department of Surgical and Perioperative Sciences , Umeå University, Umeå, Sweden.,e Blood and Marrow Transplant Program, Medical Oncology and Hematology , Princess Margaret Cancer Center , Toronto , Canada.,f Department of Medicine , University of Toronto , Toronto , Canada
| | - Ola Nilsson
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Hans Grönlund
- b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Jonas Mattsson
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden.,f Department of Medicine , University of Toronto , Toronto , Canada
| | - Sofia Berglund
- a Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden.,b Therapeutic Immune Design, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
32
|
Carreau NA, Pavlick AC. Nivolumab and ipilimumab: immunotherapy for treatment of malignant melanoma. Future Oncol 2019; 15:349-358. [DOI: 10.2217/fon-2018-0607] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As recently as 10 years ago, a diagnosis of metastatic melanoma was considered fatal, with a prognosis of typically 6 months or less from diagnosis. The development of checkpoint inhibitors, such as ipilimumab and nivolumab, which modulate the effects of the CTLA-4 and PD-1, respectively, has revolutionized outcomes for these patients. Monotherapy improves metastatic disease survival, but dual therapy provides greater benefit with 58% of patients alive at 3 years. Combination immunotherapy is even active in brain metastases. In the adjuvant setting, data show that at 1 year over 70% patients remain disease-free with PD-1 blockade. Immunotherapy is generally safe and well tolerated. However, treatment-related endocrinopathies require long-term medications. Nowadays, advanced cutaneous melanoma is a more manageable disease.
Collapse
Affiliation(s)
- Nicole A Carreau
- Department of Medical Oncology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna C Pavlick
- Department of Medical Oncology, New York University Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
33
|
Carreau N, Pavlick A. Revolutionizing treatment of advanced melanoma with immunotherapy. Surg Oncol 2019; 42:101180. [PMID: 30691991 DOI: 10.1016/j.suronc.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
Until immunotherapy was developed, a diagnosis of metastatic melanoma was most often fatal. Programmed death receptor-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibodies have been shown to work synergistically to treat metastatic disease throughout the body and brain. Today, over half of patients diagnosed with stage IV disease are alive after 3 years. In the adjuvant setting, 70% patients remain disease free with PD-1 blockade after 1 year. These treatments are generally safe and well tolerated. However, treatment-related endocrinopathies require long-term medications. With better therapies producing more durable responses, advanced cutaneous melanoma is dramatically more manageable now than ever before.
Collapse
Affiliation(s)
| | - Anna Pavlick
- NYU Perlmutter Cancer Center, NYU Langone Health, USA.
| |
Collapse
|
34
|
Choi BD, Maus MV, June CH, Sampson JH. Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Clin Cancer Res 2018; 25:2042-2048. [PMID: 30446589 DOI: 10.1158/1078-0432.ccr-18-1625] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is a devastating disease with an extremely poor prognosis. Immunotherapy via adoptive cell transfer (ACT), especially with T cells engineered to express chimeric antigen receptors (CAR), represents a particularly promising approach. Despite the recent success of CAR T cells for blood cancers, the question remains whether this powerful anticancer therapy will ultimately work for brain tumors, and whether the primary immunologic challenges in this disease, which include antigenic heterogeneity, immune suppression, and T-cell exhaustion, can be adequately addressed. Here, we contextualize these concepts by reviewing recent developments in ACT for GBM, with a special focus on pioneering clinical trials of CAR T-cell therapy.
Collapse
Affiliation(s)
- Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carl H June
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center and Duke University, Durham, North Carolina. .,Departments of Neurosurgery, Pathology, and Biomedical Engineering, Duke University Medical Center and Duke University, Durham, North Carolina
| |
Collapse
|