1
|
Ten Ham RMT, Rohaan MW, Jedema I, Kessels R, Stegeman W, Scheepmaker W, Nuijen B, Nijenhuis C, Lindenberg M, Borch TH, Monberg T, Donia M, Marie Svane I, van Harten W, Haanen J, Retel VP. Cost-effectiveness of treating advanced melanoma with tumor-infiltrating lymphocytes based on an international randomized phase 3 clinical trial. J Immunother Cancer 2024; 12:e008372. [PMID: 38531663 DOI: 10.1136/jitc-2023-008372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION In a multicenter, open-label randomized phase 3 clinical trial conducted in the Netherlands and Denmark, treatment with ex vivo-expanded tumor-infiltrating lymphocytes (TIL-NKI/CCIT) from autologous melanoma tumor compared with ipilimumab improved progression-free survival in patients with unresectable stage IIIC-IV melanoma after failure of first-line or second-line treatment. Based on this trial, we conducted a cost-utility analysis. METHODS A Markov decision model was constructed to estimate expected costs (expressed in 2021€) and outcomes (quality-adjusted life years (QALYs)) of TIL-NKI/CCIT versus ipilimumab in the Netherlands. The Danish setting was assessed in a scenario analysis. A modified societal perspective was applied over a lifetime horizon. TIL-NKI/CCIT production costs were estimated via activity-based costing. Through sensitivity analyses, uncertainties and their impact on the incremental cost-effectiveness ratio (ICER) were assessed. RESULTS Mean total undiscounted lifetime benefits were 4.47 life years (LYs) and 3.52 QALYs for TIL-NKI/CCIT and 3.33 LYs and 2.46 QALYs for ipilimumab. Total lifetime undiscounted costs in the Netherlands were €347,168 for TIL-NKI/CCIT (including €67,547 for production costs) compared with €433,634 for ipilimumab. Undiscounted lifetime cost in the Danish scenario were €337,309 and €436,135, respectively. This resulted in a dominant situation for TIL-NKI/CCIT compared with ipilimumab in both countries, meaning incremental QALYs were gained at lower costs. Survival probabilities, and utility in progressive disease affected the ICER most. CONCLUSION Based on the data of a randomized phase 3 trial, treatment with TIL-NKI/CCIT in patients with unresectable stage IIIC-IV melanoma is cost-effective and cost-saving, both in the current Dutch and Danish setting. These findings led to inclusion of TIL-NKI/CCIT as insured care and treatment guidelines. Publicly funded development of the TIL-NKI/CCIT cell therapy shows realistic promise to further explore development of effective personalized treatment while warranting economic sustainability of healthcare systems.
Collapse
Affiliation(s)
- Renske M T Ten Ham
- Department of Epidemiology & Health Economics, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maartje W Rohaan
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rob Kessels
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wim Stegeman
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Walter Scheepmaker
- Financial Department, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Division of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cynthia Nijenhuis
- Biotherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Melanie Lindenberg
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Troels Holz Borch
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Tine Monberg
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Wim van Harten
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | - John Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Valesca P Retel
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Verbeek JGE, de Jong VMT, Wijnja HM, Jager A, Linn SC, Retèl VP, van Harten WH. High-dose chemotherapy with stem cell rescue to treat stage III homologous deficient breast cancer: factors influencing clinical implementation. BMC Cancer 2023; 23:26. [PMID: 36611165 PMCID: PMC9824989 DOI: 10.1186/s12885-022-10412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND High-dose chemotherapy with autologous stem cell rescue (HDCT) is a promising treatment for patients with stage III, HER2-negative, homologous recombination deficient (HRD) breast cancer. Clinical effectiveness and cost-effectiveness are currently under investigation in an international multicenter randomized controlled trial. To increase the chance of successful introduction of HDCT into daily clinical practice, we aimed to identify relevant factors for smooth implementation using an early comprehensive assessment framework. METHODS This is a qualitative, multi-stakeholder, exploratory research using semi-structured interviews guided by the Constructive Technology Assessment model, which evaluates the quality of a novel health technology by clinical, economic, patient-related, and organizational factors. Stakeholders were recruited by purposeful stratified sampling and interviewed until sufficient content saturation was reached. Two researchers independently created themes, categories, and subcategories by following inductive coding steps, these were verified by a third researcher. RESULTS We interviewed 28 stakeholders between June 2019 and April 2021. In total, five overarching themes and seventeen categories were identified. Important findings for optimal implementation included the structural identification and referral of all eligible patients, early integration of supportive care, multidisciplinary collaboration between- and within hospitals, (de)centralization of treatment aspects, the provision of information for patients and healthcare professionals, and compliance to new regulation for the BRCA1-like test. CONCLUSIONS In anticipation of a positive reimbursement decision, we recommend to take the highlighted implementation factors into consideration. This might expedite and guide high-quality equitable access to HDCT for patients with stage III, HER2-negative, HRD breast cancer in the Netherlands.
Collapse
Affiliation(s)
- Joost G. E. Verbeek
- grid.430814.a0000 0001 0674 1393Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90203, 1006 BE Amsterdam, The Netherlands ,grid.6214.10000 0004 0399 8953Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | - Vincent M. T. de Jong
- grid.430814.a0000 0001 0674 1393Department of Molecular Pathology, Antoni Van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hanna M. Wijnja
- grid.430814.a0000 0001 0674 1393Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90203, 1006 BE Amsterdam, The Netherlands
| | - Agnes Jager
- grid.508717.c0000 0004 0637 3764Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sabine C. Linn
- grid.430814.a0000 0001 0674 1393Department of Molecular Pathology, Antoni Van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.430814.a0000 0001 0674 1393Department of Medical Oncology, Antoni Van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.7692.a0000000090126352Department of Pathology, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Valesca P. Retèl
- grid.430814.a0000 0001 0674 1393Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90203, 1006 BE Amsterdam, The Netherlands ,grid.6214.10000 0004 0399 8953Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | - Wim H. van Harten
- grid.430814.a0000 0001 0674 1393Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, P.O. Box 90203, 1006 BE Amsterdam, The Netherlands ,grid.6214.10000 0004 0399 8953Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| |
Collapse
|
3
|
Wang Z, Ahmed S, Labib M, Wang H, Hu X, Wei J, Yao Y, Moffat J, Sargent EH, Kelley SO. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat Biomed Eng 2022; 6:108-117. [PMID: 35087171 DOI: 10.1038/s41551-021-00820-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Adoptive cell therapies require the recovery and expansion of highly potent tumour-infiltrating lymphocytes (TILs). However, TILs in tumours are rare and difficult to isolate efficiently, which hinders the optimization of therapeutic potency and dose. Here we show that a configurable microfluidic device can efficiently recover potent TILs from solid tumours by leveraging specific expression levels of target cell-surface markers. The device, which is sandwiched by permanent magnets, balances magnetic forces and fluidic drag forces to sort cells labelled with magnetic nanoparticles conjugated with antibodies for the target markers. Compared with conventional cell sorting, immunomagnetic cell sorting recovered up to 30-fold higher numbers of TILs, and the higher levels and diversity of the recovered TILs accelerated TIL expansion and enhanced their therapeutic potency. Immunomagnetic cell sorting also allowed us to identify and isolate potent TIL subpopulations, in particular TILs with moderate levels of CD39 (a marker of T-cell reactivity to tumours and T-cell exhaustion), which we found are tumour-specific, self-renewable and essential for the long-term success of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiyue Hu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiarun Wei
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuxi Yao
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
4
|
Qin SS, Melucci AD, Chacon AC, Prieto PA. Adoptive T Cell Therapy for Solid Tumors: Pathway to Personalized Standard of Care. Cells 2021; 10:cells10040808. [PMID: 33916369 PMCID: PMC8067276 DOI: 10.3390/cells10040808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-infiltrating T cells (TILs) has emerged as a promising therapy for the treatment of unresectable or metastatic solid tumors. One challenge to finding a universal anticancer treatment is the heterogeneity present between different tumors as a result of genetic instability associated with tumorigenesis. As the epitome of personalized medicine, TIL-ACT bypasses the issue of intertumoral heterogeneity by utilizing the patient’s existing antitumor immune response. Despite being one of the few therapies capable of inducing durable, complete tumor regression, many patients fail to respond. Recent research has focused on increasing therapeutic efficacy by refining various aspects of the TIL protocol, which includes the isolation, ex vivo expansion, and subsequent infusion of tumor specific lymphocytes. This review will explore how the therapy has evolved with time by highlighting various resistance mechanisms to TIL therapy and the novel strategies to overcome them.
Collapse
Affiliation(s)
- Shuyang S. Qin
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA;
| | - Alexa D. Melucci
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
| | - Alexander C. Chacon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
| | - Peter A. Prieto
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
- Correspondence: ; Tel.: +1-(585)-703-4655
| |
Collapse
|
5
|
Şahin U, Demirer T. Graft-versus-cancereffect and innovative approaches in thetreatment of refractory solid tumors. Turk J Med Sci 2020; 50:1697-1706. [PMID: 32178508 PMCID: PMC7672351 DOI: 10.3906/sag-1911-112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background/aim Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been used for the treatment of various refractory solid tumors during the last two decades. After the demonstration of graft-versus-leukemia (GvL) effect in a leukemic murine model following allo-HSCT from other strains of mice, graft-versus-tumor (GvT) effect in a solid tumor after allo-HSCT has also been reported in a murine model in 1984. Several trials have reported the presence of a GvT effect in patients with various refractory solid tumors, including renal, ovarian and colon cancers, as well as soft tissue sarcomas [1]. The growing data on haploidentical transplants also indicate GvT effect in some pediatric refractory solid tumors. Novel immunotherapy-based treatment modalities aim at inducing an allo-reactivity against the metastatic solid tumor via a GvT effect. Recipient derived immune effector cells (RDICs) in the antitumor reactivity following allo-HSCT have also been considered as an emerging therapy for advanced refractory solid tumors. Conclusion This review summarizes the background, rationale, and clinical results of immune-based strategies using GvT effect for the treatment of various metastatic and refractory solid tumors, as well as innovative approaches such as haploidentical HSCT, CAR-T cell therapies and tumor infiltrating lymphocytes (TIL).
Collapse
Affiliation(s)
- Uğur Şahin
- Hematology Unit, Yenimahalle Education and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Taner Demirer
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Lindenberg M, Retèl V, Rohaan M, van den Berg J, Haanen J, van Harten W. Evaluating different adoption scenarios for TIL-therapy and the influence on its (early) cost-effectiveness. BMC Cancer 2020; 20:712. [PMID: 32736535 PMCID: PMC7393723 DOI: 10.1186/s12885-020-07166-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Treatment with tumor-Infiltrating Lymphocytes (TIL) is an innovative therapy for advanced melanoma with promising clinical phase I/II study results and likely beneficial cost-effectiveness. As a randomized controlled trial on the effectiveness of TIL therapy in advanced melanoma compared to ipilimumab is still ongoing, adoption of TIL therapy by the field is confronted with uncertainty. To deal with this, scenario drafting can be used to identify potential barriers and enables the subsequent anticipation on these barriers. This study aims to inform adoption decisions of TIL by evaluating various scenarios and evaluate their effect on the cost-effectiveness. METHODS First, 14 adoption scenarios for TIL-therapy were drafted using a Delphi approach with a group of involved experts. Second, the likelihood of the scenarios taking place within 5 years was surveyed among international experts using a web-based questionnaire. Third, based on the questionnaire results and recent literature, scenarios were labeled as being either "likely" or "-unlikely". Finally, the cost-effectiveness of TIL treatment involving the "likely" scored scenarios was calculated. RESULTS Twenty-nine experts from 12 countries completed the questionnaire. The scenarios showed an average likelihood ranging from 29 to 58%, indicating that future developments of TIL-therapy were surrounded with quite some uncertainty. Eight of the 14 scenarios were labeled as "likely". The net monetary benefit per patient is presented as a measure of cost-effectiveness, where a positive value means that a scenario is cost-effective. For six of these scenarios the cost-effectiveness was calculated: "Commercialization of TIL production" (the price was assumed to be 3 times the manufacturing costs in the academic setting) (-€51,550), "Pharmaceutical companies lowering the prices of ipilimumab" (€11,420), "Using TIL-therapy combined with ipilimumab" (-€10,840), "Automatic TIL production" (€22,670), "TIL more effective" (€23,270), "Less Interleukin-2" (€20,370). CONCLUSIONS Incorporating possible future developments, TIL-therapy was calculated to be cost-effective compared to ipilimumab in the majority of "likely" scenarios. These scenarios could function as facilitators for adoption. Contrary, TIL therapy was expected to not be cost-effective when sold at commercial prices, or when combined with ipilimumab. These scenarios should be considered in the adoption decision as these may act as crucial barriers.
Collapse
Affiliation(s)
- Melanie Lindenberg
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Valesca Retèl
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Maartje Rohaan
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Joost van den Berg
- Biotherapeutics Unit (BTU), The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - John Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Wim van Harten
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. .,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands.
| |
Collapse
|
7
|
Wälchli S, Sioud M. Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted? Methods Mol Biol 2020; 2115:407-417. [PMID: 32006413 DOI: 10.1007/978-1-0716-0290-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Adoptive T cell therapy (ACT) using either chimeric antigen receptor (CAR)- or T cell receptor (TCR)-engineered lymphocytes has emerged as a promising strategy to treat cancer. However, this therapy is still facing enormous challenges such as poor quality of autologous T cells, T cell exhaustion, and the immune suppressive tumor microenvironments. Additionally, graft-versus-host disease is an issue that must be addressed to allow the use of allogeneic T cells. Strategies to overcome these therapeutic challenges using gene editing technology are now being developed. One strategy is to disrupt TCR and/or MHC expression in healthy donor T cells to generate T cells for universal use. Another strategy is to improve the quality of patient's T cells by eliminating either the expression of selected immune checkpoint receptors or negative regulators of TCR signaling and/or T-cell homeostasis. Here, we review the use of CRISPR-Cas9 platform in T cell engineering with a focus on the development of universal T cells and boosted autologous cells for next-generation ACT.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
8
|
Dafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM, Ohashi PS, Kammula US, Orcurto A, Zimmermann S, Trueb L, Klebanoff CA, Lotze MT, Kandalaft LE, Coukos G. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 2019; 30:1902-1913. [PMID: 31566658 DOI: 10.1093/annonc/mdz398] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) has been tested in advanced melanoma patients at various centers. We conducted a systematic review and meta-analysis to assess its efficacy on previously treated advanced metastatic cutaneous melanoma. The PubMed electronic database was searched from inception to 17 December 2018 to identify studies administering TIL-ACT and recombinant interleukin-2 (IL-2) following non-myeloablative chemotherapy in previously treated metastatic melanoma patients. Objective response rate (ORR) was the primary end point. Secondary end points were complete response rate (CRR), overall survival (OS), duration of response (DOR) and toxicity. Pooled estimates were derived from fixed or random effect models, depending on the amount of heterogeneity detected. Analysis was carried out separately for high dose (HD) and low dose (LD) IL-2. Sensitivity analyses were carried out. Among 1211 records screened, 13 studies (published 1988 - 2016) were eligible for meta-analysis. Among 410 heavily pretreated patients (some with brain metastasis), 332 received HD-IL-2 and 78 LD-IL-2. The pooled overall ORR estimate was 41% [95% confidence interval (CI) 35% to 48%], and the overall CRR was 12% (95% CI 7% to 16%). For the HD-IL-2 group, the ORR was 43% (95% CI 36% to 50%), while for the LD-IL-2 it was 35% (95% CI 25% to 45%). Corresponding pooled estimates for CRR were 14% (95% CI 7% to 20%) and 7% (95% CI 1% to 12%). The majority of HD-IL-2 complete responders (27/28) remained in remission during the extent of follow-up after CR (median 40 months). Sensitivity analyses yielded similar results. Higher number of infused cells was associated with a favorable response. The ORR for HD-IL-2 compared favorably with the nivolumab/ipilimumab combination following anti-PD-1 failure. TIL-ACT therapy, especially when combined with HD-IL-2, achieves durable clinical benefit and warrants further investigation. We discuss the current position of TIL-ACT in the therapy of advanced melanoma, particularly in the era of immune checkpoint blockade therapy, and review future opportunities for improvement of this approach.
Collapse
Affiliation(s)
- U Dafni
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - O Michielin
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Martin Lluesma
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - V Polydoropoulou
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - D Karlis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - M J Besser
- Ella Institute for the Treatment and Research of Melanoma and Skin Cancer, Sheba Medical Center, Tel Aviv; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I-M Svane
- Department of Hematology and Oncology, Center for Cancer Immune Therapy, Herlev Hospital, Herlev, Denmark
| | - P S Ohashi
- Department of Immunology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - U S Kammula
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh
| | - A Orcurto
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Zimmermann
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - L Trueb
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - C A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York; Parker Institute for Cancer Immunotherapy, New York; Weill Cornell Medical College, New York
| | - M T Lotze
- Department of Immunology, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, USA
| | - L E Kandalaft
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|