1
|
Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers (Basel) 2023; 15:cancers15041145. [PMID: 36831488 PMCID: PMC9953800 DOI: 10.3390/cancers15041145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG's rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a "smart" enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The "smart" eNPs-EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs-EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs-EUG is a promising strategy for innovative anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Nisitha Wijewantha
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Ryan M. Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rashaun A. Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Lydia Lang
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| | - Grigoriy Sereda
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| |
Collapse
|
2
|
Shaw SM, Middleton J, Wigglesworth K, Charlemagne A, Schulz O, Glossop MS, Whalen GF, Old R, Westby M, Pickford C, Tabakman R, Carmi-Levy I, Vainstein A, Sorani E, Zur AA, Kristian SA. AGI-134: a fully synthetic α-Gal glycolipid that converts tumors into in situ autologous vaccines, induces anti-tumor immunity and is synergistic with an anti-PD-1 antibody in mouse melanoma models. Cancer Cell Int 2019; 19:346. [PMID: 31889898 PMCID: PMC6923872 DOI: 10.1186/s12935-019-1059-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023] Open
Abstract
Background Treatments that generate T cell-mediated immunity to a patient’s unique neoantigens are the current holy grail of cancer immunotherapy. In particular, treatments that do not require cumbersome and individualized ex vivo processing or manufacturing processes are especially sought after. Here we report that AGI-134, a glycolipid-like small molecule, can be used for coating tumor cells with the xenoantigen Galα1-3Galβ1-4GlcNAc (α-Gal) in situ leading to opsonization with pre-existing natural anti-α-Gal antibodies (in short anti-Gal), which triggers immune cascades resulting in T cell mediated anti-tumor immunity. Methods Various immunological effects of coating tumor cells with α-Gal via AGI-134 in vitro were measured by flow cytometry: (1) opsonization with anti-Gal and complement, (2) antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells, and (3) phagocytosis and antigen cross-presentation by antigen presenting cells (APCs). A viability kit was used to test AGI-134 mediated complement dependent cytotoxicity (CDC) in cancer cells. The anti-tumoral activity of AGI-134 alone or in combination with an anti-programmed death-1 (anti-PD-1) antibody was tested in melanoma models in anti-Gal expressing galactosyltransferase knockout (α1,3GT−/−) mice. CDC and phagocytosis data were analyzed by one-way ANOVA, ADCC results by paired t-test, distal tumor growth by Mantel–Cox test, C5a data by Mann–Whitney test, and single tumor regression by repeated measures analysis. Results In vitro, α-Gal labelling of tumor cells via AGI-134 incorporation into the cell membrane leads to anti-Gal binding and complement activation. Through the effects of complement and ADCC, tumor cells are lysed and tumor antigen uptake by APCs increased. Antigen associated with lysed cells is cross-presented by CD8α+ dendritic cells leading to activation of antigen-specific CD8+ T cells. In B16-F10 or JB/RH melanoma models in α1,3GT−/− mice, intratumoral AGI-134 administration leads to primary tumor regression and has a robust abscopal effect, i.e., it protects from the development of distal, uninjected lesions. Combinations of AGI-134 and anti-PD-1 antibody shows a synergistic benefit in protection from secondary tumor growth. Conclusions We have identified AGI-134 as an immunotherapeutic drug candidate, which could be an excellent combination partner for anti-PD-1 therapy, by facilitating tumor antigen processing and increasing the repertoire of tumor-specific T cells prior to anti-PD-1 treatment.
Collapse
Affiliation(s)
- Stephen M Shaw
- Agalimmune Ltd., Sandwich, Kent, UK.,BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | - Jenny Middleton
- Agalimmune Ltd., Sandwich, Kent, UK.,BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | - Kim Wigglesworth
- 3Department of Surgery, University of Massachusetts Medical School, Worcester, MA USA
| | | | - Oliver Schulz
- 4Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Giles F Whalen
- 3Department of Surgery, University of Massachusetts Medical School, Worcester, MA USA.,5Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert Old
- 6Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | | | | | | | | | | | - Ella Sorani
- BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | - Arik A Zur
- BioLineRx Ltd, Modi'in-Maccabim-Re'ut, Israel
| | | |
Collapse
|
3
|
Hahn AW, Drake C, Denmeade SR, Zakharia Y, Maughan BL, Kennedy E, Link C, Vahanian N, Hammers H, Agarwal N. A Phase I Study of Alpha-1,3-Galactosyltransferase-Expressing Allogeneic Renal Cell Carcinoma Immunotherapy in Patients with Refractory Metastatic Renal Cell Carcinoma. Oncologist 2019; 25:121-e213. [PMID: 32043778 DOI: 10.1634/theoncologist.2019-0599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
LESSONS LEARNED HyperAcute Renal immunotherapy was well tolerated and demonstrated antitumor activity in patients requiring salvage-line treatment for metastatic renal cell carcinoma (mRCC). HyperAcute Renal immunotherapy was safely administered with concomitant salvage-line treatments for mRCC, and it may be a candidate for inclusion in novel combinations for salvage treatment of mRCC because of its unique mechanism of action. BACKGROUND HyperAcute Renal (HAR) immunotherapy exploits a naturally occurring barrier to xenotransplantation and zoonotic infections in humans to immunize patients against metastatic renal cell carcinoma (mRCC) cells. HAR consists of two allogeneic renal cancer cell lines genetically modified to express α(1,3)Gal, to which humans have an inherent pre-existing immunity. METHODS Patients with refractory mRCC were eligible for this phase I dose-escalation trial. Concomitant treatment was permitted after the initial 2 months of HAR monotherapy. HAR was injected intradermally weekly for 4 weeks then biweekly for 20 weeks, totaling 14 immunizations. The primary endpoint was safety and determination of a maximum tolerated dose (MTD). RESULTS Among 18 patients enrolled, two grade 3 adverse events (AEs) were attributed to HAR, lymphopenia and injection site reaction, and no grade 4/5 AEs occurred. The recommended phase II dose (RP2D) was 300 million cells. One patient had a partial response and eight patients had stable disease, for a disease control rate of 50% (9/18). Median overall survival with low-dose HAR was 14.2 months and was 25.3 months with high-dose HAR. CONCLUSION In pretreated mRCC, HAR immunotherapy was well tolerated and demonstrated antitumor activity. HAR immunotherapy may be a candidate for inclusion in novel combinations for salvage treatment of mRCC.
Collapse
Affiliation(s)
- Andrew W Hahn
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Charles Drake
- Divison of Hematology/Oncology, Department of Medicine, New York Presbyterian, Columbia University Medical Center, New York, New York, USA
| | - Samuel R Denmeade
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Yousef Zakharia
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin L Maughan
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | - Hans Hammers
- Division of Hematology/Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Nicolini A, Barak V, Biava P, Ferrari P, Rossi G, Carpi A. The Use of Immunotherapy to Treat Metastatic Breast Cancer. Curr Med Chem 2019; 26:941-962. [PMID: 29424297 DOI: 10.2174/0929867325666180209124052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
This article reviews the principal attempts of immune-modulation or immune therapy in metastatic breast cancer. It considers their rationale and reports on results from the relevant key clinical trials. Immune-modulatory or immune-stimulating cytokines used alone or combined with conventional therapies is among the principal approaches of immune manipulation in breast cancer. As this issue has recently been reviewed by us, the aim of the current article is to discuss our updated and unpublished data on this topic. Overall survival in luminal (28 patients) and non-luminal (9 patients) molecular subtypes is 91 and 59 months respectively that is about two and half or three times longer than expected. Thereafter, we focus on monoclonal antibodies (mAb) based-therapies including novel strategies to overcome resistance to anti-HER2 mAb. The main vaccine platforms in different molecular subtypes and immune therapies in triple negative metastatic breast cancer (m-TNBC) are discussed in the last sections. Some phase III investigations have already changed the current clinical practice. In fact, pertuzumab plus trastuzumab and docetaxel is the recommended first line regimen in HER2 positive locally recurrent or metastatic breast cancer and bevacizumab plus paclitaxel or docetaxel is a reasonable option for m-TNBC. In some other observational or phase I/II studies on first-line trastuzumab plus chemotherapy and hormonal therapy and in that on HER2 peptide/protein vaccines promising although preliminary findings have been reported to be further validated. In the remaining studies, results were disappointing. In the future, finding new predictive biomarkers and exploring more suitable synergizing combinations, time and dose-dependent-scheduled sequences of currently and further investigated immunological approaches are main challenges.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Italy
| | - Vivian Barak
- Immunology Lab for tumor diagnosis, Hadassah University, Jerusalem, Israel
| | - Piermario Biava
- Scientific Institute of Research and Care Multimedica, Milan, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
5
|
Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:321. [PMID: 30518369 PMCID: PMC6282398 DOI: 10.1186/s12906-018-2392-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022]
Abstract
Background Eugenol is a natural phenolic compound and possesses anticancer and antibacterial activities. Breast cancer is a major global health problem, and most of the chemotherapeutic agents are highly toxic with long-term side effects. Therefore, this study aimed to explore the possibility of using eugenol as an anti-metastatic and anti-proliferative agent against MDA-MB-231 and SK-BR-3 breast cancer cells. Methods Breast cancer cell lines MDA-MB-231 and SK-BR-3 were treated with eugenol and cell proliferation was measured using a real-time cell electronic sensing system. Annexin V analysis with flow cytometry was used to detect the effect of eugenol on cell death. In MDA-MB-231 and SK-BR-3 cells, metastatic potential after eugenol treatment was examined using a wound-healing assay. Real-time PCR was used to study the effect of eugenol on the expression of anti-metastatic genes such as MMP2, MMP9, and TIMP-1, and genes involved in apoptosis including Caspase3, Caspase7, and Caspase9. Results Treatment with 4 μM and 8 μM eugenol for 48 h significantly inhibited cell proliferation of MDA-MB-231, with an inhibition rate of 76.4%, whereas 5 μM and 10 μM of eugenol for 48 h significantly inhibited the proliferation of SK-BR-3 cells with an inhibition rate of 68.1%. Eugenol-treated cells showed significantly decreased MMP2 and MMP9 expression and an insignificant increase in TIMP1 expression in HER2 positive and triple negative breast cancer cells. Eugenol significantly increased the proportion of MDA-MB-231 and SK-BR-3 cells in late apoptosis and increased the expression of Caspase3, Caspase7, and Caspase9. Conclusion To the best of our knowledge, this is the first study to describe the anti-metastatic effect of eugenol against MDA-MB-231 and SK-BR-3 breast cancer cell lines.
Collapse
|
6
|
Ferguson PM, Long GV, Scolyer RA, Thompson JF. Impact of genomics on the surgical management of melanoma. Br J Surg 2018; 105:e31-e47. [PMID: 29341162 DOI: 10.1002/bjs.10751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although surgery for early-stage melanoma offers the best chance of cure, recent advances in molecular medicine have revolutionized the management of late-stage melanoma, leading to significant improvements in clinical outcomes. Research into the genomic drivers of disease and cancer immunology has not only ushered in a new era of targeted and immune-based therapies for patients with metastatic melanoma, but has also provided new tools for monitoring disease recurrence and selecting therapeutic strategies. These advances present new opportunities and challenges to the surgeon treating patients with melanoma. METHODS The literature was reviewed to evaluate diagnostic and therapeutic advances in the management of cutaneous melanoma, and to highlight the impact of these advances on surgical decision-making. RESULTS Genomic testing is not required in the surgical management of primary melanoma, although it can provide useful information in some situations. Circulating nucleic acids from melanoma cells can be detected in peripheral blood to predict disease recurrence before it manifests clinically, but validation is required before routine clinical application. BRAF mutation testing is the standard of care for all patients with advanced disease to guide therapy, including the planning of surgery in adjuvant and neoadjuvant settings. CONCLUSION Surgery remains central for managing primary melanoma, and is an important element of integrated multidisciplinary care in advanced disease, particularly for patients with resectable metastases. The field will undergo further change as clinical trials address the relationships between surgery, radiotherapy and systemic therapy for patients with high-risk, early-stage and advanced melanoma.
Collapse
Affiliation(s)
- P M Ferguson
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G V Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - R A Scolyer
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - J F Thompson
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Abstract
INTRODUCTION Pancreatic cancer remains a deadly disease despite advances in surgery, chemotherapy, and radiation therapy. Treatment failure is likely due to intense chemoresistance and immunosuppression. Therefore, new treatment paradigms are urgently needed. Immunotherapy, particularly adoptive T cell transfer, is a highly-personalized therapy that involves the isolation and ex vivo expansion of tumor-specific T cells before administration to cancer-bearing hosts. Areas covered: This review summarizes different strategies of adoptive T cell therapy and their application in pancreatic cancer treatment. It also highlights recent advances and gives discussion on the future directions in T cell-based immunotherapy for pancreatic cancer. Expert opinion: Pancreatic ductal adenocarcinoma is extremely challenging to treat, in part, due to intense desmoplastic reaction and immunosuppression. The recent progress in cancer immunotherapy triggers a hope to use immunotherapeutic modality to treat pancreatic cancer. Immunotherapy is generally well tolerated, and has the potential to function as a monotherapy or in synergistic combination with conventional chemotherapy. We must make efforts to optimize the immunotherapeutic regimen and to select patients to treat based on their biological profile. To accomplish this goal, an intense collaboration is needed to bridge between bench and bedside.
Collapse
Affiliation(s)
- Fang Liu
- a GI Oncology Program and Experimental Therapeutics , Tufts University School of Medicine , Boston , MA , USA.,b PGY-2, Internal Medicine Residency Program at Metrowest Medical Center , Framingham , MA , USA
| | - Muhammad Wasif Saif
- a GI Oncology Program and Experimental Therapeutics , Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
8
|
Hanna GG, Coyle VM, Prise KM. Immune modulation in advanced radiotherapies: Targeting out-of-field effects. Cancer Lett 2015; 368:246-51. [DOI: 10.1016/j.canlet.2015.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
|
9
|
Drakes ML, Stiff PJ. Harnessing immunosurveillance: current developments and future directions in cancer immunotherapy. Immunotargets Ther 2014; 3:151-65. [PMID: 27471706 PMCID: PMC4918242 DOI: 10.2147/itt.s37790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improved methods of cancer detection and disease management over the last few decades, cancer remains a major public health problem in many societies. Conventional therapies, such as chemotherapy, radiation, and surgery, are not usually sufficient to prevent disease recurrence. Therefore, efforts have been focused on developing novel therapies to manage metastatic disease and to prolong disease-free and overall survival, by modulating the immune system to alleviate immunosuppression, and to enhance antitumor immunity. This review discusses protumor mechanisms in patients that circumvent host immunosurveillance, and addresses current immunotherapy modalities designed to target these mechanisms. Given the complexity of cancer immunosuppressive mechanisms, we propose that identification of novel disease biomarkers will drive the development of more targeted immunotherapy. Finally, administration of different classes of immunotherapy in combination regimens, will be the ultimate route to impact low survival rates in advanced cancer patients.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Patrick J Stiff
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
10
|
Milani A, Sangiolo D, Aglietta M, Valabrega G. Recent advances in the development of breast cancer vaccines. BREAST CANCER-TARGETS AND THERAPY 2014; 6:159-68. [PMID: 25339848 PMCID: PMC4204811 DOI: 10.2147/bctt.s38428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The manipulation of the immune system through the administration of a vaccine to direct an effective and long-lasting immune response against breast cancer (BC) cells is an attractive strategy. Vaccines would have several theoretical advantages over standard therapies, including low toxicities, high specificity, and long-lasting efficacy due to the establishment of immunological memory. However, BC vaccines have failed to demonstrate meaningful results in clinical trials so far. This reflects the intrinsic difficulty in breaking the complex immune-escaping mechanisms developed by cancer cells. New vaccines should be able to elicit complex immunologic response involving multiple immune effectors such as cytotoxic and antibody-secreting B cells, innate immunity effectors, and memory cells. Moreover, especially in patients with large tumor burdens and metastatic disease, combining vaccines with other strategies, such as systemic BC therapies, passive immunotherapy, or immunomodulatory agents, could increase the effectiveness of each approach. Here, we review recent advances in BC vaccines, focusing on suitable targets and innovative strategies. We report results of most recent trials investigating active immunotherapy in BC and provide possible future perspectives in this field of research.
Collapse
Affiliation(s)
- Andrea Milani
- Department of Oncology, University of Torino, Torino, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Torino, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy ; FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Torino, Italy ; FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy
| |
Collapse
|
11
|
Abstract
Despite the several advances in the last few years into treatment of advanced lung cancer, the 5-year survival remains extremely low. New therapeutic strategies are currently under investigation, and immunotherapy seems to offer a promising treatment alternative. In the last decade, therapeutic cancer vaccines in lung cancer have been rather disappointing, mainly due to the lack of efficient predictive biomarkers. A better refinement of the patient population that might respond to treatment might finally lead to a success story. For the first time, the immune checkpoint inhibitors are demonstrating sustained antitumor response and improved survival and they may be the first immunotherapeutics available for patients with lung cancer.
Collapse
|
12
|
Gunturu KS, Rossi GR, Saif MW. Immunotherapy updates in pancreatic cancer: are we there yet? Ther Adv Med Oncol 2013; 5:81-9. [PMID: 23323149 PMCID: PMC3539275 DOI: 10.1177/1758834012462463] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a lethal disease and remains one of the most resistant cancers to traditional therapies. Historically, chemotherapy or radiotherapy did not provide meaningful survival benefit in advanced pancreatic cancer. Gemcitabine and recently FOLFIRINOX (5-flourouracil, leucovorin, oxaliplatin and irinotecan) have provided some limited survival advantage in advanced pancreatic cancer. Targeted agents in combination with gemcitabine had not shown significant improvement in the survival. Current therapies for pancreatic cancer have their limitations; thus, we are in dire need of newer treatment options. Immunotherapy in pancreatic cancer works by recruiting and activating T cells that recognize tumor-specific antigens which is a different mechanism compared with chemotherapy and radiotherapy. Preclinical models have shown that immunotherapy and targeted therapies like vascular endothelial growth factor and epidermal growth factor inhibitors work synergistically. Hence, new immunotherapy and targeted therapies represent a viable option for pancreatic cancer. In this article, we review the vaccine therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Krishna Soujanya Gunturu
- Division of Hematology/Onocology and Department of Medicine and Cancer Center, Tufts Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
13
|
“Lost sugars” — reality of their biological and medical applications. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe glycan chains attached to cell surfaces or to single proteins are highly dynamic structures with various functions. The glycan chains of mammals and of some microorganisms often terminate in sialic acids or α-1,3-galactose. Although these two sugars are completely distinct, there are several similarities in their biological and medical importance. First, one type of sialic acid, N-glycolylneuraminic acid, and the galactose bound by an α-1,3-linkage to LacNAc, that forms an α-gal epitope, were both eliminated in human evolution, resulting in the production of antibodies to these sugars. Both of these evolutionary events have consequences connected with the consumption of foods of mammalian origin, causing medical complications of varying severity. In terms of ageing, sialic acids prevent the clearance of glycoproteins and circulating blood cells, whereas cryptic α-gal epitopes on senescent red blood cells contribute to their removal from circulation. The efficiency of therapeutic proteins can be increased by sialylation. Another common feature is the connection with microorganisms since sialic acids and α-gal epitopes serve as receptors on host cells and can also be expressed on the surfaces of some microorganisms. Whereas, the sialylation of IgG antibodies may help to treat inflammation, the expression of the α-gal epitope on microbial antigens increases the immunogenicity of the corresponding vaccines. Finally, sialic acids and the α-gal epitope have applications in cancer immunotherapy. N-glycolylneuraminic acid is a powerful target for cancer immunotherapy, and the α-gal epitope increases the efficiency of cancer vaccines. The final section of this article contains a brief overview of the methods for oligosaccharide chain synthesis and the characteristics of sialyltransferases and α-1,3-galactosyltransferase.
Collapse
|
14
|
Dodson LF, Hawkins WG, Goedegebuure P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy 2011; 3:517-37. [PMID: 21463193 DOI: 10.2217/imt.11.10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic adenocarcinoma is the fourth leading cause of cancer death with an overall 5-year survival of less than 5%. As there is ample evidence that pancreatic adenocarcinomas elicit antitumor immune responses, identification of pancreatic cancer-associated antigens has spurred the development of vaccination-based strategies for treatment. While promising results have been observed in animal tumor models, most clinical studies have found only limited success. As most trials were performed in patients with advanced pancreatic cancer, the contribution of immune suppressor mechanisms should be taken into account. In this article, we detail recent work in tumor antigen vaccination and the recently identified mechanisms of immune suppression in pancreatic cancer. We offer our perspective on how to increase the clinical efficacy of vaccines for pancreatic cancer.
Collapse
Affiliation(s)
- Lindzy F Dodson
- Washington University School of Medicine, Department of Surgery, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|