1
|
Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol 2021; 12:667454. [PMID: 33986756 PMCID: PMC8111175 DOI: 10.3389/fimmu.2021.667454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Ruiz J, Kanagavelu S, Flores C, Romero L, Riveron R, Shih DQ, Fukata M. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine. Front Cell Infect Microbiol 2016; 5:105. [PMID: 26793623 PMCID: PMC4710052 DOI: 10.3389/fcimb.2015.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr−1hi cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.
Collapse
Affiliation(s)
- Jose Ruiz
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Saravana Kanagavelu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA
| | - Claudia Flores
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute Los Angeles, CA, USA
| | - Laura Romero
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Reldy Riveron
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - David Q Shih
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA; Department of Cell Biology, University of Miami Miller School of MedicineMiami, FL, USA; Department of Biomedical Science, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
3
|
Guillerey C, Chow MT, Miles K, Olver S, Sceneay J, Takeda K, Möller A, Smyth MJ. Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis. Oncoimmunology 2015; 4:e1027468. [PMID: 26405596 DOI: 10.1080/2162402x.2015.1027468] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/22/2022] Open
Abstract
The Toll-like receptor 3 (TLR3) agonist poly(I:C) is a promising adjuvant for cancer vaccines due to its induction of potent antitumor responses occurring primarily through the activation of dendritic cells (DCs) and natural killer (NK) cells. However, little is known about the role of TLR3 sensing of endogenous ligands in innate tumor immunosurveillance. Here, we investigated whether TLR3 could modulate immune responses and facilitate tumor control without administration of an agonist. We observed only limited impact of TLR3 deficiency on spontaneous carcinogenesis and primary growth of B16F10, E0771 or MC38 tumors when injected subcutaneously to mice. Nevertheless, TLR3 was observed to limit experimental B16F10 lung metastasis, an immunologic constraint dependent on both IFNγ secretion and NK cells. Interestingly, we observed that NK cells derived from Tlr3 null (Tlr3-/- ) mice were hyporesponsive to cytokine stimulation. Indeed, compared with NK cells with intact TLR3, Tlr3-/- NK cells produced significantly reduced pro-inflammatory cytokines, including IFNγ, when incubated in the presence of different combinations of IL-12, IL-18 and IL-15. Bone-marrow chimera experiments established that competent NK cell responses required TLR3 sensing on radio-sensitive immune cells. Intriguingly, although CD8α DCs robustly express high levels of TLR3, we found that those cells were not necessary for efficient IFNγ production by NK cells. Moreover, the defective NK cell phenotype of Tlr3-/- mice appeared to be independent of the gut microbiota. Altogether, our data demonstrate a pivotal role of endogenous TLR3 stimulation for the acquisition of full NK cell functions and immune protection against experimental metastasis.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia ; School of Medicine; University of Queensland ; Herston, Queensland, Australia
| | - Melvyn T Chow
- Immunology of Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia
| | - Kim Miles
- Immunology of Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia
| | - Stuart Olver
- Bone Marrow Transplantation; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia
| | - Jaclyn Sceneay
- Tumour Microenvironment Laboratory; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia
| | - Kazuyoshi Takeda
- Department of Immunology; Juntendo University School of Medicine ; Hongo, Tokyo, Japan
| | - Andreas Möller
- School of Medicine; University of Queensland ; Herston, Queensland, Australia ; Tumour Microenvironment Laboratory; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute ; Herston, Queensland, Australia ; School of Medicine; University of Queensland ; Herston, Queensland, Australia
| |
Collapse
|
4
|
Wilson KA, Goding SR, Neely HR, Harris KM, Antony PA. Depletion of B220 +NK1.1 + cells enhances the rejection of established melanoma by tumor-specific CD4 + T cells. Oncoimmunology 2015; 4:e1019196. [PMID: 26405570 PMCID: PMC4570124 DOI: 10.1080/2162402x.2015.1019196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 11/14/2022] Open
Abstract
Five-year survival rates for patients diagnosed with metastatic melanoma are less than 5%. Adoptive cell transfer (ACT) has achieved an objective response of 50% by Response Evaluation Criteria in Solid Tumors (RECIST) in this patient population. For ACT to be maximally effective, the host must first be lymphodepleted. It is hypothesized that lymphodepletion may remove regulatory elements and cytokine sinks, or increase the activation and availability of antigen presenting cells (APCs). We use an in vivo model to study the ACT of tumor-associated antigen (TAA)-specific CD4+ T cells (TRP-1 cells). We have discovered that depletion of NK1.1+ cells enhances the rejection of established melanoma tumors by adoptively transferred TRP-1 CD4+ T cells. NK1.1+ cell depletion increases the number of CD4+ T cells, the serum concentration of pro-inflammatory cytokines, autoimmune vitiligo, host survival and prevented recurrence after ACT. Because multiple cells express NK1.1, we targeted different NK1.1+ cell populations using antibodies specific for NK cells, pre-mNK cells, and innate lymphoid cells (ILCs). Our data suggests that NK1.1+B220+ pre-mNK cells (also known as interferon-producing killer dendritic cells; IKDCs) are an important inhibitor of the CD4+ T cell response to melanoma. Understanding this mechanism may help design new immunotherapies to modulate the activity of pre-mNKs in the face of an antitumor immune response and inhibit their suppression of adoptively transferred T cells.
Collapse
Affiliation(s)
- Kyle A Wilson
- Program in Molecular Microbiology and Immunology; University of Maryland School of Medicine ; Baltimore, MD USA ; Department of Pathology; University of Maryland School of Medicine ; Baltimore, MD USA
| | - Stephen R Goding
- Department of Pathology; University of Maryland School of Medicine ; Baltimore, MD USA
| | - Harold R Neely
- Program in Molecular Microbiology and Immunology; University of Maryland School of Medicine ; Baltimore, MD USA ; Department of Microbiology and Immunology; University of Maryland School of Medicine ; Baltimore, MD USA
| | | | - Paul Andrew Antony
- Program in Molecular Microbiology and Immunology; University of Maryland School of Medicine ; Baltimore, MD USA ; Department of Pathology; University of Maryland School of Medicine ; Baltimore, MD USA ; Department of Microbiology and Immunology; University of Maryland School of Medicine ; Baltimore, MD USA ; Tumor Immunology and Immunotherapy Program; University of Maryland Cancer Center ; Baltimore, MD USA
| |
Collapse
|
5
|
Kasamatsu J, Azuma M, Oshiumi H, Morioka Y, Okabe M, Ebihara T, Matsumoto M, Seya T. INAM plays a critical role in IFN-γ production by NK cells interacting with polyinosinic-polycytidylic acid-stimulated accessory cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5199-207. [PMID: 25320282 DOI: 10.4049/jimmunol.1400924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyinosinic-polycytidylic acid strongly promotes the antitumor activity of NK cells via TLR3/Toll/IL-1R domain-containing adaptor molecule 1 and melanoma differentiation-associated protein-5/mitochondrial antiviral signaling protein pathways. Polyinosinic-polycytidylic acid acts on accessory cells such as dendritic cells (DCs) and macrophages (Mφs) to secondarily activate NK cells. In a previous study in this context, we identified a novel NK-activating molecule, named IFN regulatory factor 3-dependent NK-activating molecule (INAM), a tetraspanin-like membrane glycoprotein (also called Fam26F). In the current study, we generated INAM-deficient mice and investigated the in vivo function of INAM. We found that cytotoxicity against NK cell-sensitive tumor cell lines was barely decreased in Inam(-/-) mice, whereas the number of IFN-γ-producing cells was markedly decreased in the early phase. Notably, deficiency of INAM in NK and accessory cells, such as CD8α(+) conventional DCs and Mφs, led to a robust decrease in IFN-γ production. In conformity with this phenotype, INAM effectively suppressed lung metastasis of B16F10 melanoma cells, which is controlled by NK1.1(+) cells and IFN-γ. These results suggest that INAM plays a critical role in NK-CD8α(+) conventional DC (and Mφ) interaction leading to IFN-γ production from NK cells in vivo. INAM could therefore be a novel target molecule for cancer immunotherapy against IFN-γ-suppressible metastasis.
Collapse
Affiliation(s)
- Jun Kasamatsu
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuka Morioka
- Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masaru Okabe
- Research Institute for Microbial Disease, Osaka University, Osaka 565-0871, Japan
| | - Takashi Ebihara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| |
Collapse
|
6
|
Gillgrass A, Ashkar A. Stimulating natural killer cells to protect against cancer: recent developments. Expert Rev Clin Immunol 2014; 7:367-82. [DOI: 10.1586/eci.10.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Guimont-Desrochers F, Lesage S. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells. Front Immunol 2013; 4:446. [PMID: 24376447 PMCID: PMC3858890 DOI: 10.3389/fimmu.2013.00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The “IKDC” terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
8
|
Synergy between RA and TLR3 promotes type I IFN-dependent apoptosis through upregulation of TRAIL pathway in breast cancer cells. Cell Death Dis 2013; 4:e479. [PMID: 23370279 PMCID: PMC3564005 DOI: 10.1038/cddis.2013.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Due to its ability to regulate the growth, differentiation and apoptosis of cancer cells, retinoic acid (RA) is considered a signaling molecule with promising therapeutic potential in oncology. In this study, we show that RA is able to induce the intrinsic ability of breast cancer cells to recognize double-stranded RNA (dsRNA) through the upregulation of Toll-like receptor 3 (TLR3) expression. RA, co-administered with the dsRNA mimicker polyinosinic–polycytidylic acid (poly(I:C)), synergizes to mount a specific response program able to sense dsRNA through the concurrent upregulation of TLR3, the dsRNA helicases melanoma differentiation-associated antigen-5 (MDA-5) and RA-inducible gene-1 (RIG-1), and the dsRNA-activated protein kinase (PKR) expression, leading breast cancer cells to specifically express downstream transcriptional targets of dsRNA sensors, such as interferon-β (IFNβ), interleukin-8 (IL-8), chemokine (C-C motif) ligand 5 (CCL5), and C-X-C motif Chemokine 10 (CXCL10). A TLR3-dependent apoptotic program is also induced by RA and poly(I:C) co-treatment that correlates with the induction of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and contributes to block breast cancer cell proliferation. The mechanisms of apoptosis induced by RA/poly(I:C) in breast cancer cells involve type I IFN autocrine signaling, caspase-8 and caspase-3 activation, as well as TRAIL signaling. Our results reveal important links among RA, TLR3 and TRAIL and highlight the combined use of RA and poly(I:C) as a potential effective tumor therapy by improving the apoptotic response of cancer cells with low sensitivity to the action of synthetic dsRNA.
Collapse
|
9
|
Forte G, Rega A, Morello S, Luciano A, Arra C, Pinto A, Sorrentino R. Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. THE JOURNAL OF IMMUNOLOGY 2012; 188:5357-64. [PMID: 22516955 DOI: 10.4049/jimmunol.1103811] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyinosinic-polycytidylic acid (poly I:C), a TLR3 ligand, is currently being tested in human clinical trials as an adjuvant to anti-cancer vaccines and in combination with other therapies. However, little is known about its activity in established pulmonary metastasis. The aim of our study was to elucidate the effect of poly I:C (1, 10, or 100 μg/mouse) in a mouse model of B16-F10-induced metastatic lung cancer. Lung tumor growth was arrested after a single administration of poly I:C. This was associated with higher influx of mature dendritic cells (DCs), which drove toward a Th1-like, Th17-like, and cytotoxic immune environment. The interference with IFN type I receptor signaling by means of a specific mAb reversed poly I:C-mediated tumor regression due to lower presence of myeloid DCs, cytotoxic DCs (CD11c(+)CD8(+)), NKT cells, CD8(+) T cells, and Th1-like cytokines. Moreover, the adoptive transfer of poly I:C-activated bone marrow-derived DCs into tumor-bearing mice resulted in activities similar to those of the systemic administration of poly I:C on lung tumor burden. In conclusion, our data prove that poly I:C has potential anti-tumor activity in a mouse model of established pulmonary metastasis. The activation of DCs and the production of IFN type I are responsible for an effective T cytotoxic immune response against metastatic lung cancer progression after poly I:C treatment.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Pharmaceutical and Biomedical Science, University of Salerno, Fisciano, Salerno 84084, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol 2012; 2012:425476. [PMID: 22505809 PMCID: PMC3312387 DOI: 10.1155/2012/425476] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/11/2011] [Indexed: 12/23/2022] Open
Abstract
Many clinical trials have been carried out or are in progress to assess the therapeutic potential of dendritic-cell- (DC-) based vaccines on cancer patients, and recently the first DC-based vaccine for human cancer was approved by the FDA. Herewith, we describe the general characteristics of DCs and different strategies to generate effective antitumor DC vaccines. In recent years, the relevance of the tumor microenvironment in the progression of cancer has been highlighted. It has been shown that the tumor microenvironment is capable of inactivating various components of the immune system responsible for tumor clearance. In particular, the effect of the tumor microenvironment on antigen-presenting cells, such as DCs, does not only render these immune cells unable to induce specific immune responses, but also turns them into promoters of tumor growth. We also describe strategies likely to increase the efficacy of DC vaccines by reprogramming the immunosuppressive nature of the tumor microenvironment.
Collapse
|
11
|
Hou X, Yu F, Man S, Huang D, Zhang Y, Liu M, Ren C, Shen J. Polyinosinic-polycytidylic acid attenuates hepatic fibrosis in C57BL/6 mice with Schistosoma japonicum infection. Acta Trop 2012; 121:99-104. [PMID: 22023732 DOI: 10.1016/j.actatropica.2011.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023]
Abstract
The development of hepatic fibrosis is the principal cause of morbidity and mortality in human beings infected with schistosoma. In this study, we investigated the effect of polyinosinic-polycytidylic acid (poly I:C) on Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis. S. japonicum cercariae infected mice were injected with poly I:C at the onset of egg granuloma formation (early phase poly I:C treatment) or after the formation of liver fibrosis (late phase poly I:C treatment). Our results showed that both early and late phase poly I:C treatment significantly reduced collagen deposition and hepatic stellate cell activation in the liver. Poly I:C is one of the most effective adjuvants for Th1 type responses, and its protective effect on liver fibrosis was accompanied by increased IFN-α, IFN-β, IFN-γ, IL-12, TNF-α, and IL-10 mRNA expression, and decreased IL-4 and IL-5 mRNA expression. Moreover, poly I:C injection also enhanced the mRNA expression of natural killer group 2 member D (NKG2D) and tumor necrosis factor related apoptosis-inducing ligand (TRAIL). Therefore, it is indicated that poly I:C can significantly attenuate S. japonicum egg-induced hepatic fibrosis, which may be partly dependent on the increased Th1 response and decreased Th2 response.
Collapse
Affiliation(s)
- Xin Hou
- Department of Microbiology & Parasitology, Anhui Provincial Laboratory of Microbiology & Parasitology, Anhui Medical University, Hefei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu CY, Yang HY, Monie A, Ma B, Tsai HH, Wu TC, Hung CF. Intraperitoneal administration of poly(I:C) with polyethylenimine leads to significant antitumor immunity against murine ovarian tumors. Cancer Immunol Immunother 2011; 60:1085-96. [PMID: 21526359 DOI: 10.1007/s00262-011-1013-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/24/2011] [Indexed: 11/26/2022]
Abstract
Ovarian cancer is currently the most lethal gynecologic cancer in the United States. There is an urgent need for the development of innovative therapies against ovarian cancer, such as immunotherapy. The toll-like receptor 3 ligand, polyriboinosinic:polyribocytidylic acid (poly(I:C), has emerged as a promising adjuvant for activating the host immune responses for the control of tumors. We reasoned that a strategy to enhance the intracellular uptake of poly(I:C) will likely improve the poly(I:C) adjuvant effect. Since polyethylenimine (PEI) has been shown to increase the transfection efficiency of nucleic acids, we characterized the antitumor effects in mouse ovarian surface epithelial cells (MOSEC) tumor-bearing mice treated intraperitoneally with poly(I:C) and PEI. We observed that tumor-bearing mice treated with poly(I:C) and PEI generated significantly better therapeutic antitumor effects against MOSEC tumors compared with treatment with poly(I:C) alone. Furthermore, we found that NK cells play a significant role in the antitumor effects generated by treatment with poly(I:C) in combination with PEI. Intraperitoneal administration of poly(I:C) with PEI led to the uptake of poly(I:C) mainly by CD11b+ macrophages, resulting in the high expression of MHC class II and IL-12 (M1 phenotype). In addition, adoptive transfer of CD11b+ macrophages from mice treated with poly(I:C) and PEI was found to lead to increased number of activated NK cells in the recipient mice. Taken together, our data indicate that PEI can potentially be used to improve the uptake of poly(I:C) by CD11b+ macrophages, leading to the activation of NK cells and the control of murine ovarian tumors.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:1-11. [PMID: 19618185 PMCID: PMC11031008 DOI: 10.1007/s00262-009-0736-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
Abstract
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4(+) or CD8(+) effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.
Collapse
Affiliation(s)
- Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | | | - Daniela Lakomy
- Faculty of Medicine, INSERM UMR 866, IFR 100, Dijon, France
| | | | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
14
|
El Marsafy S, Bagot M, Bensussan A, Mauviel A. Dendritic cells in the skin - potential use for melanoma treatment. Pigment Cell Melanoma Res 2009; 22:30-41. [DOI: 10.1111/j.1755-148x.2008.00532.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Gardner T, Chen Q, Jin Y, Ajuebor MN. Characterization of the role of TCR gammadelta in NK cell accumulation during viral liver inflammation. Exp Mol Pathol 2008; 86:32-5. [PMID: 19028491 DOI: 10.1016/j.yexmp.2008.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 10/20/2008] [Indexed: 11/15/2022]
Abstract
Polyinosinic-polyctidylic acid (Poly I:C) is a viral RNA mimic that can induce immune responses similar to that seen during viral infection. Although poly I:C administration into mice is associated increased NK cell infiltrates in the liver, the mechanisms underlying increased hepatic NK cell accumulation in response to poly I:C administration are incompletely defined. In the current study, we have identified a novel and important role for gammadelta T cells in driving the accumulation and activation of NK cells in the liver during poly I:C-mediated viral liver infection. Specifically, NK cell accumulation but not activation in gammadelta T cell deficient mice following poly I:C administration was significantly attenuated in comparison to that seen in poly I:C-treated wildtype mice. The ability of gammadelta T cells to promote NK cell accumulation and activation in the liver may be virus-specific since NK cell accumulation in the liver was not altered by TCR gammadelta deficiency following adenovirus administration.
Collapse
Affiliation(s)
- Tommy Gardner
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|