1
|
Fang P, Zhang JJ, Lu ZQ, Li S, Xia DL, Xu Q, Wu XH, Sun GY, You QH, Fu L. Effects of single and combined urinary polycyclic aromatic hydrocarbon effects on lung function in the U.S. adult population. BMC Public Health 2024; 24:2778. [PMID: 39394095 PMCID: PMC11468208 DOI: 10.1186/s12889-024-20267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The impact of polycyclic aromatic hydrocarbons (PAHs) on lung function has garnered attention, but studies mostly focus on individual effect. This study investigates urinary PAH metabolites as biomarkers of exposure and assesses the relationships between single and combined exposures to nine urinary PAH metabolites and lung function in adults. METHODS Data from 4040 adults in the 2007-2012 National Health and Nutrition Examination Survey (NHANES) were analyzed. Weighted generalized linear models estimated the effects of individual PAH metabolites on lung function. Additionally, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) were employed to evaluate the combined impacts of multiple PAH metabolites. RESULTS Analyses of individual PAH metabolites revealed negative associations with lung function, excluding forced vital capacity (FVC). The WQS, qgcomp, and BKMR models consistently showed that exposure to multiple PAH metabolites was associated with lung function decrease. WQS indicated that 2-hydroxynaphthalene (2-NAP) was the largest contributor to the reductions in forced expiratory volume in 1 s (FEV1), FVC, peak expiratory flow (PEF), and forced expiratory flow from 25 to 75% of FVC (PEF25-75%). Additionally, 1-hydroxypyrene (1-PYR) was the primary PAH metabolite contributing to the decreases in FEV1/FVC and fractional exhaled nitric oxide (FeNO). The combined effect of urinary PAH metabolites did not affect FVC in the current smokers or FeNO in nonsmokers, but decreased FEV1/FVC in current smokers. CONCLUSION This study strengthens the negative relationships between multiple PAH metabolites exposure and lung function in adults. Given the limitations of this study, including the lack of knowledge of other exposure pathways and the uncertainty of urinary metabolites, further research is necessary to explore the mechanisms underlying these associations and to address the limitations in exposure assessment.
Collapse
Affiliation(s)
- Pu Fang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jin-Jin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Zong-Qing Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dun-Lin Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qin Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xiang-Hui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Geng-Yun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Qing-Hai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
- Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
2
|
Wu L, Lu X, Zhang S, Zhong Y, Gao H, Tao FB, Wu X. Co-exposure effects of urinary polycyclic aromatic hydrocarbons and metals on lung function: mediating role of systematic inflammation. BMC Pulm Med 2024; 24:386. [PMID: 39128985 PMCID: PMC11316979 DOI: 10.1186/s12890-024-03173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) and metals were associated with decreased lung function, but co-exposure effects and underlying mechanism remained unknown. METHODS Among 1,123 adults from National Health and Nutrition Examination Survey 2011-2012, 10 urinary PAHs, 11 urinary metals, and peripheral white blood cell (WBC) count were determined, and 5 lung function indices were measured. Least absolute shrinkage and selection operator, Bayesian kernel machine regression, and quantile-based g-computation were used to estimate co-exposure effects on lung function. Mediation analysis was used to explore mediating role of WBC. RESULTS These models demonstrated that PAHs and metals were significantly associated with lung function impairment. Bayesian kernel machine regression models showed that comparing to all chemicals fixed at median level, forced expiratory volume in 1 s (FEV1)/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25 and 75% decreased by 1.31% (95% CI: 0.72%, 1.91%), 231.62 (43.45, 419.78) mL/s, and 131.64 (37.54, 225.74) mL/s respectively, when all chemicals were at 75th percentile. In the quantile-based g-computation, each quartile increase in mixture was associated with 104.35 (95% CI: 40.67, 168.02) mL, 1.16% (2.11%, 22.40%), 294.90 (78.37, 511.43) mL/s, 168.44 (41.66, 295.22) mL/s decrease in the FEV1, FEV1/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25% and 75%, respectively. 2-Hydroxyphenanthrene, 3-Hydroxyfluorene, and cadmium were leading contributors to the above associations. WBC mediated 8.22%-23.90% of association between PAHs and lung function. CONCLUSIONS Co-exposure of PAHs and metals impairs lung function, and WBC could partially mediate this relationship. Our findings elucidate co-exposure effects of environmental mixtures on respiratory health and underlying mechanisms, suggesting that focusing on highly prioritized toxicants would effectively attenuate adverse effects.
Collapse
Affiliation(s)
- Lihong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Anhui, China
| | - Siying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yumei Zhong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiulong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Huang J, Zhang Y, Fang L, Xi F, Tang C, Ou K, Wang C. Chronic exposure to low levels of phenanthrene induces histological damage and carcinogenic risk in the uterus of female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22858-22869. [PMID: 38413531 DOI: 10.1007/s11356-024-32636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Phenanthrene (Phe), a polycyclic aromatic hydrocarbon with low molecular weight, is detected in the environment at high frequency. To study the toxic effects of Phe on the uterine structure and function, female Kunming mice were exposed to Phe (0.05, 0.5, 5 ng/mL) for 270 days by drinking water. Pathological alterations and their action pathways were analyzed using immunohistochemical and biomolecular technology. Phe significantly increased the percentage of blood vessel area, the number of endometrial neutrophils (indicating the occurrence of inflammation), collagen deposition (indicating fibrosis), and the percentage of Ki-67-positive cells (indicating carcinogenesis) in the uterus. Transcriptome sequencing identified differentially expressed genes that were mainly enriched in some signaling pathways, including inflammation and carcinogenesis, suggesting a carcinogenic risk in the Phe-exposed uterus. Elevated serum estrogen levels and decreased progesterone levels exhibited a disturbance of steroid hormone balance, which might be related to uterine damage. Upregulated protein levels of uterine androgen receptor and estrogen receptor α were linked to the pathological effects. Most of the effects exhibited a nonmonotonic dose response, which might be attributed to the corresponding change in the serum levels of Phe. The results suggest that exposure to low levels of Phe could exert adverse effects on the uterus.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Feifei Xi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
4
|
Joint association of polycyclic aromatic hydrocarbons and heavy metal exposure with pulmonary function in children and adolescents aged 6-19 years. Int J Hyg Environ Health 2022; 244:114007. [PMID: 35853342 DOI: 10.1016/j.ijheh.2022.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Studies have reported associations between polycyclic aromatic hydrocarbon (PAH) or heavy metal (HM) exposure and respiratory diseases. However, evidence of their joint associations with pulmonary function, especially in children and adolescents aged 6-19 years, is lacking. We utilized cross-sectional data from 1,734 children and adolescents aged 6-19 years collected in the National Health and Nutrition Examination Survey 2007-2012 and analysed mixed PAH and mixed HM exposures and their joint association with pulmonary function by applying weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). Multivariate linear regressions were carried out to determine the relationships between individual urinary PAH metabolites or blood HM levels and pulmonary function indices. We found that mixed PAHs and HMs were negatively related to forced expiratory volume in 1 s (FEV1) in subjects aged 6-12 years (all p values < 0.05). We found synergistic associations of PAH and HM exposure on pulmonary function impairment, mainly in children; lead (Pb) was the most damaging. In the analysis of individual PAH metabolites or HMs, Pb exposure was negatively associated with FEV1 values in all subgroups (all p values < 0.05). Thus, our findings indicate that increased PAH or HM exposure is associated with impairments to pulmonary function and that this association is more pronounced in children.
Collapse
|
5
|
Global Alliance against Chronic Respiratory Diseases symposium on air pollution: overview and highlights. Chin Med J (Engl) 2021; 133:1546-1551. [PMID: 32568871 PMCID: PMC7386358 DOI: 10.1097/cm9.0000000000000877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A 1-day symposium before the annual meeting of the Global Alliance against Chronic Respiratory Diseases, gathered authorities and researchers from around the world to discuss the impact of air pollution on human and planetary health. Air quality is a high priority for Global Alliance against Chronic Respiratory Diseases and China, the host country. This article presents a summary, commentary, and amplification of the 17 presentations. Air pollution is closely linked with global warming and harms most body systems even at levels below international standards. Information about the genetic, cellular, and metabolic effects of exposure to air pollution is important for better understanding of individual responses and even potential therapeutic mediation. Reducing air pollution at its source leads to prompt and important benefits and should be the first priority for political and public action.
Collapse
|