1
|
Grützmann K, Kraft T, Meinhardt M, Meier F, Westphal D, Seifert M. Network-based analysis of heterogeneous patient-matched brain and extracranial melanoma metastasis pairs reveals three homogeneous subgroups. Comput Struct Biotechnol J 2024; 23:1036-1050. [PMID: 38464935 PMCID: PMC10920107 DOI: 10.1016/j.csbj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient-matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, computational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory differences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream target genes.
Collapse
Affiliation(s)
- Konrad Grützmann
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Theresa Kraft
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| |
Collapse
|
2
|
Wu G, Chen B, Jiang J, Chen Y, Chen Y, Wang H. Identification of a pyroptosis-based model for predicting clinical outcomes from immunotherapy in patients with metastatic melanoma. Cancer Med 2023; 12:4921-4937. [PMID: 36151761 PMCID: PMC9972144 DOI: 10.1002/cam4.5178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has greatly improved outcomes for patients with advanced melanoma, but good predictive biomarkers remain lacking in clinical practice. Although increasing evidence has revealed a vital role of pyroptosis in the tumor microenvironment (TME), it remains unclear for pyroptosis as a predictive biomarker for immunotherapy in melanoma. RNA sequencing data and annotated clinical information of melanoma patients were obtained from four published immunotherapy datasets. LASSO regression analysis was conducted to develop a pyroptosis-based model for quantifying a pyroptosis score in each tumor. Based on four clinical cohorts, we evaluated the predictive capability of the model using multiple immunotherapeutic outcomes, including clinical benefits, overall survival (OS), and progression-free survival (PFS). Furthermore, we depicted the distinctive TME features associated with pyroptosis. Compared with the group with low pyroptosis scores, the group with high pyroptosis scores consistently achieved better durable clinical benefits in four independent cohorts and the meta-cohort. ROC analysis validated that the pyroptosis-based model was a reliable biomarker for predicting clinical benefits from immunotherapy in melanoma. Survival analyses showed that the group with high pyroptosis scores harbored more favorable OS and PFS than those with low pyroptosis scores. Molecular analysis revealed that tumors with high pyroptosis scores displayed a typical immune-inflamed phenotype in TME, including enrichment of immunostimulatory pathways, increased level of tumor-infiltrating lymphocytes, upregulation of immune effectors, and activation of the antitumor immune response. Our findings suggested that the pyroptosis-related model associated with multiple immune-inflamed characteristics might be a reliable tool for predicting clinical benefit and survival outcomes from immunotherapy in melanoma.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Clinical Medicine, Hangzhou Normal University Medical College, Hangzhou, China
| | - Biying Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Joshi H, Almgren-Bell A, Anaya EP, Todd EM, Van Dyken SJ, Seth A, McIntire KM, Singamaneni S, Sutterwala F, Morley SC. L-plastin enhances NLRP3 inflammasome assembly and bleomycin-induced lung fibrosis. Cell Rep 2022; 38:110507. [PMID: 35294888 PMCID: PMC8998782 DOI: 10.1016/j.celrep.2022.110507] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage adhesion and stretching have been shown to induce interleukin (IL)-1β production, but the mechanism of this mechanotransduction remains unclear. Here we specify the molecular link between mechanical tension on tissue-resident macrophages and activation of the NLRP3 inflammasome, which governs IL-1β production. NLRP3 activation enhances antimicrobial defense, but excessive NLRP3 activity causes inflammatory tissue damage in conditions such as pulmonary fibrosis and acute respiratory distress syndrome. We find that the actin-bundling protein L-plastin (LPL) significantly enhances NLRP3 assembly. Specifically, LPL enables apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) oligomerization during NLRP3 assembly by stabilizing ASC interactions with the kinase Pyk2, a component of cell-surface adhesive structures called podosomes. Upon treatment with exogenous NLRP3 activators, lung-resident alveolar macrophages (AMs) lacking LPL exhibit reduced caspase-1 activity, IL-1β cleavage, and gasdermin-D processing. LPL−/− mice display resistance to bleomycin-induced lung injury and fibrosis. These findings identify the LPL-Pyk2-ASC pathway as a target for modulation in NLRP3-mediated inflammatory conditions. In this study, Joshi et al. identify a crucial modulator, L-plastin, in lung inflammation. L-plastin supports the macrophage inflammatory response to enhance lung fibrosis during lung injury by connecting inflammation and mechanical stimuli in a process called mechanotransduction. The findings from this study will help determine efficient targets for diagnosis and treatment of lung inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edgar P Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth M Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Van Dyken
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Katherine M McIntire
- Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fayyaz Sutterwala
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sharon C Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Immunobiology, Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Abstract
Malignant melanoma is one of the most common tumours of the skin. Heat shock protein 90α (HSP90α) has been applied in the auxiliary diagnosis of various malignancies, as a tumour marker. This study aims to evaluate diagnostic, therapeutic efficacy and prognostic value of plasma HSP90α levels in malignant melanoma. In this study, higher plasma HSP90α levels and abnormal rates were found in malignant melanoma patients than in healthy controls (92.63 vs. 51.84 ng/mL; P < 0.001 and 68.30 vs. 8.30%; P < 0.001). Plasma HSP90α levels were higher with Breslow thickness >4 mm, a high Clark level (IV + V), abnormal serum lactate dehydrogenase (LDH), distant metastases occurrence and Ki-67≥30% (P < 0.05). The area under the curves (AUCs) of HSP90α was greater than LDH in the training (0.847 vs. 0.677) and validation (0.867 vs. 0.672) cohort. Meanwhile, the sensitivity (76.70%) and negative predictive values (78.80%) of HSP90α were higher. Plasma HSP90α levels were significantly reduced in objective response (81.05 vs. 37.26 ng/mL; P = 0.012) and disease control patients (84.16 vs. 47.05 ng/mL; P = 0.002) post-treatment. Patients with normal HSP90α levels had slightly longer progression-free survival (PFS) than those with abnormal levels (8.0 vs. 3.5 months; P = 0.096). Unfortunately, the trend was not statistically significant. In multivariable analysis, immunotherapy was an independent prognostic factor for PFS. Nevertheless, patients with normal HSP90α levels who received chemotherapy(±targeted therapy) without immunotherapy had significantly longer PFS than patients with abnormal levels (6.0 vs. 2.0 months; P = 0.008). Therefore, HSP90α can be used for auxiliary diagnosis and predict the responses to therapy in malignant melanoma patients.
Collapse
|
5
|
Abstract
HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.
Collapse
Affiliation(s)
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
6
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
7
|
Schaffner-Reckinger E, Machado RAC. The actin-bundling protein L-plastin-A double-edged sword: Beneficial for the immune response, maleficent in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:109-154. [PMID: 32859369 DOI: 10.1016/bs.ircmb.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic organization of the actin cytoskeleton into bundles and networks is orchestrated by a large variety of actin-binding proteins. Among them, the actin-bundling protein L-plastin is normally expressed in hematopoietic cells, where it is involved in the immune response. However, L-plastin is also often ectopically expressed in malignant cancer cells of non-hematopoietic origin and is even considered as a marker for cancer progression. Post-translational modification modulates L-plastin activity. In particular, L-plastin Ser5 phosphorylation has been shown to be important for the immune response in leukocytes as well as for invasion and metastasis formation of carcinoma cells. This chapter discusses the physiological and pathological role of L-plastin with a special focus on the importance of L-plastin Ser5 phosphorylation for the protein functions. The potential use of Ser5 phosphorylated L-plastin as a biomarker and/or therapeutic target will be evoked.
Collapse
Affiliation(s)
- Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Raquel A C Machado
- Cancer Cell Biology and Drug Discovery Group, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
17-Aminogeldanamycin selectively diminishes IRE1α-XBP1s pathway activity and cooperatively induces apoptosis with MEK1/2 and BRAF V600E inhibitors in melanoma cells of different genetic subtypes. Apoptosis 2020; 24:596-611. [PMID: 30989459 PMCID: PMC6598962 DOI: 10.1007/s10495-019-01542-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outcomes of melanoma patient treatment remain unsatisfactory despite accessibility of oncoprotein-targeting drugs and immunotherapy. Here, we reported that 17-aminogeldanamycin more potently activated caspase-3/7 in BRAFV600E melanoma cells than geldanamycin, another inhibitor of heat shock protein 90 (HSP90). 17-aminogeldanamycin alleviated self-triggered compensatory increase in HSP70 mRNA level and induced endoplasmic reticulum (ER) stress, which was followed by selective diminution of cytoprotective IRE1α-XBP1s pathway activity of unfolded protein response (UPR), inhibition of ERK1/2 activity and induction of apoptosis. Concomitantly, ATF6/p50 level and expression of PERK-dependent genes, CHOP and BIM, remained unaltered. This might result from an inframe deletion in EIF2AK3 leading to a PERKL21del variant revealed by whole-exome sequencing in melanoma cell lines. 17-aminogeldanamycin exhibited similar activity in NRASQ61R melanoma cells that harbored a heterozygous inactivating variant of NAD(P)H:quinone oxidoreductase 1 (NQO1P187S). In addition, 17-aminogeldanamycin acted cooperatively with trametinib (an inhibitor of MEK1/2) and vemurafenib (an inhibitor of BRAFV600E) in induction of apoptosis in melanoma cell lines as evidenced by in-cell caspase-3/7 activation and PARP cleavage that occurred earlier compared with either drug used alone. As trametinib and vemurafenib did not significantly affect HSP70 and GRP78 transcript levels, cooperation of MEK/BRAFV600E inhibitors and 17-aminogeldanamycin might result from a concurrent inhibition of the RAS/RAF/MEK/ERK cascade and IRE1α-dependent signaling, and cell-intrinsic ER homeostasis can determine the extent of the drug cooperation. Our study indicates that 17-aminogeldanamycin takes several advantages compared with other HSP90-targeting compounds, and can complement activity of BRAF/MEK inhibitors in melanoma cells of different genetic subtypes.
Collapse
|
9
|
Hoja-Łukowicz D, Szwed S, Laidler P, Lityńska A. Proteomic analysis of Tn-bearing glycoproteins from different stages of melanoma cells reveals new biomarkers. Biochimie 2018; 151:14-26. [PMID: 29802864 DOI: 10.1016/j.biochi.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022]
Abstract
Cutaneous melanoma, the most aggressive form of skin cancer, responds poorly to conventional therapy. The appearance of Tn antigen-modified proteins in cancer is correlated with metastasis and poor prognoses. The Tn determinant has been recognized as a powerful diagnostic and therapeutic target, and as an object for the development of anti-tumor vaccine strategies. This study was designed to identify Tn-carrying proteins and reveal their influence on cutaneous melanoma progression. We used a lectin-based strategy to purify Tn antigen-enriched cellular glycoproteome, the LC-MS/MS method to identify isolated glycoproteins, and the DAVID bioinformatics tool to classify the identified proteins. We identified 146 different Tn-bearing glycoproteins, 88% of which are new. The Tn-glycoproteome was generally enriched in proteins involved in the control of ribosome biogenesis, CDR-mediated mRNA stabilization, cell-cell adhesion and extracellular vesicle formation. The differential expression patterns of Tn-modified proteins for cutaneous primary and metastatic melanoma cells supported nonmetastatic and metastatic cell phenotypes, respectively. To our knowledge, this study is the first large-scale proteomic analysis of Tn-bearing proteins in human melanoma cells. The identified Tn-modified proteins are related to the biological and molecular nature of cutaneous melanoma and may be valuable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Sabina Szwed
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Piotr Laidler
- Department of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland.
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
10
|
Tas F, Bilgin E, Erturk K, Duranyildiz D. Clinical Significance of Circulating Serum Cellular Heat Shock Protein 90 (HSP90) Level in Patients with Cutaneous Malignant Melanoma. Asian Pac J Cancer Prev 2017; 18:599-601. [PMID: 28440609 PMCID: PMC5464471 DOI: 10.22034/apjcp.2017.18.3.599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Cellular heat shock proteins (HSPs) play significant roles in sustaining normal cellular conditions.
The stimulated expressions of HSPs result in cellular stabilization at times of stress, such as cancer. The objective of
this study was to determine the clinical significance of the serum levels of HSP90 in melanoma patients. Material and
methods: A total number of 98 melanoma patients were enrolled into this study. Serum HSP90 concentrations were
determined by the solid-phase sandwich ELISA method. Age and sex matched 43 healthy controls were included in
the analysis. Results: The median age of patients was 51 years, ranging from 16 to 85 years. The majority of patients
were male (61%), had lesions in axial localizations (54%) and had metastatic disease (61%). Moreover, most of the
patients with metastatic disease had M1c diseases (73%). The baseline serum HSP90 levels of melanoma patients
were significantly higher than those of the control subjects (median values 49.76 v 27.07ng/ml, respectively, p<0.001).
However, clinical variables, such as age, gender, site of lesion, histology, lymph node involvement, stage, serum LDH
levels and response to chemotherapy, were found not correlated with serum HSP90 concentrations (p>0.05). Moreover,
serum HSP90 level was found not prognostic on survival (p=0.683). Conclusions: Serum levels of HSP90 may have
a diagnostic value in melanoma. However, its predictive and prognostic values were not determined.
Collapse
Affiliation(s)
- Faruk Tas
- Institute of Oncology, University of Istanbul, Istanbul, Turkey.
| | | | | | | |
Collapse
|
11
|
Abstract
Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA; Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
12
|
Ludvigsen M, Hamilton-Dutoit SJ, d’Amore F, Honoré B. Proteomic approaches to the study of malignant lymphoma: Analyses on patient samples. Proteomics Clin Appl 2015; 9:72-85. [DOI: 10.1002/prca.201400145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Maja Ludvigsen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | | | | | - Bent Honoré
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|