1
|
Dalle Carbonare L, Minoia A, Vareschi A, Piritore FC, Zouari S, Gandini A, Meneghel M, Elia R, Lorenzi P, Antoniazzi F, Pessoa J, Zipeto D, Romanelli MG, Guardavaccaro D, Valenti MT. Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression. Cells 2024; 13:408. [PMID: 38474372 DOI: 10.3390/cells13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy
| | | | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy
| | - Alberto Gandini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy
| | - Mirko Meneghel
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Rossella Elia
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Pamela Lorenzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | | | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
2
|
Ju W, Cai HH, Zheng W, Li DM, Zhang W, Yang XH, Yan ZX. Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncol Lett 2024; 27:81. [PMID: 38249813 PMCID: PMC10797314 DOI: 10.3892/ol.2024.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Malignant melanoma (MM) is a highly aggressive tumour that can easily metastasize through the lymphatic system at the early stages. Lymph node (LN) involvement and lymphatic vessel (LV) density (LVD) represent a harbinger of an adverse prognosis, indicating a strong link between the state of the lymphatic system and the advancement of MM. Permeable capillary lymphatic vessels are the optimal conduits for melanoma cell (MMC) invasion, and lymphatic endothelial cells (LECs) can also release a variety of chemokines that actively attract MMCs expressing chemokine ligands through a gradient orientation. Moreover, due to the lower oxidative stress environment in the lymph compared with the blood circulation, MMCs are more likely to survive and colonize. The number of LVs surrounding MM is associated with tumour-infiltrating lymphocytes (TILs), which is crucial for the effectiveness of immunotherapy. On the other hand, MMCs can release various endothelial growth factors such as VEGF-C/D-VEGFR3 to mediate LN education and promote lymphangiogenesis. Tumour-derived extracellular vesicles are also used to promote lymphangiogenesis and create a microenvironment that is more conducive to tumour progression. MM is surrounded by a large number of lymphocytes. However, both LECs and MMCs are highly plastic, playing multiple roles in evading immune surveillance. They achieve this by expressing inhibitory ligands or reducing antigen recognition. In recent years, tertiary lymphoid structures have been shown to be associated with response to anti-immune checkpoint therapy, which is often a positive prognostic feature in MM. The present review discusses the interaction between lymphangiogenesis and MM metastasis, and it was concluded that the relationship between LVD and TILs and patient prognosis is analogous to a dynamically tilted scale.
Collapse
Affiliation(s)
- Wei Ju
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Hua Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Wei Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - De-Ming Li
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xi-Hu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhi-Xin Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
3
|
Velliou RI, Legaki AI, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell Mol Life Sci 2023; 80:314. [PMID: 37798474 PMCID: PMC11072568 DOI: 10.1007/s00018-023-04966-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Koroknai V, Szász I, Balázs M. Gene Expression Changes in Cytokine and Chemokine Receptors in Association with Melanoma Liver Metastasis. Int J Mol Sci 2023; 24:ijms24108901. [PMID: 37240247 DOI: 10.3390/ijms24108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cytokines and chemokines (chemotactic cytokines) are soluble extracellular proteins that bind to specific receptors and play an integral role in the cell-to-cell signaling network. In addition, they can promote the homing of cancer cells into different organs. We investigated the potential relationship between human hepatic sinusoidal endothelial cells (HHSECs) and several melanoma cell lines for the expression of chemokine and cytokine ligands and receptor expression during the invasion of melanoma cells. In order to identify differences in gene expression related to invasion, we selected invasive and non-invasive subpopulations of cells after co-culturing with HHSECs and identified the gene expression patterns of 88 chemokine/cytokine receptors in all cell lines. Cell lines with stable invasiveness and cell lines with increased invasiveness displayed distinct profiles of receptor genes. Cell lines with increased invasive capacity after culturing with conditioned medium showed a set of receptor genes (CXCR1, IL1RL1, IL1RN, IL3RA, IL8RA, IL11RA, IL15RA, IL17RC, and IL17RD) with significantly different expressions. It is very important to emphasize that we detected significantly higher IL11RA gene expression in primary melanoma tissues with liver metastasis as well, compared to those without metastasis. In addition, we assessed protein expression in endothelial cells before and after co-culturing them with melanoma cell lines by applying chemokine and cytokine proteome arrays. This analysis revealed 15 differentially expressed proteins (including CD31, VCAM-1, ANGPT2, CXCL8, and CCL20) in the hepatic endothelial cells after co-culture with melanoma cells. Our results clearly indicate the interaction between liver endothelial and melanoma cells. Furthermore, we assume that overexpression of the IL11RA gene may play a key role in organ-specific metastasis of primary melanoma cells to the liver.
Collapse
Affiliation(s)
- Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Jauch AS, Wohlfeil SA, Weller C, Dietsch B, Häfele V, Stojanovic A, Kittel M, Nolte H, Cerwenka A, Neumaier M, Schledzewski K, Sticht C, Reiners-Koch PS, Goerdt S, Géraud C. Lyve-1 deficiency enhances the hepatic immune microenvironment entailing altered susceptibility to melanoma liver metastasis. Cancer Cell Int 2022; 22:398. [PMID: 36496412 PMCID: PMC9741792 DOI: 10.1186/s12935-022-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.
Collapse
Affiliation(s)
- Anna Sophia Jauch
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian A. Wohlfeil
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7497.d0000 0004 0492 0584Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Céline Weller
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianca Dietsch
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Häfele
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- grid.7700.00000 0001 2190 4373Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Kittel
- grid.7700.00000 0001 2190 4373Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hendrik Nolte
- grid.419502.b0000 0004 0373 6590Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Adelheid Cerwenka
- grid.7700.00000 0001 2190 4373Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Neumaier
- grid.7700.00000 0001 2190 4373Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany
| | - Carsten Sticht
- grid.7700.00000 0001 2190 4373NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Reiners-Koch
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cyrill Géraud
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
7
|
Adams R, Moser B, Karagiannis SN, Lacy KE. Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers (Basel) 2021; 13:cancers13225625. [PMID: 34830780 PMCID: PMC8615762 DOI: 10.3390/cancers13225625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of cutaneous malignant melanoma is rising globally and is projected to continue to rise. Advances in immunotherapy over the last decade have demonstrated that manipulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival, invasion and metastasis, and which enhance their ability to evade anticancer immune responses. Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification, augmenting the effect of current and emerging therapies, and designing specific treatments to target chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential, and enhance immune cell-mediated cancer killing. The chemokine network may provide selective and specific targets that, if included in current therapeutic regimens, harbour potential to improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4YS, UK;
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| |
Collapse
|
8
|
Liu X, Chen L, Zhang Y, Xin X, Qi L, Jin M, Guan Y, Gao Z, Huang W. Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA. Eur J Pharm Sci 2021; 158:105641. [DOI: 10.1016/j.ejps.2020.105641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/17/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
|
9
|
Liang GQ, Liu J, Zhou XX, Lin ZX, Chen T, Chen G, Wei H. Anti-CXCR4 Single-Chain Variable Fragment Antibodies Have Anti-Tumor Activity. Front Oncol 2021; 10:571194. [PMID: 33392074 PMCID: PMC7775505 DOI: 10.3389/fonc.2020.571194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are large and have limitations as cancer therapeutics. Human single-chain variable fragment (scFv) is a small antibody as a good alternative. It can easily enter cancer tissues, has no immunogenicity and can be produced in bacteria to decrease the cost. The chemokine receptor CXCR4 is overexpressed in different cancer cells. It plays an important role in tumor growth and metastasis. Its overexpression is associated with poor prognosis in cancer patients and is regarded as an attractive target for cancer treatment. In this study, a peptide on the CXCR4 extracellular loop 2 (ECL2) was used as an antigen for screening a human scFv antibody library by yeast two-hybrid method. Three anti-CXCR4 scFv antibodies were isolated. They could bind to CXCR4 protein and three cancer cell lines (DU145, PC3, and MDA-MB-231) and not to 293T and 3T3 cells as negative controls. These three scFvs could decrease the proliferation, migration, and invasion of these cancer cells and promote their apoptosis. The two scFvs were further examined in a mouse xenograft model, and they inhibited the tumor growth. Tumor immunohistochemistry also demonstrated that the two scFvs decreased cancer cell proliferation and tumor angiogenesis and increased their apoptosis. These results show that these anti-CXCR4 scFvs can decrease cancer cell proliferation and inhibit tumor growth in mice, and may provide therapy for various cancers.
Collapse
Affiliation(s)
- Guang-Quan Liang
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Xin Zhou
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ze-Xiong Lin
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, Leibing T, Mohammadi MM, Heineke J, Sticht C, Olsavszky V, Koch PS, Géraud C, Goerdt S. Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Res 2018; 79:598-610. [PMID: 30530502 DOI: 10.1158/0008-5472.can-18-1752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/14/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
Abstract
The interaction of tumor cells with organ-specific endothelial cells (EC) is an important step during metastatic progression. Notch signaling in organ-specific niches has been implicated in mediating opposing effects on organotropic metastasis to the lungs and the liver, respectively. In this study, we scrutinized the role of endothelial Notch activation during liver metastasis. To target hepatic EC (HEC), a novel EC subtype-specific Cre driver mouse was generated. Clec4g-Cretg/wt mice were crossed to Rosa26N1ICD-IRES-GFP to enhance Notch signaling in HEC (NICDOE-HEC). In NICDOE-HEC mice, hepatic metastasis of malignant melanoma and colorectal carcinoma was significantly reduced. These mice revealed reduced liver growth and impaired metabolic zonation due to suppression of hepatic angiocrine Wnt signaling. Hepatic metastasis, however, was not controlled by angiocrine Wnt signaling, as deficiency of the Wnt cargo receptor Wls in HEC of WlsHEC-KO mice did not affect hepatic metastasis. In contrast, the hepatic microvasculature in NICDOE-HEC mice revealed a special form of sinusoidal capillarization, with effacement of endothelial zonation functionally paralleled by reduced tumor cell adhesion in vivo. Notably, expression of endothelial adhesion molecule ICAM1 by HEC was significantly reduced. Treatment with an anti-ICAM1 antibody significantly inhibited tumor cell adhesion to HEC in wild-type mice confirming that Notch controls hepatic metastasis via modulation of HEC adhesion molecules. As endothelial Notch activation in the lung has been shown to promote lung metastasis, tumor therapy will require approaches that target Notch in an organ-, cell type-, and context-specific manner. SIGNIFICANCE: Manipulation of Notch signaling in the endothelium has opposing, organ-specific effects on metastasis to the lung and the liver, demonstrating that this pathway should be targeted in a cell- and context-specific fashion.
Collapse
Affiliation(s)
- Sebastian A Wohlfeil
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Verena Häfele
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Bianca Dietsch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Johanna Zierow
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Mona Malek Mohammadi
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), partner site Mannheim/Heidelberg, Germany
| | - Joerg Heineke
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), partner site Mannheim/Heidelberg, Germany
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany. .,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Jacquelot N, Duong CPM, Belz GT, Zitvogel L. Targeting Chemokines and Chemokine Receptors in Melanoma and Other Cancers. Front Immunol 2018; 9:2480. [PMID: 30420855 PMCID: PMC6215820 DOI: 10.3389/fimmu.2018.02480] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is highly heterogeneous. It is composed of a diverse array of immune cells that are recruited continuously into lesions. They are guided into the tumor through interactions between chemokines and their receptors. A variety of chemokine receptors are expressed on the surface of both tumor and immune cells rendering them sensitive to multiple stimuli that can subsequently influence their migration and function. These features significantly impact tumor fate and are critical in melanoma control and progression. Indeed, particular chemokine receptors expressed on tumor and immune cells are strongly associated with patient prognosis. Thus, potential targeting of chemokine receptors is highly attractive as a means to quench or eliminate unconstrained tumor cell growth.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Connie P M Duong
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM U1015, Villejuif, France.,Faculty of Medicine, Paris Sud/Paris XI University, LeKremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
13
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. High co-expression of the SDF1/CXCR4 axis in hepatocarcinoma cells is regulated by AnnexinA7 in vitro and in vivo. Cell Commun Signal 2018; 16:22. [PMID: 29783989 PMCID: PMC5963093 DOI: 10.1186/s12964-018-0234-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND SDF1/CXCR4 and AnnexinA7 play important roles in many physiological and pathological conditions, but the molecular association between them in cancer cells has not been studied thus far. METHODS The expression changes of SDF1/CXCR4 were detected by gene transcriptome sequencing, qRT-PCR, Western blotting, cytoimmunofluorescence and immunohistochemistry in mouse hepatocarcinoma F/P cells, AnnexinA7 downregulated expression F (FA7DOWN) cells, AnnexinA7 overexpression P (PA7UP) cells, AnnexinA7 unrelated sequence F (FSHUS) cells, empty vector P (PNCEV) cells and normal liver cells in vitro and in vivo. RESULTS SDF1 and CXCR4 were co-expressed in hepatocarcinoma cells. SDF1 was localized mainly in the cytoplasm of cells, while CXCR4 was mainly localized in the cell membrane. Both in vitro and in vivo, expression levels of SDF1/CXCR4 in F and P cells were higher than in normal liver cells, and expression levels of SDF1/CXCR4 in F cells with high lymphatic metastatic potential were higher than those in P cells with low lymphatic metastatic potential. Expression of SDF1 was higher than that of CXCR4 in P cells and normal liver cells, while expression of CXCR4 was higher than that of SDF1 in F cells. Expression levels of SDF1/CXCR4 were completely consistent with AnnexinA7 regulation. After the AnnexinA7 gene was downregulated or upregulated, expression levels of SDF1/CXCR4 in FA7DOWN/PA7UP cells were lower or higher than those in FSHUS/PNCEV cells. Furthermore, CXCR4 was more sensitively modulated by AnnexinA7 regulation than SDF1. CONCLUSIONS High co-expression of SDF1/CXCR4 is a molecular characteristic of hepatocarcinoma cells, especially those with high lymphatic metastatic potential. AnnexinA7 positively regulates expression levels of SDF1/CXCR4, in particular CXCR4, and AnnexinA7 is a functional regulator of SDF1/CXCR4.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | | | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China.
| |
Collapse
|
14
|
Rezaeeyan H, Shirzad R, McKee TD, Saki N. Role of chemokines in metastatic niche: new insights along with a diagnostic and prognostic approach. APMIS 2018; 126:359-370. [PMID: 29676815 DOI: 10.1111/apm.12818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/04/2018] [Indexed: 01/10/2023]
Abstract
Chemokines are cytokines that are involved in the movement of leukocytes and the occurrence of immune responses. It has recently been noted that these cytokines play a role in the movement of cancer cells to different parts of the body and create a suitable environment [i.e. (pre) metastatic niche] for their growth and proliferation. We studied the role of chemokines in the metastasis of cancer cells, as well as their involvement in the proliferation and growth of these cells. Relevant literature was identified by a PubMed search (2005-2017) of English language papers using the terms 'chemokine,' 'metastasis niche,' and 'organotropism.' Based on the nature of cancer cells, the expression of chemokine receptors on these cells leads to metastasis to various organs, which ultimately causes changes in different signaling pathways. Finally, the targeting of chemokines on cancer cells could prevent the metastasis of cancer cells toward different organs.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- WHO-Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Trevor D McKee
- Princess Margaret Cancer Centre, STTARR Innovation Facility, Toronto, ON, Canada
| | - Najmaldin Saki
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|