1
|
Alkali-labile gangliosides. Glycoconj J 2023; 40:269-276. [PMID: 36695939 DOI: 10.1007/s10719-023-10103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The structure and properties of a group of gangliosides modified by mild alkaline treatment are discussed. We will present the occurrence and the structure of gangliosides carrying the N-acetyneuraminic acid O-acetylated in position 9, the Neu5,9Ac2, and of gangliosides carrying a sialic acid that forms a lactone ring. Starting from biochemical data we will discuss the possible biochemical role played by these gangliosides in the processes of cell signaling and maintenance of brain functions.
Collapse
|
2
|
Suri M, Soni N, Okpaleke N, Yadav S, Shah S, Iqbal Z, Alharbi MG, Kalra HS, Hamid P. A Deep Dive Into the Newest Avenues of Immunotherapy for Pediatric Osteosarcoma: A Systematic Review. Cureus 2021; 13:e18349. [PMID: 34725602 PMCID: PMC8555755 DOI: 10.7759/cureus.18349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer affecting children and young adults, most often occurring at the metaphysis of long bones. At present, treatment with combinations of surgery and chemotherapy for the localized OS has only brought minuscule improvements in prognosis. In comparison, the advanced, metastatic, or recurrent forms of OS are often non-responsive to chemotherapy, adding to the dire need to develop new and efficient therapies. The question of interest investigated in this systematic review is whether immunotherapy can play a meaningful role in improving the clinical outcomes of children with OS. This article aims to summarize the preclinical and clinical research conducted thus far on potential therapeutic avenues for pediatric OS using immunotherapy, including methods like checkpoint inhibition, adoptive cellular therapy with T-cells, chimeric antigen receptor T (CAR-T), and natural killer (NK) cells. It also highlights the influence of the innate and adaptive immune system on the tumor microenvironment, allowing for OS progression and metastasis. This systematic review contains 27 articles and analyses of multiple clinical trials employing immunotherapeutic drugs to 785 osteosarcoma participants and over 243 pediatric patients. The articles were obtained through PubMed, PubMed Central, and ClinicalTrials.gov and individually assessed for quality using the Assessment of Multiple Systematic Reviews (AMSTAR) checklist and the Cochrane risk-of-bias tool. The reviews reveal that immunotherapy's most significant impact on pediatric OS includes combining immune checkpoint blockers with traditional chemotherapy and surgery. However, due to the bimodal distribution of this aggressive malignancy, these studies cannot precisely estimate the overall effect and any potential life-threatening adverse events following therapy in children. Further research is required to fully assess the impact of these immunotherapies, including more extensive multinational clinical trials to focus on the pediatric population.
Collapse
Affiliation(s)
- Megha Suri
- Medicine-Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Soni
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nkiruka Okpaleke
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shikha Yadav
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suchitra Shah
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zafar Iqbal
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed G Alharbi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harjeevan S Kalra
- Internal Medicine/Emergency Medicine/Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
3
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Clemente O, Ottaiano A, Di Lorenzo G, Bracigliano A, Lamia S, Cannella L, Pizzolorusso A, Di Marzo M, Santorsola M, De Chiara A, Fazioli F, Tafuto S. Is immunotherapy in the future of therapeutic management of sarcomas? J Transl Med 2021; 19:173. [PMID: 33902630 PMCID: PMC8077947 DOI: 10.1186/s12967-021-02829-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcomas are rare, ubiquitous and heterogeneous tumors usually treated with surgery, chemotherapy, target therapy, and radiotherapy. However, 25-50% of patients experience local relapses and/or distant metastases after chemotherapy with an overall survival about 12-18 months. Recently, immuno-therapy has revolutionized the cancer treatments with initial indications for non-small cell lung cancer (NSCLC) and melanoma (immune-checkpoint inhibitors).Here, we provide a narrative review on the topic as well as a critical description of the currently available trials on immunotherapy treatments in patients with sarcoma. Given the promising results obtained with anti-PD-1 monoclonal antibodies (pembrolizumab and nivolumab) and CAR-T cells, we strongly believe that these new immunotherapeutic approaches, along with an innovative characterization of tumor genetics, will provide an exciting opportunity to ameliorate the therapeutic management of sarcomas.
Collapse
Affiliation(s)
- Ottavia Clemente
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Alessandro Ottaiano
- Division of Innovative Therapies, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Giuseppe Di Lorenzo
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Alessandra Bracigliano
- Nuclear Medicine Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale, 80131, Naples, Italy
| | - Sabrina Lamia
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Lucia Cannella
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Antonio Pizzolorusso
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Massimiliano Di Marzo
- Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Mariachiara Santorsola
- Division of Innovative Therapies, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Annarosaria De Chiara
- Histopathology of Lymphomas and Sarcomas SSD, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Flavio Fazioli
- Orthopedic Oncology Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy.
| |
Collapse
|
5
|
Strobel SB, Machiraju D, Hülsmeyer I, Becker JC, Paschen A, Jäger D, Wels WS, Bachmann M, Hassel JC. Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life (Basel) 2021; 11:life11040269. [PMID: 33805080 PMCID: PMC8064084 DOI: 10.3390/life11040269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor antigen-specific redirection of cytotoxic T cells (CTLs) or natural killer (NK) cells including chimeric antigen receptor (CAR-) and T cell receptor (TCR-) cell therapy is currently being evaluated in different tumor entities including melanoma. Expression of melanoma-specific antigen recognized by the respective CAR or TCR directly or presented by HLA molecules is an indispensable prerequisite for this innovative therapy. In this study, we investigated in 168 FFPE tumor specimens of patients with stage I-IV melanoma the protein expression of HER2, TRP2, ABCB5, gp100, p53, and GD2 by immunohistochemistry (IHC). These results were correlated with clinical parameters. Membrane expression of HER2 and GD2 was also investigated in ten melanoma cell lines by flow cytometry for which corresponding tumors were analyzed by IHC. Our results demonstrated that gp100 was the most frequently overexpressed protein (61%), followed by TRP2 (50%), GD2 (38%), p53 (37%), ABCB5 (17%), and HER2 (3%). TRP2 expression was higher in primary tumors compared to metastases (p = 0.005). Accordingly, TRP2 and ABCB5 expression was significantly associated with lower tumor thickness of the primary (p = 0.013 and p = 0.025). There was no association between protein expression levels and survival in advanced melanoma patients. Flow cytometric analysis revealed abundant surface expression of GD2 and HER2 in all melanoma cell lines. The discordant HER2 expression in situ and in vitro suggests a tissue culture associated induction. In summary, our data support the use of gp100 and GD2 as a potential target for developing engineered TCR- or CAR-cell therapies, respectively, against melanoma.
Collapse
Affiliation(s)
- Sophia B. Strobel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| | - Devayani Machiraju
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| | - Ingrid Hülsmeyer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
| | - Jürgen C. Becker
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141 Essen, Germany
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Annette Paschen
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Jäger
- National Center for Tumor Diseases (NCT) Heidelberg, Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases, German Cancer Research Center, Clinical Cooperation Unit Applied Tumor Immunity, 69120 Heidelberg, Germany
| | - Winfried S. Wels
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University Hospital ‘Carl Gustav Carus’, TU Dresden, 01307 Dresden, Germany
- Tumor Immunology, University Cancer Center (UCC) ‘Carl Gustav Carus’, TU Dresden, 01307 Dresden, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
- Correspondence:
| |
Collapse
|
6
|
Ene CD, Tampa M, Nicolae I, Mitran CI, Mitran MI, Matei C, Caruntu A, Caruntu C, Georgescu SR. Antiganglioside Antibodies and Inflammatory Response in Cutaneous Melanoma. J Immunol Res 2020; 2020:2491265. [PMID: 32855975 PMCID: PMC7443004 DOI: 10.1155/2020/2491265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Endogenously produced antiganglioside antibodies could affect the evolution of cutaneous melanoma. Epidemiological and experimental evidence suggest "chronic inflammation" to be one of the hallmarks in skin cancers. The aim of the study was to characterize the relation between antiganglioside antibodies and inflammation in cutaneous melanoma focusing on gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, GQ1b. Material and Method. We performed an observational study that included 380 subjects subdivided into three groups: patients with metastatic melanoma (170 cases), patients with primary melanoma (160 cases), and healthy subjects (50 subjects). The assessment of antiganglioside antibodies, IgG, and IgM classes, against -GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, -GQ1b was performed using immunoblot technique (EUROLine kit). RESULTS The presence of IgG and IgM antiganglioside antibodies in primary melanoma was (%), as follows: anti-GM1 (5.0 and 13.1), -GM2 (1.8 and 18.1), -GM3 (0.6 and 5.6), -GD1a (0.6 and 15.0), -GD1b (3.7 and 10.7), -GT1b (0.0 and 13.1), -GQ1b (0.0 and 5.0). In metastatic melanoma, the level of antiganglioside antibodies was significantly lower compared with primary melanoma (p < 0.05), while in the control group they were absent. Antiganglioside antibodies anti-GM1 and -GD1a were positively correlated, while anti-GM3, -GD1b, and -GT1b were negatively associated with the inflammatory markers, interleukin 8 (IL-8), and C reactive protein (CRP). CONCLUSIONS Tumour ganglioside antigens generate an immune response in patients with primary melanomas. The host's ability to elaborate an early antiganglioside response could be considered as a defence mechanism, directed toward eliminating a danger signal from the tumour microenvironment. Antiganglioside antibodies associated with inflammation markers could be used as diagnostic, monitoring, and treatment tools in patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Corina Daniela Ene
- “Carol Davila” Nephrology Hospital, 4 Calea Grivitei, 010731 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Mircea Tampa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania
- Faculty of Medicine, “Titu Maiorescu” University, 22 Dambrovnicului, 031593 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Simona Roxana Georgescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| |
Collapse
|
7
|
Yu J, Wu X, Yan J, Yu H, Xu L, Chi Z, Sheng X, Si L, Cui C, Dai J, Ma M, Xu T, Kong Y, Guo J. Anti-GD2/4-1BB chimeric antigen receptor T cell therapy for the treatment of Chinese melanoma patients. J Hematol Oncol 2018; 11:1. [PMID: 29298689 PMCID: PMC5751546 DOI: 10.1186/s13045-017-0548-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/26/2017] [Indexed: 12/30/2022] Open
Abstract
Background Chimeric antigen receptor (CAR)-engineered T cells have demonstrated promising clinical efficacy in patients with B cell lymphoma. However, the application of CAR-T cell therapy in the treatment of other solid tumors has been limited. We incorporated 4-1BB into the anti-GD2 CAR-T cells to test their cytotoxicity in melanoma in vitro and in vivo. Moreover, we reported the expression of ganglioside GD2 in non-Caucasian melanoma populations for the first time, thus providing a basis for future clinical research. Methods This study included tumor samples from 288 melanoma patients at the Peking University Cancer Hospital & Institute. Clinical data were collected. Immunohistochemical assays using antibodies against ganglioside GD2 were performed on formalin-fixed, paraffin-embedded specimens. The ability of ganglioside GD2 CAR-T cells to kill ganglioside GD2+ melanoma cells was evaluated in vitro and in a patient-derived xenograft (PDX) model. Results Among the 288 samples, 49.3% of cases (142/288) demonstrated positive staining with ganglioside GD2. The median survival time in patients exhibiting ganglioside GD2 expression was significantly shorter than that in patients without ganglioside GD2 expression (31 vs. 47.1 months, P < 0.001). In the present study, CAR was constructed using a GD2-specific scFv (14.G2a), T cell receptor CD3ζ chain, and the CD137 (4-1BB) costimulatory motif. In addition, the GD2.BBζ CAR-T cells demonstrated specific lysis of ganglioside GD2-expressing melanoma cells in vitro. In two PDX models, mice that received intravenous or local intratumor injections of GD2.BBζ CAR-T cells experienced rapid tumor regression. Conclusions These data demonstrate that the rate of GD2 expression in Chinese patients is 49.3%. GD2.BBζ CAR-T cells can both efficiently lyse melanoma in a GD2-specific manner and release Th1 cytokines in an antigen-dependent manner in vitro and in vivo. Anti-GD2/4-1BB CAR-T cells represent a clinically appealing treatment strategy for Chinese melanoma patients exhibiting GD2 expression and provide a basis for future studies of the clinical application of immunotherapy for melanoma. Electronic supplementary material The online version of this article (10.1186/s13045-017-0548-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiayi Yu
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Xiaowen Wu
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Junya Yan
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Huan Yu
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Longwen Xu
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Zhihong Chi
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Xinan Sheng
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Lu Si
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Chuanliang Cui
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Jie Dai
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Meng Ma
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Tianxiao Xu
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China.
| | - Jun Guo
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China.
| |
Collapse
|
8
|
Rivas-Serna IM, Polakowski R, Shoemaker GK, Mazurak VC, Clandinin MT. Profiling gangliosides from milk products and other biological membranes using LC/MS. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Abstract
Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased β1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Holst S, Stavenhagen K, Balog CIA, Koeleman CAM, McDonnell LM, Mayboroda OA, Verhoeven A, Mesker WE, Tollenaar RAEM, Deelder AM, Wuhrer M. Investigations on aberrant glycosylation of glycosphingolipids in colorectal cancer tissues using liquid chromatography and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Mol Cell Proteomics 2013; 12:3081-93. [PMID: 23878401 PMCID: PMC3820925 DOI: 10.1074/mcp.m113.030387] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/24/2013] [Indexed: 11/06/2022] Open
Abstract
Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.
Collapse
Affiliation(s)
- Stephanie Holst
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kathrin Stavenhagen
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Crina I. A. Balog
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam M. McDonnell
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleg A. Mayboroda
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wilma E. Mesker
- §Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - André M. Deelder
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- From the ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
12
|
Momin AA, Park H, Portz BJ, Haynes CA, Shaner RL, Kelly SL, Jordan IK, Merrill JAH. A method for visualization of "omic" datasets for sphingolipid metabolism to predict potentially interesting differences. J Lipid Res 2011; 52:1073-1083. [PMID: 21415121 PMCID: PMC3090229 DOI: 10.1194/jlr.m010454] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are structurally diverse and their metabolic pathways highly complex, which makes it difficult to follow all of the subspecies in a biological system, even using “lipidomic” approaches. This report describes a method to use transcriptomic data to visualize and predict potential differences in sphingolipid composition, and it illustrates its use with published data for cancer cell lines and tumors. In addition, several novel sphingolipids that were predicted to differ between MDA-MB-231 and MCF7 cells based on published microarray data for these breast cancer cell lines were confirmed by mass spectrometry. For the data that we were able to find for these comparisons, there was a significant match between the gene expression data and sphingolipid composition (P < 0.001 by Fisher's exact test). Upon considering the large number of gene expression datasets produced in recent years, this simple integration of two types of “omic” technologies (“transcriptomics” to direct “sphingolipidomics”) might facilitate the discovery of useful relationships between sphingolipid metabolism and disease, such as the identification of new biomarkers.
Collapse
Affiliation(s)
- Amin A Momin
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Hyejung Park
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Brent J Portz
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | | | - Rebecca L Shaner
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Samuel L Kelly
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - I King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA
| | - Jr Alfred H Merrill
- School of Biology, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA; School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
13
|
Schauer R, Srinivasan GV, Wipfler D, Kniep B, Schwartz-Albiez R. O-Acetylated sialic acids and their role in immune defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:525-48. [PMID: 21618128 PMCID: PMC7123180 DOI: 10.1007/978-1-4419-7877-6_28] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
14
|
Yvon E, Del Vecchio M, Savoldo B, Hoyos V, Dutour A, Anichini A, Dotti G, Brenner MK. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 2009; 15:5852-60. [PMID: 19737958 DOI: 10.1158/1078-0432.ccr-08-3163] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic engineering of human T lymphocytes to express tumor-directed chimeric antigen receptors (CAR) can produce antitumor effector cells that bypass tumor immune escape mechanisms that are due to abnormalities in protein-antigen processing and presentation. Moreover, these transgenic receptors can be directed to tumor-associated antigens that are not protein-derived, such as the ganglioside GD2, which is expressed in a high proportion of melanoma cells. EXPERIMENTAL DESIGN We generated chimeric T cells specific for the ganglioside GD2 by joining an extracellular antigen-binding domain derived from the GD2-specific antibody sc14.G2a to cytoplasmic signaling domains derived from the T-cell receptor zeta-chain, with the endodomains of the costimulatory molecules CD28 and OX40. We expressed this CAR in human T cells and assessed the targeting of GD2-positive melanoma tumors in vitro and in a murine xenograft. RESULTS Upon coincubation with GD2-expressing melanoma cells, CAR-GD2 T lymphocytes incorporating the CD28 and OX40 endodomains secreted significant levels of cytokines in a pattern comparable with the cytokine response obtained by engagement of the native CD3 receptor. These CAR-T cells had antimelanoma activity in vitro and in our xenograft model, increasing the survival of tumor-bearing animals. CONCLUSION Redirecting human T lymphocytes to the tumor-associated ganglioside GD2 generates effector cells with antimelanoma activity that should be testable in subjects with disease.
Collapse
Affiliation(s)
- Eric Yvon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|