1
|
Sahm K, Kessler T, Eisele P, Ratliff M, Sperk E, König L, Breckwoldt MO, Seliger C, Mildenberger I, Schrimpf D, Herold-Mende C, Zeiner PS, Tabatabai G, Meuth SG, Capper D, Bendszus M, von Deimling A, Wick W, Sahm F, Platten M. Concurrent gliomas in patients with multiple sclerosis. COMMUNICATIONS MEDICINE 2023; 3:186. [PMID: 38110626 PMCID: PMC10728097 DOI: 10.1038/s43856-023-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Concurrent malignant brain tumors in patients with multiple sclerosis (MS) constitute a rare but paradigmatic phenomenon for studying neuroimmunological mechanisms from both molecular and clinical perspectives. METHODS A multicenter cohort of 26 patients diagnosed with both primary brain tumors and multiple sclerosis was studied for disease localization, tumor treatment-related MS activity, and molecular characteristics specific for diffuse glioma in MS patients. RESULTS MS neither predisposes nor protects from the development of gliomas. Patients with glioblastoma WHO grade 4 without isocitratdehydrogenase (IDH) mutations have a longstanding history of MS, whereas patients diagnosed with IDH-mutant astrocytoma WHO grade 2 receive multiple sclerosis diagnosis mostly at the same time or later. Concurrent MS is associated with a lesser extent of tumor resection and a worse prognosis in IDH-mutant glioma patients (PFS 32 vs. 64 months, p = 0.0206). When assessing tumor-intrinsic differences no distinct subgroup-defining methylation pattern is identified in gliomas of MS patients compared to other glioma samples. However, differential methylation of immune-related genetic loci including human leukocyte antigen locus on 6p21 and interleukin locus on 5q31 is found in MS patients vs. matched non-MS patients. In line, inflammatory disease activity increases in 42% of multiple sclerosis patients after brain tumor radiotherapy suggesting a susceptibility of multiple sclerosis brain tissue to pro-inflammatory stimuli such as ionizing radiation. CONCLUSIONS Concurrent low-grade gliomas should be considered in multiple sclerosis patients with slowly progressive, expansive T2/FLAIR lesions. Our findings of typically reduced extent of resection in MS patients and increased MS activity after radiation may inform future treatment decisions.
Collapse
Affiliation(s)
- Katharina Sahm
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany.
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - Elena Sperk
- Department of Radiation Oncology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael O Breckwoldt
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Seliger
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Iris Mildenberger
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pia S Zeiner
- Dr Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neurooncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven G Meuth
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany.
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Chaudhuri A, Pash G, Hormuth DA, Lorenzo G, Kapteyn M, Wu C, Lima EABF, Yankeelov TE, Willcox K. Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Front Artif Intell 2023; 6:1222612. [PMID: 37886348 PMCID: PMC10598726 DOI: 10.3389/frai.2023.1222612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where heterogeneity in the response to standard-of-care (SOC) radiotherapy contributes to sub-optimal patient outcomes. The digital twin is initialized through prior distributions derived from population-level clinical data in the literature for a mechanistic model's parameters. Then the digital twin is personalized using Bayesian model calibration for assimilating patient-specific magnetic resonance imaging data. The calibrated digital twin is used to propose optimal radiotherapy treatment regimens by solving a multi-objective risk-based optimization under uncertainty problem. The solution leads to a suite of patient-specific optimal radiotherapy treatment regimens exhibiting varying levels of trade-off between the two competing clinical objectives: (i) maximizing tumor control (characterized by minimizing the risk of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy. The proposed digital twin framework is illustrated by generating an in silico cohort of 100 patients with high-grade glioma growth and response properties typically observed in the literature. For the same total radiation dose as the SOC, the personalized treatment regimens lead to median increase in tumor time to progression of around six days. Alternatively, for the same level of tumor control as the SOC, the digital twin provides optimal treatment options that lead to a median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total dose of 60 Gy. The range of optimal solutions also provide options with increased doses for patients with aggressive cancer, where SOC does not lead to sufficient tumor control.
Collapse
Affiliation(s)
- Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Graham Pash
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Michael Kapteyn
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, The University of Texas at Austin, Austin, TX, United States
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Riva M, Wouters R, Nittner D, Ceusters J, Sterpin E, Giovannoni R, Himmelreich U, Gsell W, VAN Ranst M, Coosemans A. Radiation dose-escalation and dose-fractionation modulate the immune microenvironment, cancer stem cells and vasculature in experimental high-grade gliomas. J Neurosurg Sci 2023; 67:55-65. [PMID: 33056947 DOI: 10.23736/s0390-5616.20.05060-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In the context of high-grade gliomas (HGGs), very little evidence is available concerning the optimal radiotherapy (RT) schedule to be used in radioimmunotherapy combinations. This studied was aimed at shedding new light in this field by analyzing the effects of RT dose escalation and dose fractionation on the tumor microenvironment of experimental HGGs. METHODS Neurospheres (NS) CT-2A HGG-bearing C57BL/6 mice were treated with stereotactic RT. For dose-escalation experiments, mice received 2, 4 or 8 Gy as single administrations. For dose-fractionation experiments, mice received 4 Gy as a single fraction or multiple (1.33x3 Gy) fractions. The impact of the RT schedule on murine survival and tumor immunity was evaluated. Modifications of glioma stem cells (GSCs), tumor vasculature and tumor cell replication were also assessed. RESULTS RT dose-escalation was associated with an improved immune profile, with higher CD8+ T cells and CD8+ T cells/regulatory T cells (Tregs) ratio (P=0.0003 and P=0.0022, respectively) and lower total tumor associated microglia/macrophages (TAMs), M2 TAMs and monocytic myeloid derived suppressor cells (mMDSCs) (P=0.0011, P=0.0024 and P<0.0001, respectively). The progressive increase of RT dosages prolonged survival (P<0.0001) and reduced tumor vasculature (P=0.069), tumor cell proliferation (P<0.0001) and the amount of GSCs (P=0.0132 or lower). Compared to the unfractionated regimen, RT dose-fractionation negatively affected tumor immunity by inducing higher total TAMs, M2 TAMs and mMDSCs (P=0.0051, P=0.0036 and P=0.0436, respectively). Fractionation also induced a shorter survival (P=0.0078), a higher amount of GSCs (P=0.0015 or lower) and a higher degree of tumor cell proliferation (P=0.0003). CONCLUSIONS This study demonstrates that RT dosage and fractionation significantly influence survival, tumor immunity and GSCs in experimental HGGs. These findings should be taken into account when aiming at designing more synergistic and effective radio-immunotherapy combinations.
Collapse
Affiliation(s)
- Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium - .,Department of Neurosurgery, UcL Namur, Mont-Godinne University Hospital, Yvoir, Belgium -
| | - Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | - David Nittner
- Center for the Biology of Disease, Catholic University of Leuven Center for Human Genetics - InfraMouse, VIB, Catholic University of University of Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | - Edmond Sterpin
- Laboratory of Experimental Radiotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Catholic University of Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Catholic University of Leuven, Leuven, Belgium
| | - Marc VAN Ranst
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium.,Department of Gynecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Yeini E, Satchi-Fainaro R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb Res 2022; 213 Suppl 1:S22-S28. [DOI: 10.1016/j.thromres.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 10/18/2022]
|
5
|
Xia Q, Liu L, Li Y, Zhang P, Han D, Dong L. Therapeutic Perspective of Temozolomide Resistance in Glioblastoma Treatment. Cancer Invest 2021; 39:627-644. [PMID: 34254870 DOI: 10.1080/07357907.2021.1952595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GB) is the most lethal form of primary brain neoplasm. TMZ is the first-line standard treatment, but the strong resistance constrains the efficacy in clinical use. GB contains glioma stem cells (GSCs), which contribute to TMZ resistance, promote cell survival evolvement, and repopulate the tumor mass. This review summarizes the TMZ-resistance mechanisms and discusses several potential therapies from the conservative opinion of GSC-targeted therapy orientation to the current view of TMZ resistance-aimed efficacy, which will provide an understanding of the role of heterogeneity in drug resistance and improve therapeutic efficacy in general.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Jiang H, Yu K, Cui Y, Ren X, Li M, Yang C, Zhao X, Zhu Q, Lin S. Combination of Immunotherapy and Radiotherapy for Recurrent Malignant Gliomas: Results From a Prospective Study. Front Immunol 2021; 12:632547. [PMID: 34025640 PMCID: PMC8138184 DOI: 10.3389/fimmu.2021.632547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background World Health Organization (WHO) grade IV glioma remains one of the most lethal tumors with a dismal prognosis and inevitable recurrence. We evaluated the safety and efficacy of immunotherapy with radiotherapy in this population of patients. Methods This study was a single-arm, open-label, phase I trial based on patients with recurrent WHO grade IV glioma. Patients were treated with intracranial and systemic immunoadjuvants in combination with low-dose reirradiation. The primary endpoint of the present trial was safety. Secondary endpoints were overall survival (OS) and progression-free survival (PFS). This trial is registered at ClinicalTrials.gov, NCT03392545. Results Thirty patients were enrolled. The most common adverse events (AEs) were fever (66.7%), vomiting (33.3%), headache (30.0%), and fatigue (23.3%). Only a single patient experienced grade 3 fever, and no grade 4 AEs or deaths related to treatment were observed. Of the 30 patients, 1 (3.3%) had a complete response, 5 (16.7%) had a partial response, 9 (30.0%) had stable disease, and 15 (50.0%) had progressive disease, resulting in an objective response rate of 20.0%. The median PFS of the entire cohort was 88.0 (61.0-254.0) days, and the median OS was 362.0 (197.0-601.0) days. Patients could be divided into responders and non-responders, and these groups exhibited a significant difference in terms of survival time, T lymphocyte subsets, frequency of cell division cycle 27 (CDC27) mutation status, and CD15 and CD68 expression (P<0.05). Conclusion The combination of immunotherapy and radiotherapy is well tolerated and may provide clinical benefit for patients with recurrent WHO grade IV glioma. A prospective phase II study is needed to further validate the efficacy of our therapeutic regimen.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Fakhoury KR, Ney DE, Ormond DR, Rusthoven CG. Immunotherapy and radiation for high-grade glioma: a narrative review. Transl Cancer Res 2021; 10:2537-2570. [PMID: 35116570 PMCID: PMC8797698 DOI: 10.21037/tcr-20-1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma and other high-grade gliomas (HGGs) are the most common and deadly primary brain tumors. Due to recent advances in immunotherapy and improved clinical outcomes in other disease sites, the study of immunotherapy in HGG has increased significantly. Herein, we summarize and evaluate existing evidence and ongoing clinical trials investigating the use of immunotherapy in the treatment of HGG, including therapeutic vaccination, immune checkpoint inhibition, adoptive lymphocyte transfer, and combinatorial approaches utilizing radiation and multiple modalities of immunotherapy. Special attention is given to the mechanisms by which radiation may improve immunogenicity in HGG, why this motivates the study of radiation in combination with immunotherapy, and how to determine optimal dosing and scheduling of radiation. Though larger randomized controlled trials have not consistently shown improvements in clinical outcomes, this area of research is still in its early stages and a number of important lessons can be taken away from the studies that have been completed to date. Many studies found a subset of patients who experienced durable responses, and analysis of their immune cells and tumor cells can be used to identify biomarkers that predict therapeutic response, as well as additional glioma-specific targets that can enhance therapeutic efficacy in a challenging tumor type.
Collapse
Affiliation(s)
- Kareem R. Fakhoury
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Douglas E. Ney
- Department of Neurology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - D. Ryan Ormond
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Chad G. Rusthoven
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
8
|
Zheng K, Xie H, Wu W, Wen X, Zeng Z, Shi Y. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int 2021; 21:27. [PMID: 33413401 PMCID: PMC7789671 DOI: 10.1186/s12935-020-01699-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background Increasing studies have revealed that circular RNAs (CircRNAs) make great contributions to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A, in glioma. Methods Firstly, reverse transcription-polymerase chain reaction (RT-PCR) was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical-pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and CircPIP5K1A overexpression and knockdown cell models were constructed. Subsequently, cell proliferation and viability were detected by the CCK8 method and BrdU staining. Cell apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (Caspase3, Bax, and Bcl2) and epithelial-mesenchymal transition (EMT) markers (E-cadherin, Vimentin, and N-cadherin) was determined by western blot or RT-PCR. Results The results manifested that CircPIP5K1A was upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated glioma cell proliferation, invasion, and EMT and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A upregulated TCF12 and PI3K/AKT activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3′-untranslated region (UTR) of TCF12. Conclusions Overall, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates glioma evolvement by modulating the miR-515-5p-mediated TCF12/PI3K/AKT axis.
Collapse
Affiliation(s)
- Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Haipeng Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Wensong Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China
| | - Yanfang Shi
- Department of Neurosurgery, Affiliated Hospital of Hebei University, No.212Yuhua Road, Lianchi District, Baoding, 071000, Hebei, China.
| |
Collapse
|
9
|
Liu S, Zhao Q, Shi W, Zheng Z, Liu Z, Meng L, Dong L, Jiang X. Advances in radiotherapy and comprehensive treatment of high-grade glioma: immunotherapy and tumor-treating fields. J Cancer 2021; 12:1094-1104. [PMID: 33442407 PMCID: PMC7797642 DOI: 10.7150/jca.51107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
High-grade gliomas (HGGs) are the most common primary malignant brain tumors. They have a high degree of malignancy and show invasive growth. The personal treatment plan for HGG is based on the patient's age, performance status, and degree of tumor invasion. The basic treatment plan for HGG involves tumor resection, radiotherapy (RT) with concomitant temozolomide (TMZ), and adjuvant TMZ chemotherapy. The basic radiation technology includes conventional RT, three-dimensional conformal RT, intensity-modulated RT, and stereotactic RT. As our understanding of tumor pathogenesis has deepened, so-called comprehensive treatment schemes have attracted attention. These combine RT with chemotherapy, molecular targeted therapy, immunotherapy, or tumor-treating fields. These emerging treatments are expected to improve the prospects of patients with HGG. In the present article, we review the recent advances in RT and comprehensive treatment for patients with newly diagnosed and recurrent HGG.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiyan Shi
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Olson JJ, Ryken TC. Congress of neurological surgeons systematic review and evidence-based clinical practice parameter guidelines for the treatment of adults with newly diagnosed glioblastoma: Introduction and Methods. J Neurooncol 2020; 150:87-93. [DOI: 10.1007/s11060-020-03593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/07/2020] [Indexed: 10/22/2022]
|
11
|
The Utility of Diffusion and Perfusion Magnetic Resonance Imaging in Target Delineation of High-Grade Gliomas. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8718097. [PMID: 32851090 PMCID: PMC7439164 DOI: 10.1155/2020/8718097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/22/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023]
Abstract
Background The tumor volume of high-grade glioma (HGG) after surgery is usually determined by contrast-enhanced MRI (CE-MRI), but the clinical target volume remains controversial. Functional magnetic resonance imaging (multimodality MRI) techniques such as magnetic resonance perfusion-weighted imaging (PWI) and diffusion-tensor imaging (DTI) can make up for CE-MRI. This study explored the survival outcomes and failure patterns of patients with HGG by comparing the combination of multimodality MRI and CE-MRI imaging with CE-MRI alone. Methods 102 patients with postoperative HGG between 2012 and 2016 were included. 50 were delineated based on multimodality MRI (PWI, DTI) and CE-MRI (enhanced T1), and the other 52 were delineated based on CE-MRI as control. Results The median survival benefit was 6 months. The 2-year overall survival, progression-free survival, and local-regional control rates were 48% vs. 25%, 42% vs. 13.46%, and 40% vs. 13.46% for the multimodality MRI and CE-MRI cohorts, respectively. The two cohorts had similar rates of disease progression and recurrence but different proportions of failure patterns. The univariate analysis shows that characteristics of patients such as combined with epilepsy, the dose of radiotherapy, the selection of MRI were significant influence factors for 2-year overall survival. However, in multivariate analyses, only the selection of MRI was an independent significant predictor of overall survival. Conclusions This study was the first to explore the clinical value of multimodality MRI in the delineation of radiotherapy target volume for HGG. The conclusions of the study have positive reference significance to the combination of multimodality MRI and CE-MRI in guiding the delineation of the radiotherapy target area for HGG patients.
Collapse
|
12
|
Tran TAT, Kim YH, Duong THO, Jung S, Kim IY, Moon KS, Jang WY, Lee HJ, Lee JJ, Jung TY. Peptide Vaccine Combined Adjuvants Modulate Anti-tumor Effects of Radiation in Glioblastoma Mouse Model. Front Immunol 2020; 11:1165. [PMID: 32733437 PMCID: PMC7358653 DOI: 10.3389/fimmu.2020.01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common aggressive cancer, has a poor prognosis. Among the current standard treatment strategies, radiation therapy is the most commonly recommended. However, it is often unsuccessful at completely eliminating the cancer from the brain. A combination of radiation with other treatment methods should therefore be considered. It has been reported that radiotherapy in combination with immunotherapy might show a synergistic effect; however, this still needs to be investigated. In the current study, a “branched multipeptide and peptide adjuvants [such as pan DR epitope (PADRE) and polyinosinic-polycytidylic acid—stabilized with polylysine and carboxymethylcellulose—(poly-ICLC)],” namely vaccine and anti-PD1, were used as components of immunotherapy to assist in the anti-tumor effects of radiotherapy against glioblastomas. With regard to experimental design, immunological characterization of GL261 cells was performed and the effects of radiation on this cell line were also evaluated. An intracranial GL261 mouse glioma model was established, and therapeutic effects were observed based on tumor size and survival time. The distribution of effector immune cells in the spleen, based on cytotoxic T lymphocyte (CTL) and natural killer (NK) cell function, was determined. The pro-inflammatory and anti-inflammatory cytokine production from re-stimulated splenocytes and single tumor cells were also evaluated. As GL261 cells demonstrated both immunological characteristics and radiation sensitivity, they were found to be promising candidates for testing this combination treatment. Combinatorial treatment with radiation, vaccine, and anti-PD1 prolonged mouse survival by delaying tumor growth. Although this combination treatment led to an increase in the functional activity of both CTLs and NK cells, as evidenced by the increased percentage of these cells in the spleen, there was a greater shift toward CTL rather than NK cell activity. Moreover, the released cytokines from re-stimulated splenocytes and single tumor cells also showed a shift toward the pro-inflammatory response. This study suggests that immunotherapy comprising a branched multipeptide plus PADRE, poly-ICLC, and anti-PD1 could potentially enhance the anti-tumor effects of radiotherapy in a glioblastoma mouse model.
Collapse
Affiliation(s)
- Thi-Anh-Thuy Tran
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Young-Hee Kim
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Thi-Hoang-Oanh Duong
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea.,Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - In-Young Kim
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea.,Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Kyung-Sub Moon
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea.,Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Woo-Youl Jang
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea.,Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea.,Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| | - Tae-Young Jung
- Brain Tumor Research Laboratory, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea.,Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Chonnam National University, Hwasun, South Korea
| |
Collapse
|
13
|
Zhang M, Wang X, Chen X, Zhang Q, Hong J. Novel Immune-Related Gene Signature for Risk Stratification and Prognosis of Survival in Lower-Grade Glioma. Front Genet 2020; 11:363. [PMID: 32351547 PMCID: PMC7174786 DOI: 10.3389/fgene.2020.00363] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Despite several clinicopathological factors being integrated as prognostic biomarkers, the individual variants and risk stratification have not been fully elucidated in lower grade glioma (LGG). With the prevalence of gene expression profiling in LGG, and based on the critical role of the immune microenvironment, the aim of our study was to develop an immune-related signature for risk stratification and prognosis prediction in LGG. Methods RNA-sequencing data from The Cancer Genome Atlas (TCGA), Genome Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) were used. Immune-related genes were obtained from the Immunology Database and Analysis Portal (ImmPort). Univariate, multivariate cox regression, and Lasso regression were employed to identify differentially expressed immune-related genes (DEGs) and establish the signature. A nomogram was constructed, and its performance was evaluated by Harrell’s concordance index (C-index), receiver operating characteristic (ROC), and calibration curves. Relationships between the risk score and tumor-infiltrating immune cell abundances were evaluated using CIBERSORTx and TIMER. Results Noted, 277 immune-related DEGs were identified. Consecutively, 6 immune genes (CANX, HSPA1B, KLRC2, PSMC6, RFXAP, and TAP1) were identified as risk signature and Kaplan–Meier curve, ROC curve, and risk plot verified its performance in TCGA and CGGA datasets. Univariate and multivariate Cox regression indicated that the risk group was an independent predictor in primary LGG. The prognostic signature showed fair accuracy for 3- and 5-year overall survival in both internal (TCGA) and external (CGGA) validation cohorts. However, predictive performance was poor in the recurrent LGG cohort. The CIBERSORTx algorithm revealed that naïve CD4+ T cells were significant higher in low-risk group. Conversely, the infiltration levels of M1-type macrophages, M2-type macrophages, and CD8+T cells were significant higher in high-risk group in both TCGA and CGGA cohorts. Conclusion The present study constructed a robust six immune-related gene signature and established a prognostic nomogram effective in risk stratification and prediction of overall survival in primary LGG.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fuzhou, China.,Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoping Chen
- Department of Statistics, College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou, China
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fuzhou, China
| |
Collapse
|
14
|
Dent P, Booth L, Roberts JL, Poklepovic A, Hancock JF. Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Front Oncol 2020; 10:22. [PMID: 32047722 PMCID: PMC6997152 DOI: 10.3389/fonc.2020.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Previously we demonstrated that the multiple sclerosis drug dimethyl fumarate (DMF) and its plasma breakdown product MMF could interact with chemotherapeutic agents to kill both GBM cells and activated microglia. The trial NCT02337426 demonstrated the safety of DMF in newly diagnosed GBM patients when combined with the standard of care Stupp protocol. We hypothesized that another multiple sclerosis drug, fingolimod (FTY720) would synergize with MMF to kill GBM cells. MMF and fingolimod interacted in a greater than additive fashion to kill PDX GBM isolates. MMF and fingolimod radiosensitized glioma cells and enhanced the lethality of temozolomide. Exposure to [MMF + fingolimod] activated an ATM-dependent toxic autophagy pathway, enhanced protective endoplasmic reticulum stress signaling, and inactivated protective PI3K, STAT, and YAP function. The drug combination reduced the expression of protective c-FLIP-s, MCL-1, BCL-XL, and in parallel caused cell-surface clustering of the death receptor CD95. Knock down of CD95 or over-expression of c-FLIP-s or BCL-XL suppressed killing. Fingolimod and MMF interacted in a greater than additive fashion to rapidly enhance reactive oxygen species production and over-expression of either thioredoxin or super-oxide dismutase two significantly reduced the drug-induced phosphorylation of ATM, autophagosome formation and [MMF + fingolimod] lethality. In contrast, the production of ROS was only marginally reduced in cells lacking ATM, CD95, or Beclin1. Collectively, our data demonstrate that the primary generation of ROS by [MMF + fingolimod] plays a key role, via the induction of toxic autophagy and death receptor signaling, in the killing of GBM cells.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
15
|
Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 2019; 141:595-607. [PMID: 30659522 PMCID: PMC6538286 DOI: 10.1007/s11060-019-03103-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Photodynamic therapy (PDT) is a two-step treatment involving the administration of a photosensitive agent followed by its activation at a specific light wavelength for targeting of tumor cells. MATERIALS/METHODS A comprehensive review of the literature was performed to analyze the indications for PDT, mechanisms of action, use of different photosensitizers, the immunomodulatory effects of PDT, and both preclinical and clinical studies for use in high-grade gliomas (HGGs). RESULTS PDT has been approved by the United States Food and Drug Administration (FDA) for the treatment of premalignant and malignant diseases, such as actinic keratoses, Barrett's esophagus, esophageal cancers, and endobronchial non-small cell lung cancers, as well as for the treatment of choroidal neovascularization. In neuro-oncology, clinical trials are currently underway to demonstrate PDT efficacy against a number of malignancies that include HGGs and other brain tumors. Both photosensitizers and photosensitizing precursors have been used for PDT. 5-aminolevulinic acid (5-ALA), an intermediate in the heme synthesis pathway, is a photosensitizing precursor with FDA approval for PDT of actinic keratosis and as an intraoperative imaging agent for fluorescence-guided visualization of malignant tissue during glioma surgery. New trials are underway to utilize 5-ALA as a therapeutic agent for PDT of the intraoperative resection cavity and interstitial PDT for inoperable HGGs. CONCLUSION PDT remains a promising therapeutic approach that requires further study in HGGs. Use of 5-ALA PDT permits selective tumor targeting due to the intracellular metabolism of 5-ALA. The immunomodulatory effects of PDT further strengthen its use for treatment of HGGs and requires a better understanding. The combination of PDT with adjuvant therapies for HGGs will need to be studied in randomized, controlled studies.
Collapse
Affiliation(s)
- K Mahmoudi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K L Garvey
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Stepp
- Laser-Research Laboratory, LIFE-Center, Department of Urology, University Hospital of Munich, Munich, Germany
| | - J G Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - C G Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA.
| |
Collapse
|
16
|
Jain KK. A Critical Overview of Targeted Therapies for Glioblastoma. Front Oncol 2018; 8:419. [PMID: 30374421 PMCID: PMC6196260 DOI: 10.3389/fonc.2018.00419] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Over the past century, treatment of malignant tumors of the brain has remained a challenge. Refinements in neurosurgical techniques, discovery of powerful chemotherapeutic agents, advances in radiotherapy, applications of biotechnology, and improvements in methods of targeted delivery have led to some extension of length of survival of glioblastoma patients. Refinements in surgery are mentioned because most of the patients with glioblastoma undergo surgery and many of the other innovative therapies are combined with surgery. However, cure of glioblastoma has remained elusive because it requires complete destruction of the tumor. Radical surgical ablation is not possible in the brain and even a small residual tumor leads to rapid recurrence that eventually kills the patient. Blood-brain barrier (BBB) comprising brain endothelial cells lining the cerebral microvasculature, limits delivery of drugs to the brain. Even though opening of the BBB in tumor core occurs locally, BBB limits systemic chemotherapy especially at the tumor periphery, where tumor cells invade normal brain structure comprising intact BBB. Comprehensive approaches are necessary to gain maximally from promising targeted therapies. Common methods used for critical evaluation of targeted therapies for glioblastoma include: (1) novel methods for targeted delivery of chemotherapy; (2) strategies for delivery through BBB and blood-tumor barriers; (3) innovations in radiotherapy for selective destruction of tumor; (4) techniques for local destruction of tumor; (5) tumor growth inhibitors; (6) immunotherapy; and (7) cell/gene therapies. Suggestions for improvements in glioblastoma therapy include: (1) controlled targeted delivery of anticancer therapy to glioblastoma through the BBB using nanoparticles and monoclonal antibodies; (2) direct introduction of genetically modified bacteria that selectively destroy cancer cells but spare the normal brain into the remaining tumor after resection; (3) use of better animal models for preclinical testing; and (4) personalized/precision medicine approaches to therapy in clinical trials and translation into practice of neurosurgery and neurooncology. Advances in these techniques suggest optimism for the future management of glioblastoma.
Collapse
|