1
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Dowaraka-Persad B, Neergheen VS. Mushroom-Derived Compounds as Metabolic Modulators in Cancer. Molecules 2023; 28:1441. [PMID: 36771106 PMCID: PMC9920867 DOI: 10.3390/molecules28031441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer is responsible for lifelong disability and decreased quality of life. Cancer-associated changes in metabolism, in particular carbohydrate, lipid, and protein, offer a new paradigm of metabolic hits. Hence, targeting the latter, as well as related cross-linked signalling pathways, can reverse the malignant phenotype of transformed cells. The systemic toxicity and pharmacokinetic limitations of existing drugs prompt the discovery of multi-targeted and safe compounds from natural products. Mushrooms possess biological activities relevant to disease-fighting and to the prevention of cancer. They have a long-standing tradition of use in ethnomedicine and have been included as an adjunct therapy during and after oncological care. Mushroom-derived compounds have also been reported to target the key signature of cancer cells in in vitro and in vivo studies. The identification of metabolic pathways whose inhibition selectively affects cancer cells appears as an interesting approach to halting cell proliferation. For instance, panepoxydone exerted protective mechanisms against breast cancer initiation and progression by suppressing lactate dehydrogenase A expression levels and reinducing lactate dehydrogenase B expression levels. This further led to the accumulation of pyruvate, the activation of the electron transport chain, and increased levels of reactive oxygen species, which eventually triggered mitochondrial apoptosis in the breast cancer cells. Furthermore, the inhibition of hexokinase 2 by neoalbaconol induced selective cytotoxicity against nasopharyngeal carcinoma cell lines, and these effects were also observed in mouse models. Finally, GL22 inhibited hepatic tumour growth by downregulating the mRNA levels of fatty acid-binding proteins and blocking fatty acid transport and impairing cardiolipin biosynthesis. The present review, therefore, will highlight how the metabolites isolated from mushrooms can target potential biomarkers in metabolic reprogramming.
Collapse
Affiliation(s)
- Bhoomika Dowaraka-Persad
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit 80837, Mauritius
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
3
|
4T1 cell membrane-derived biodegradable nanosystem for comprehensive interruption of cancer cell metabolism. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Jang J, Lee K, Koh B. Investigation of benzimidazole anthelmintics as oral anticancer agents. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiyoon Jang
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Department of Chemistry Sungkyunkwan University Suwon South Korea
| | - Kwangho Lee
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division Korea Research Institute of Chemical Technology Daejeon South Korea
| |
Collapse
|
5
|
Rashid MM, Lee H, Park J, Jung BH. Comparative metabolomics and lipidomics study to evaluate the metabolic differences between first- and second-generation mammalian or mechanistic target of rapamycin inhibitors. Biomed Chromatogr 2021; 35:e5190. [PMID: 34101862 DOI: 10.1002/bmc.5190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Mammalian or mechanistic target of rapamycin (mTOR) drives its fundamental cellular functions through two distinct catalytic subunits, mTORC1 and mTORC2, and is frequently dysregulated in most cancers. To treat cancers, developed mTOR inhibitors have been classified into first and second generations based on their ability to inhibit single (first-generation) and dual (second-generation) mTOR subunits. However, the underlying metabolic differences due to the effects of first- and second-generation mTOR inhibitors have not been clearly evaluated. In this study, rapamycin (sirolimus) and AZD8055 and PP242 were selected as first- and second-generation mTOR inhibitors, respectively, to evaluate the metabolic differences due to these two generations of mTOR inhibitors after a single oral dose using untargeted metabolomics and lipidomics approaches. The metabolic differences at each time point were compared using multivariate analysis. The multivariate and data analyses showed that metabolic disparity was more prominent within 8 h after drug administration and a broad class of metabolites were affected by the administration of both generations of mTOR inhibitors. Among the metabolite classes, changes in the pattern of fatty acids and glycerophospholipids were opposite, specifically at 4 and 8 h between the two generations of mTOR inhibitors. We speculate that the inhibition of the mTORC2 subunit by the second-generation mTOR inhibitor may have resulted in a distinct metabolic pattern between the first- and second-generation inhibitors. Finally, the findings of this study could assist in a more detailed understanding of the key metabolic differences caused by first- and second-generation mTOR inhibitors.
Collapse
Affiliation(s)
- Md Mamunur Rashid
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
6
|
Shi Y, He R, Yang Y, He Y, Zhan L, Wei B. Potential relationship between Sirt3 and autophagy in ovarian cancer. Oncol Lett 2020; 20:162. [PMID: 32934730 PMCID: PMC7471650 DOI: 10.3892/ol.2020.12023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (Sirt3) is an important member of the sirtuin protein family. It is a deacetylase that was previously reported to modulate the level of reactive oxygen species (ROS) production and limit the extent of oxidative damage in cellular components. As an important member of the class III type of histone deacetylases, Sirt3 has also been documented to mediate nuclear gene expression, metabolic control, neuroprotection, cell cycle and proliferation. In ovarian cancer (OC), Sirt3 has been reported to regulate cellular metabolism, apoptosis and autophagy. Sirt3 can regulate autophagy through a variety of different molecular signaling pathways, including the p62, 5'AMP-activated protein kinase and mitochondrial ROS-superoxide dismutase pathways. However, autophagy downstream of Sirt3 and its association with OC remains poorly understood. In the present review, the known characteristics of Sirt3 and autophagy were outlined, and their potential functional roles were discussed. Following a comprehensive analysis of the current literature, Sirt3 and autophagy may either serve positive or negative roles in the regulation of OC. Therefore, it is important to identify the appropriate expression level of Sirt3 to control the activation of autophagy in OC cells. This strategy may prove to be a novel therapeutic method to reduce the mortality of patients with OC. Finally, potential research directions into the association between Sirt3 and other signaling pathways were provided.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Runhua He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu Yang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
7
|
Lee JY, Yang C, Lim W, Song G. Methiothepin Suppresses Human Ovarian Cancer Cell Growth by Repressing Mitochondrion-Mediated Metabolism and Inhibiting Angiogenesis In Vivo. Pharmaceutics 2020; 12:pharmaceutics12070686. [PMID: 32698407 PMCID: PMC7407284 DOI: 10.3390/pharmaceutics12070686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Despite treatment, most patients experience relapse and the 5-year survival rate of ovarian cancer is less than 50%. Serotonin has cell growth-promoting functions in a variety of carcinomas, but the effect of serotonin receptor antagonists on ovarian cancer cells is unknown. In this study, it was confirmed that methiothepin, a serotonin receptor antagonist, suppresses the viability of, and induces apoptosis in, ovarian cancer cells. Methiothepin also induces mitochondrial dysfunction, represented by depolarization of the mitochondrial membrane and increased mitochondrion-specific Ca2+ levels, and causes metabolic disruption in cancer cells such as decreased ATP production and oxidative phosphorylation. Methiothepin also interferes with vascular development in transgenic zebrafish embryos. Combination treatment with methiothepin improves the anti-cancer effect of paclitaxel, a standard chemotherapeutic agent. In conclusion, this study revealed that methiothepin is a potential novel therapeutic agent for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, Korea University, Seoul 02841, Korea;
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Korea
- Correspondence: (W.L.); (G.S.); Tel.: +82-2-910-4773 (W.L.); +82-2-3290-3012 (G.S.)
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, Korea University, Seoul 02841, Korea;
- Correspondence: (W.L.); (G.S.); Tel.: +82-2-910-4773 (W.L.); +82-2-3290-3012 (G.S.)
| |
Collapse
|
8
|
Xia M, Feng S, Chen Z, Wen G, Zu X, Zhong J. Non-coding RNAs: Key regulators of aerobic glycolysis in breast cancer. Life Sci 2020; 250:117579. [PMID: 32209425 DOI: 10.1016/j.lfs.2020.117579] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Although extensive research progress has been made in breast cancer in recent years, yet the morbidity and mortality rates of breast cancer are rising, making it the major disease that endangers women's health. Energy metabolism reprogramming is featured by a state termed "aerobic glycolysis" or the Warburg effect that glycolysis is preferred even under aerobic conditions in neoplastic diseases. Widely acknowledged as an emerging hallmark in cancers, this metabolic switch shows a sophisticated role in the pathogenesis of breast cancer. The regulating effect of non-coding RNAs (ncRNAs) composed of microRNAs, long non-coding RNAs and circular RNAs is closely related to the glycolysis in breast cancer. Therefore, understand the mechanisms of ncRNAs of aerobic glycolysis in breast cancer may provide new strategy for the disease.
Collapse
Affiliation(s)
- Min Xia
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China; Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Shujun Feng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China
| | - Zuyao Chen
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China; Department of Metabolism and Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
9
|
Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci 2019; 20:E3177. [PMID: 31261749 PMCID: PMC6651418 DOI: 10.3390/ijms20133177] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer is a problem with worldwide importance and is the second leading cause of death globally. Cancer cells reprogram their metabolism to support their uncontrolled expansion by increasing biomass (anabolic metabolism-glycolysis) at the expense of their energy (bioenergetics- mitochondrial function) requirements. In this aspect, metabolic reprogramming stands out as a key biological process in understanding the conversion of a normal cell into a neoplastic precursor. Quercetin is the major representative of the flavonoid subclass of flavonols. Quercetin is ubiquitously present in fruits and vegetables, being one of the most common dietary flavonols in the western diet. The anti-cancer effects of quercetin include its ability to promote the loss of cell viability, apoptosis and autophagy through the modulation of PI3K/Akt/mTOR, Wnt/-catenin, and MAPK/ERK1/2 pathways. In this review, we discuss the role of quercetin in cancer metabolism, addressing specifically its ability to target molecular pathways involved in glucose metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, 08916 Barcelona, Spain
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
10
|
Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, Kalogera E, Staub J, Wang Y, Xuyang W, Khurana A, Chien J, Telang S, Chesney J, Tapolsky G, Petras D, Shridhar V. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer 2018; 144:178-189. [PMID: 30226266 PMCID: PMC6261695 DOI: 10.1002/ijc.31868] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/27/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022]
Abstract
Metabolic alterations are increasingly recognized as important novel anti‐cancer targets. Among several regulators of metabolic alterations, fructose 2,6 bisphosphate (F2,6BP) is a critical glycolytic regulator. Inhibition of the active form of PFKFB3ser461 using a novel inhibitor, PFK158 resulted in reduced glucose uptake, ATP production, lactate release as well as induction of apoptosis in gynecologic cancer cells. Moreover, we found that PFK158 synergizes with carboplatin (CBPt) and paclitaxel (PTX) in the chemoresistant cell lines, C13 and HeyA8MDR but not in their chemosensitive counterparts, OV2008 and HeyA8, respectively. We determined that PFK158‐induced autophagic flux leads to lipophagy resulting in the downregulation of cPLA2, a lipid droplet (LD) associated protein. Immunofluorescence and co‐immunoprecipitation revealed colocalization of p62/SQSTM1 with cPLA2 in HeyA8MDR cells uncovering a novel pathway for the breakdown of LDs promoted by PFK158. Interestingly, treating the cells with the autophagic inhibitor bafilomycin A reversed the PFK158‐mediated synergy and lipophagy in chemoresistant cells. Finally, in a highly metastatic PTX‐resistant in vivo ovarian mouse model, a combination of PFK158 with CBPt significantly reduced tumor weight and ascites and reduced LDs in tumor tissue as seen by immunofluorescence and transmission electron microscopy compared to untreated mice. Since the majority of cancer patients will eventually recur and develop chemoresistance, our results suggest that PFK158 in combination with standard chemotherapy may have a direct clinical role in the treatment of recurrent cancer. What's new? Ovarian and cervical cancer patients experience high rates of chemoresistance and tumor recurrence. To improve patient outcome, greater understanding of mechanisms behind these phenomena is needed. Here, activity of PFKFB3, a glycolytic regulator overexpressed in cancer, was found to be positively correlated with chemoresistance and lipid droplet (LD) biogenesis in ovarian and cervical cancer cells. PFK‐158, a PFKFB3 inhibitor, sensitized chemoresistant cells to drug‐induced cytotoxicity by simultaneously targeting both glycolytic and lipogenic pathways to inhibit tumor growth and LDs in a drug‐resistant xenograft model. The findings warrant further investigation of PFK158 as a treatment for recurrent gynecological malignancy.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN.,Department of Microbiology, Sammilani Mahavidyalaya, Kolkata, India
| | - Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | | | - Ling Jin
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Deokbeom Jung
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Song Zhang
- Division of Cardiovascular disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Eleftheria Kalogera
- Division of Gynecologic Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| | - Julie Staub
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Yaxian Wang
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Wen Xuyang
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Jeremey Chien
- Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM
| | - Sucheta Telang
- Department of Medicine, University of Louisville, Louisville, KY
| | - Jason Chesney
- Department of Medicine, University of Louisville, Louisville, KY
| | | | - Dzeja Petras
- Division of Cardiovascular disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
11
|
Macedo F, Ladeira K, Longatto-Filho A, Martins SF. Editor’s Pick: Pyruvate Kinase and Gastric Cancer: A Potential Marker. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10313567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer-related deaths worldwide, and the 5-year overall survival rate for advanced gastric cancer is ≤25%. Metabolism is a critical process for maintaining growth and other functions in cancer cells; in these cells, the metabolic process shifts from oxidative phosphorylation to aerobic glycolysis and the expression of pyruvate kinase (PK) splice isoform M2 (PKM2) is upregulated. A PubMed search focussing on PK in gastric cancer was conducted and 32 articles were initially collected; 12 articles were subsequently excluded from this review. PKM2 is responsible for tumour growth and invasion and correlates with short survival times and cancer differentiation. Pyruvate dehydrogenase kinase 1 is associated with cell proliferation, lymph node metastasis, and invasion. Measurement of PKM2 or pyruvate dehydrogenase kinase 1 in the blood or stools could be a good marker for gastric cancer in combination with the glycoprotein CA72-4. The review arose from the need for new biomarkers in the management of gastric cancer and had the primary objective of determining whether PK could be used as a marker to diagnose and monitor gastric cancer.
Collapse
Affiliation(s)
- Filipa Macedo
- Portuguese Oncology Institute – Coimbra, Coimbra, Portugal
| | - Kátia Ladeira
- Portuguese Oncology Institute – Lisbon, Lisbon, Portugal; Life and Health Science Research Institute, School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal 5. Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil; Laboratory of Medical Investigation 14, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra F. Martins
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal; Surgery Department, Coloproctology Unit, Braga Hospital, Braga, Portugal
| |
Collapse
|
12
|
Xintaropoulou C, Ward C, Wise A, Queckborner S, Turnbull A, Michie CO, Williams ARW, Rye T, Gourley C, Langdon SP. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer 2018; 18:636. [PMID: 29866066 PMCID: PMC5987622 DOI: 10.1186/s12885-018-4521-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Novel therapeutic approaches are required to treat ovarian cancer and dependency on glycolysis may provide new targets for treatment. This study sought to investigate the variation of expression of molecular components (GLUT1, HKII, PKM2, LDHA) of the glycolytic pathway in ovarian cancers and the effectiveness of targeting this pathway in ovarian cancer cell lines with inhibitors. METHODS Expression of GLUT1, HKII, PKM2, LDHA were analysed by quantitative immunofluorescence in a tissue microarray (TMA) analysis of 380 ovarian cancers and associations with clinicopathological features were sought. The effect of glycolysis pathway inhibitors on the growth of a panel of ovarian cancer cell lines was assessed by use of the SRB proliferation assay. Combination studies were undertaken combining these inhibitors with cytotoxic agents. RESULTS Mean expression levels of GLUT1 and HKII were higher in high grade serous ovarian cancer (HGSOC), the most frequently occurring subtype, than in non-HGSOC. GLUT1 expression was also significantly higher in advanced stage (III/IV) ovarian cancer than early stage (I/II) disease. Growth dependency of ovarian cancer cells on glucose was demonstrated in a panel of ovarian cancer cell lines. Inhibitors of the glycolytic pathway (STF31, IOM-1190, 3PO and oxamic acid) attenuated cell proliferation in platinum-sensitive and platinum-resistant HGSOC cell line models in a concentration dependent manner. In combination with either cisplatin or paclitaxel, 3PO (a novel PFKFB3 inhibitor) enhanced the cytotoxic effect in both platinum sensitive and platinum resistant ovarian cancer cells. Furthermore, synergy was identified between STF31 (a novel GLUT1 inhibitor) or oxamic acid (an LDH inhibitor) when combined with metformin, an inhibitor of oxidative phosphorylation, resulting in marked inhibition of ovarian cancer cell growth. CONCLUSIONS The findings of this study provide further support for targeting the glycolytic pathway in ovarian cancer and several useful combinations were identified.
Collapse
Affiliation(s)
- Chrysi Xintaropoulou
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Carol Ward
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, Easter Bush, Roslin, Midlothian, EH25 9RG UK
| | - Alan Wise
- IOmet Pharma (a wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ USA, known as MSD outside the United States and Canada) Nine Edinburgh Bioquarter, Little France Road, Edinburgh, EH16 4UX UK
| | - Suzanna Queckborner
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Arran Turnbull
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Caroline O. Michie
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Alistair R. W. Williams
- Division of Pathology, University of Edinburgh Medical School, 51 Little France Crescent, Edinburgh, EH16 4SA UK
| | - Tzyvia Rye
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Charlie Gourley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| |
Collapse
|
13
|
El-Sisi AE, Sokar SS, Abu-Risha SE, El-Mahrouk SR. Oxamate potentiates taxol chemotherapeutic efficacy in experimentally-induced solid ehrlich carcinoma (SEC) in mice. Biomed Pharmacother 2017; 95:1565-1573. [PMID: 28950656 DOI: 10.1016/j.biopha.2017.09.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 02/09/2023] Open
Abstract
Several human cancers including the breast display elevated expression of Lactate dehydrogenase-A (LDH-A), the enzyme that converts pyruvate to lactate and oxidizes NADH to NAD+. Indeed, tumor lactate levels correlate with increased metastasis, tumor recurrence, and poor outcome. Lactate also plays roles in promoting tumor inflammation and as a signaling molecule that stimulates tumor angiogenesis. Because of its essential role in cancer metabolism, LDH-A has been considered as a potential target for combination cancer therapy. Therefore, the current study investigated the possible anti-tumor effect of LDH inhibitor (oxamate) in a murine model of breast cancer [Solid Ehrlich Carcinoma (SEC)], alone and in combination with Taxol chemotherapy. The potential underlying mechanisms were also investigated. The results indicated that oxamate induced significant anti-tumor activity against the SEC. Mechanistically, the combination treatment was more efficient than paclitaxel monotherapy in reducing ATP, MDA, TNF-α and Il-17 contents in SEC. Moreover, the apoptotic and anti-angiogenic effects of the combination treatment were triggered more efficiently as compared to paclitaxel monotherapy, Therefore, oxamate may represent a promising agent that enhance the antitumor activity of paclitaxel.
Collapse
Affiliation(s)
- Alaa E El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Samia S Sokar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sara R El-Mahrouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
14
|
Magistroni R, Boletta A. Defective glycolysis and the use of 2-deoxy-D-glucose in polycystic kidney disease: from animal models to humans. J Nephrol 2017; 30:511-519. [PMID: 28390001 DOI: 10.1007/s40620-017-0395-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited renal disease characterized by bilateral renal cyst formation. ADPKD is one of the most common rare disorders, accounting for ~10% of all patients with end-stage renal disease (ESRD). ADPKD is a chronic disorder in which the gradual expansion of cysts that form in a minority of nephrons eventually causes loss of renal function due to the compression and degeneration of the surrounding normal parenchyma. Numerous deranged pathways have been identified in the cyst-lining epithelia, prompting the design of potential therapies. Several of these potential treatments have proved effective in slowing down disease progression in pre-clinical animal studies, while only one has subsequently been proven to effectively slow down disease progression in patients, and it has recently been approved for therapy in Europe, Canada and Japan. Among the affected cellular functions and pathways, recent investigations have described metabolic derangement in ADPKD as a major trait offering additional opportunities for targeted therapies. In particular, increased aerobic glycolysis (the Warburg effect) has been described as a prominent feature of ADPKD kidneys and its inhibition using the glucose analogue 2-deoxy-D-glucose (2DG) proved effective in slowing down disease progression in preclinical models of the disease. At the same time, previous clinical experiences have been reported with 2DG, showing that this compound is well tolerated in humans with minimal and reversible side effects. In this work, we review the literature and speculate that 2DG could be a good candidate for a clinical trial in humans affected by ADPKD.
Collapse
Affiliation(s)
- Riccardo Magistroni
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 58, 20132, Milan, Italy
- Division of Nephrology and Hypertension, San Raffaele Hospital, Milan, Italy
- Division of Nephrology and Dialysis, AOU Policlinico di Modena, Università di Modena e Reggio Emilia, Modena, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
15
|
Jin K, Li L, Sun X, Xu Q, Song S, Shen Y, Deng X. Mycoepoxydiene suppresses HeLa cell growth by inhibiting glycolysis and the pentose phosphate pathway. Appl Microbiol Biotechnol 2017; 101:4201-4213. [PMID: 28224194 DOI: 10.1007/s00253-017-8187-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
Upregulation of glycolysis and the pentose phosphate pathway (PPP) is a major characteristic of the metabolic reprogramming of cancer and provides cancer cells with energy and vital metabolites to support their rapid proliferation. Targeting glycolysis and the PPP has emerged as a promising antitumor therapeutic strategy. Marine natural products are attractive sources for anticancer therapeutics, as evidenced by the antitumor drug Yondelis. Mycoepoxydiene (MED) is a natural product isolated from a marine fungus that has shown promising inhibitory efficacy against HeLa cells in vitro. We used a proteomic approach with two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry to explore the cellular targets of MED and to unravel the molecular mechanisms underlying the antitumor activity of MED in HeLa cells. Our proteomic data showed that triosephosphate isomerase (TPI) and 6-phosphogluconolactonase (PGLS), which participate in glycolysis and the PPP, respectively, were significantly downregulated by MED treatment. Functional studies revealed that the expression levels of several other enzymes involved in glycolysis and the PPP, including hexokinase 2 (HK2), phosphofructokinase 1 (PFKM), aldolase A (ALDOA), enolase 1 (ENO1), lactate dehydrogenase A (LDHA), and glucose-6-phosphate dehydrogenase (G6PD), were also reduced in a dose-dependent manner. Moreover, the LDHA and G6PD enzymatic activities in HeLa cells were inhibited by MED, and overexpression of these downregulated enzymes rescued HeLa cells from the growth inhibition induced by MED. Our data suggest that MED suppresses HeLa cell growth by inhibiting glycolysis and the PPP, which provides a mechanistic basis for the development of new therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Kehua Jin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
- School of Basic Medicine Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Xihuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Siyang Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Yuemao Shen
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
16
|
Hong SM, Park CW, Kim SW, Nam YJ, Yu JH, Shin JH, Yun CH, Im SH, Kim KT, Sung YC, Choi KY. NAMPT suppresses glucose deprivation-induced oxidative stress by increasing NADPH levels in breast cancer. Oncogene 2015; 35:3544-54. [PMID: 26568303 DOI: 10.1038/onc.2015.415] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme involved in NAD+ biosynthesis. Although NAMPT has emerged as a critical regulator of metabolic stress, the underlying mechanisms by which it regulates metabolic stress in cancer cells have not been completely elucidated. In this study, we determined that breast cancer cells expressing a high level of NAMPT were resistant to cell death induced by glucose depletion. Furthermore, NAMPT inhibition suppressed tumor growth in vivo in a xenograft model. Under glucose deprivation conditions, NAMPT inhibition was found to increase the mitochondrial reactive oxygen species (ROS) level, leading to cell death. This cell death was rescued by treatment with antioxidants or NAD+. Finally, we showed that NAMPT increased the pool of NAD+ that could be converted to NADPH through the pentose phosphate pathway and inhibited the depletion of reduced glutathione under glucose deprivation. Collectively, our results suggest a novel mechanism by which tumor cells protect themselves against glucose deprivation-induced oxidative stress by utilizing NAMPT to maintain NADPH levels.
Collapse
Affiliation(s)
- S M Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - C W Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Biokogen Inc. POSTECH Biotech Center #226, Pohang, Korea
| | - S W Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Y J Nam
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - J H Yu
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - J H Shin
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - C H Yun
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | - S-H Im
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | - K-T Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Y C Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - K Y Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
17
|
Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 2015; 35 Suppl:S129-S150. [PMID: 26454069 DOI: 10.1016/j.semcancer.2015.10.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review "Hallmarks of Cancer", where dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results demonstrate that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it.
Collapse
|
18
|
Moon SH, Lee SJ, Jung KH, Quach CHT, Park JW, Lee JH, Cho YS, Lee KH. Troglitazone Stimulates Cancer Cell Uptake of 18F-FDG by Suppressing Mitochondrial Respiration and Augments Sensitivity to Glucose Restriction. J Nucl Med 2015; 57:129-35. [DOI: 10.2967/jnumed.115.162016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/23/2015] [Indexed: 12/23/2022] Open
|
19
|
Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 2015; 6:25677-95. [PMID: 26259240 PMCID: PMC4694858 DOI: 10.18632/oncotarget.4499] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/29/2015] [Indexed: 02/04/2023] Open
Abstract
Many cancer cells rely on aerobic glycolysis for energy production and targeting of this pathway is a potential strategy to inhibit cancer cell growth. In this study, inhibition of five glycolysis pathway molecules (GLUT1, HKII, PFKFB3, PDHK1 and LDH) using 9 inhibitors (Phloretin, Quercetin, STF31, WZB117, 3PO, 3-bromopyruvate, Dichloroacetate, Oxamic acid, NHI-1) was investigated in panels of breast and ovarian cancer cell line models. All compounds tested blocked glycolysis as indicated by increased extracellular glucose and decreased lactate production and also increased apoptosis. Sensitivity to several inhibitors correlated with the proliferation rate of the cell lines. Seven compounds had IC50 values that were associated with each other consistent with a shared mechanism of action. A synergistic interaction was revealed between STF31 and Oxamic acid when combined with the antidiabetic drug metformin. Sensitivity to glycolysis inhibition was also examined under a range of O2 levels (21% O2, 7% O2, 2% O2 and 0.5% O2) and greater resistance to the inhibitors was found at low oxygen conditions (7% O2, 2% O2 and 0.5% O2) relative to 21% O2 conditions. These results indicate growth of breast and ovarian cancer cell lines is dependent on all the targets examined in the glycolytic pathway with increased sensitivity to the inhibitors under normoxic conditions.
Collapse
Affiliation(s)
- Chrysi Xintaropoulou
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Carol Ward
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Alan Wise
- IOMET Pharma, Nine, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
| | - Hugh Marston
- IOMET Pharma, Nine, Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK
- Current Address: Eli Lilly Research and Development, Windlesham, Surrey, GU20 6PH, UK
| | - Arran Turnbull
- Breakthrough Breast Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Simon P. Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
20
|
Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther 2015; 9:2695-703. [PMID: 26056431 PMCID: PMC4445698 DOI: 10.2147/dddt.s82342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The Warburg effect refers to glycolytic production of adenosine triphosphate under aerobic conditions, and is a universal property of most cancer cells. Chronic inflammation is a key factor promoting the Warburg effect. This study aimed to determine whether rosmarinic acid (RA) has an anti-Warburg effect in gastric carcinoma in vitro and in vivo. The mechanism for the anti-Warburg effect was also investigated. METHODS An MTT assay was used to examine MKN45 cell growth in vitro. An enzyme-linked immunosorbent assay was used to detect proinflammatory cytokines. Real-time polymerase chain reaction was used to evaluate levels of microRNA expression in cells. Protein expression was determined by Western blotting assay. Mouse xenograft models were established using MKN45 cells to assess the anti-Warburg effect in gastric carcinoma in vivo. RESULTS RA suppressed glucose uptake and lactate production. It also inhibited expression of transcription factor hypoxia-inducible factor-1α, which affects the glycolytic pathway. Inflammation promoted the Warburg effect in cancer cells. As expected, RA inhibited proinflammatory cytokines and microRNAs related to inflammation, suggesting that RA may suppress the Warburg effect via an inflammatory pathway, such as that involving interleukin (IL)-6/signal transducer and activator of transcription-3 (STAT3). miR-155 was found to be an important mediator in the relationship between inflammation and tumorigenesis. We further showed that miR-155 was the target gene regulating the Warburg effect via inactivation of the IL-6/STAT3 pathway. Moreover, we found that RA suppressed the Warburg effect in vivo. CONCLUSION RA might potentially be a therapeutic agent for suppressing the Warburg effect in gastric carcinoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shaohua Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhai Cai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Dongyue Pan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhou Li
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Huijuan Zhu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lijun Lei
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weiwei Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Rellinger EJ, Romain C, Choi S, Qiao J, Chung DH. Silencing gastrin-releasing peptide receptor suppresses key regulators of aerobic glycolysis in neuroblastoma cells. Pediatr Blood Cancer 2015; 62:581-6. [PMID: 25630799 PMCID: PMC4339541 DOI: 10.1002/pbc.25348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/29/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Under normoxic conditions, cancer cells use aerobic glycolysis as opposed to glucose oxidation for energy production; this altered metabolism correlates with poor outcomes in neuroblastoma. Hypoxia-inducible factor-1 alpha (HIF-1α) and pyruvate dehydrogenase kinase 4 (PDK4) regulate aerobic glycolysis, while pyruvate dehydrogenase phosphatase 2 (PDP2) promotes glucose oxidation. Here, we sought to determine whether gastrin-releasing peptide receptor (GRP-R) signaling regulates glucose metabolism. PROCEDURE Neuroblastoma cell lines, BE(2)-C and SK-N-AS, were used. PCR microararay for glucose metabolism was performed on GRP-R silenced cells. Target protein expression was validated using Western blotting and VEGF ELISA. Cobalt chloride (CoCl2 ) was used to induce chemical hypoxia. Efficacy of targeting PDK regulation in neuroblastoma was assessed using dichloroacetate (DCA) by conducting cell viability assays and Western blotting for apoptotic markers. RESULTS Silencing GRP-R decreased HIF-1α expression and blocked VEGF expression and secretion in both normoxic and CoCl2 induced hypoxia. PCR array analysis identified that GRP-R silencing reduced PDK4 and increased PDP2 mRNA expression. These findings were validated by Western blotting. CoCl2 induced hypoxia increased VEGF secretion, HIF-1α, and PDK4 expression. PDK4 silencing decreased HIF-1α expression and VEGF expression and secretion. DCA treatment decreased BE(2)-C and SK-N-AS proliferation while promoting cell death. GRP-R silencing and DCA treatment synergistically halted BE(2)-C proliferation. CONCLUSIONS We report that GRP-R regulates glucose metabolism in neuroblastoma by modulating HIF-1α, PDK4 and PDP2. PDK4 regulates glucose metabolism, in part, via regulation of HIF-1α. Synergistic consequences of GRP-R inhibition and DCA treatment may suggest a novel therapeutic strategy for the treatment of aggressive neuroblastoma.
Collapse
Affiliation(s)
- Eric J. Rellinger
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Carmelle Romain
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - SunPhil Choi
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dai H. Chung
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
22
|
Heterogeneity research in muscle-invasive bladder cancer based on differential protein expression analysis. Med Oncol 2014; 31:21. [DOI: 10.1007/s12032-014-0021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/01/2014] [Indexed: 12/15/2022]
|
23
|
Yu Y, Liao M, Liu R, Chen J, Feng H, Fu Z. Overexpression of lactate dehydrogenase-A in human intrahepatic cholangiocarcinoma: its implication for treatment. World J Surg Oncol 2014; 12:78. [PMID: 24679073 PMCID: PMC4230420 DOI: 10.1186/1477-7819-12-78] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/06/2014] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies have shown that lactate dehydrogenase-A (LDH-A) is strongly expressed in several malignancies, that LDH-A expression is associated with poor prognosis, and that LDH-A inhibition severely diminishes tumorigenicity. However, little is known about the implications of LDH-A expression in intrahepatic cholangiocarcinoma. The purpose of this study was to investigate the expression of LDH-A and to clarify its effect on intrahepatic cholangiocarcinoma. Methods We studied the expression of LDH-A in tissue samples from patients with intrahepatic cholangiocarcinoma (n = 54) using the ultrasensitive surfactant protein (S-P) immunohistochemical method. We then inhibited LDH-A using small hairpin RNA (shRNA) in the cholangiocarcinoma cell line HuCCT-1 in vitro to study the role it plays in promoting growth and escaping apoptosis. Results We report that LDH-A was overexpressed in 52 of 54 (96%) paraffin-embedded cancer tissue samples and 0 of 54 para-carcinoma tissue samples. Reduction of LDH-A by RNA interference (RNAi) inhibited cell growth and induced apoptosis in HuCCT-1 cells. This result correlated with the elevation of cytoplasmic reactive oxygen species (ROS) levels. Conclusions LDH-A expression is closely correlated with histopathological variables of intrahepatic cholangiocarcinoma, indicating that LDH-A may serve as a new treatment target.
Collapse
Affiliation(s)
| | | | | | | | | | - Zan Fu
- Division of Minimally Invasive Surgery, Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, NO, 300, Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
24
|
Andersen AP, Moreira JMA, Pedersen SF. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130098. [PMID: 24493746 DOI: 10.1098/rstb.2013.0098] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major changes in intra- and extracellular pH homoeostasis are shared features of most solid tumours. These changes stem in large part from the metabolic shift of most cancer cells towards glycolytic metabolism and other processes associated with net acid production. In combination with oncogenic signalling and impact from factors in the tumour microenvironment, this upregulates acid-extruding plasma membrane transport proteins which maintain intracellular pH normal or even more alkaline compared with that of normal cells, while in turn acidifying the external microenvironment. Mounting evidence strongly indicates that this contributes significantly to cancer development by favouring e.g. cancer cell migration, invasion and chemotherapy resistance. Finally, while still under-explored, it seems likely that non-cancer cells in the tumour microenvironment also exhibit altered pH regulation and that this may contribute to their malignant properties. Thus, the physical tumour microenvironment and the cancer and stromal cells within it undergo important reciprocal interactions which modulate the tumour pH profile, in turn severely impacting on the course of cancer progression. Here, we summarize recent knowledge of tumour metabolism and the tumour microenvironment, placing it in the context of tumour pH regulation, and discuss how interfering with these properties may be exploited clinically.
Collapse
Affiliation(s)
- Anne Poder Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
D’Alessandro A, Zolla L. Proteomics and metabolomics in cancer drug development. Expert Rev Proteomics 2014; 10:473-88. [DOI: 10.1586/14789450.2013.840440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Bingham PM, Stuart SD, Zachar Z. Cancer Metabolism: A Nexus of Matter, Energy, and Reactive Oxygen Species. CANCER DRUG DISCOVERY AND DEVELOPMENT 2014. [DOI: 10.1007/978-1-4614-9545-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Chini CCS, Guerrico AMG, Nin V, Camacho-Pereira J, Escande C, Barbosa MT, Chini EN. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 2013; 20:120-30. [PMID: 24025713 DOI: 10.1158/1078-0432.ccr-13-0150] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth. EXPERIMENTAL DESIGN We used human pancreatic cancer cells, both in vitro (cell culture experiments) and in vivo (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth. RESULTS We demonstrated that pharmacologic and genetic targeting of Nampt, the key enzyme in the NAD salvage synthesis pathway, inhibits cell growth and survival of pancreatic cancer cells. These changes were accompanied by a reduction of NAD levels, glycolytic flux, lactate production, mitochondrial function, and levels of ATP. The massive reduction in overall metabolic activity induced by Nampt inhibition was accompanied by a dramatic decrease in pancreatic tumor growth. The results of the mechanistic experiments showed that neither the NAD-dependent enzymes PARP-1 nor SIRT1 play a significant role on the effect of Nampt inhibition on pancreatic cancer cells. However, we identified a role for the NAD degradation pathway mediated by the NADase CD38 on the sensitivity to Nampt inhibition. The responsiveness to Nampt inhibition is modulated by the expression of CD38; low levels of this enzyme decrease the sensitivity to Nampt inhibition. In contrast, its overexpression decreased cell growth in vitro and in vivo, and further increased the sensitivity to Nampt inhibition. CONCLUSIONS Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Claudia C S Chini
- Authors' Affiliation: Department of Anesthesiology, Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | |
Collapse
|
28
|
Vuyyuri SB, Rinkinen J, Worden E, Shim H, Lee S, Davis KR. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells. PLoS One 2013; 8:e67081. [PMID: 23776707 PMCID: PMC3679078 DOI: 10.1371/journal.pone.0067081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/15/2013] [Indexed: 12/28/2022] Open
Abstract
Ascorbic acid (AA) exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) on the viability of three non-small cell lung cancer (NSCLC) cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS) levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose) polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with glycolysis inhibitors may be a promising therapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Saleha B. Vuyyuri
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Jacob Rinkinen
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Erin Worden
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Hyekyung Shim
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Sukchan Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Keith R. Davis
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- * E-mail:
| |
Collapse
|
29
|
Kruck S, Merseburger AS, Stenzl A, Bedke J. How far is the horizon? From current targets to future drugs in advanced renal cancer. World J Urol 2013; 32:69-77. [PMID: 23657355 DOI: 10.1007/s00345-013-1096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The proliferative control of renal cell cancer (RCC) via vascular endothelial growth factor and mammalian target of rapamycin inhibition by targeted agents has substantially improved survival rates for RCC patients with metastatic (m) disease. However, the management of mRCC remains challenging because some patients are primarily refractory to the approved targeted agents and most therapies eventually fail because of the development of an intractable drug resistance. Tumor progression is closely related to a persistent or restored proliferation via direct and indirect oncogenic signals. Although the elucidation of cancer cell proliferation in the "-omics era" has revealed an enormous number of new potential targets, a comprehensive overview of the different pathways that might serve as new drug targets has become increasingly complex. METHODS/RESULTS This review highlights the well-trodden pathways in mRCC that are inhibited by targeting agents and describes innovative modes of action within these pathways that are currently not targeted but are under exploration in clinical studies. Additionally, this paper highlights as future drug targets the components of tumor metabolism that supply the tumor cells with nutrition. CONCLUSIONS These fundamental insights into RCC proliferation as a key driver of progression are urgently needed to overcome the currently improved but still limited targeted drug success.
Collapse
Affiliation(s)
- Stephan Kruck
- Department of Urology, Eberhard-Karls-University Tuebingen, Hoppe-Seyler Strasse 3, 72076, Tuebingen, Germany,
| | | | | | | |
Collapse
|
30
|
The Warburg effect: insights from the past decade. Pharmacol Ther 2012; 137:318-30. [PMID: 23159371 DOI: 10.1016/j.pharmthera.2012.11.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 02/07/2023]
Abstract
Several decades ago, Otto Warburg discovered that cancer cells produce energy predominantly by glycolysis; a phenomenon now termed "Warburg effect". Warburg linked mitochondrial respiratory defects in cancer cells to aerobic glycolysis; this theory of his gradually lost its importance with the lack of conclusive evidence confirming the presence of mitochondrial defects in cancer cells. Scientists began to believe that this altered mechanism of energy production in cancer cells was more of an effect than the cause. More than 50 years later, the clinical use of FDG-PET imaging in the diagnosis and monitoring of cancers rekindled the interest of the scientific community in Warburg's hypothesis. In the last ten years considerable progress in the field has advanced our understanding of the Warburg effect. However, it still remains unclear if the Warburg effect plays a causal role in cancers or it is an epiphenomenon in tumorigenesis. In this review we aim to discuss the molecular mechanisms associated with the Warburg effect with emphasis on recent advances in the field including the role of epigenetic changes, miRNAs and post-translational modification of proteins. In addition, we also discuss emerging therapeutic strategies that target the dependence of cancer cells on altered energy processing through aerobic glycolysis.
Collapse
|
31
|
Hur H, Xuan Y, Kim YB, Lee G, Shim W, Yun J, Ham IH, Han SU. Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol 2012; 42:44-54. [PMID: 23135628 PMCID: PMC3583751 DOI: 10.3892/ijo.2012.1687] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
In contrast to mitochondria in healthy cells, which utilize oxidative phosphorylation, malignant cells undergo elevated glycolysis for energy production using glucose. The objectives of this study were to evaluate whether the expression of various molecules, including pyruvate dehydrogenase kinase-1 (PDK-1), is involved in the altered glucose metabolism associated with gastric cancer prognosis and to assess the role of a therapeutic agent in targeting glucose metabolism in gastric cancer. Immunohistochemistry was performed on gastric cancer tissues obtained from 152 patients who underwent curative resection to assess the expression of hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (GLUT-1), hexokinase-2 (HK-2) and PDK-1. In an in vitro analysis, the lactate production and glucose uptake levels, cellular viability and 5-fluorouracil (5-FU) responses were evaluated before and after treatment with dichloroacetate (DCA), a PDK-1 inhibitor, in the MKN45 and AGS gastric cancer cell lines and in the non-cancerous HEK293 cell line. GLUT-1 and PDK-1 expression was significantly associated with tumor progression, although only PDK-1 expression was an independent prognostic factor for patients who received 5-FU adjuvant treatment. There was no significant difference in cell viability between the HEK293 and gastric cancer cell lines following DCA treatment. However, DCA treatment reduced lactate production and increased responsiveness to 5-FU in MKN45 cells, which expressed high levels of PDK-1 in comparison to the other cell lines. Thus, PDK-1 may serve as a biomarker of poor prognosis in patients with gastric cancer. In addition, PDK-1 inhibitors such as DCA may be considered an additional treatment option for patients with PDK-1-expressing gastric cancers.
Collapse
Affiliation(s)
- Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fogg VC, Lanning NJ, Mackeigan JP. Mitochondria in cancer: at the crossroads of life and death. CHINESE JOURNAL OF CANCER 2012; 30:526-39. [PMID: 21801601 PMCID: PMC3336361 DOI: 10.5732/cjc.011.10018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial processes play an important role in tumor initiation and progression. In this review, we focus on three critical processes by which mitochondrial function may contribute to cancer: through alterations in glucose metabolism, the production of reactive oxygen species (ROS) and compromise of intrinsic apoptotic function. Alterations in cancer glucose metabolism include the Warburg effect, leading to a shift in metabolism away from aerobic respiration toward glycolysis, even when sufficient oxygen is present to support respiration. Such alterations in cellular metabolism may favor tumor cell growth by increasing the availability of biosynthetic intermediates needed for cellular growth and proliferation. Mutations in specific metabolic enzymes, namely succinate dehydrogenase, fumarate hydratase and the isocitrate dehydrogenases, have been linked to human cancer. Mitochondrial ROS may contribute to cancer via DNA damage and the activation of aberrant signaling pathways. ROS-dependent stabilization of the transcription factor hypoxia-inducible factor (HIF) may be a particularly important event for tumorigenesis. Compromised function of intrinsic apoptosis removes an important cellular safeguard against cancer and has been implicated in tumorigenesis, tumor metastasis, and chemoresistance. Each of the major mitochondrial processes is linked. In this review, we outline the connections between them and address ways these mitochondrial pathways may be targeted for cancer therapy.
Collapse
Affiliation(s)
- Vanessa C Fogg
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
33
|
The pan-deacetylase inhibitor panobinostat induces cell death and synergizes with everolimus in Hodgkin lymphoma cell lines. Blood 2012; 119:4017-25. [PMID: 22408261 DOI: 10.1182/blood-2011-01-331421] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pan-deacetylase inhibitor panobinostat (LBH589) recently has been shown to have significant clinical activity in patients with relapsed Hodgkin lymphoma, but its mechanism of action in Hodgkin lymphoma remains unknown. In this study, we demonstrate that panobinostat has potent antiproliferative activity against Hodgkin lymphoma-derived cell lines. At the molecular level, panobinostat activated the caspase pathway, inhibited STAT5 and STAT6 phosphorylation, and down-regulated hypoxia-inducible factor 1 α and its downstream targets, glucose transporter 1 (GLUT1) and vascular endothelial growth factor. Paradoxically, panobinostat inhibited LKB1 and AMP-activated protein kinase, leading to activation of mammalian target of rapamycin (mTOR) that promotes survival. Combining panobinostat with the mTOR inhibitor everolimus (RAD001) inhibited panobinostat-induced mTOR activation and enhanced panobinostat antiproliferative effects. Collectively, our data demonstrate that panobinostat is a potent deacetylase inhibitor against Hodgkin lymphoma-derived cell lines, and provide a mechanistic rationale for combining panobinostat with mTOR inhibitors for treating Hodgkin lymphoma patients. Furthermore, the effect of panobinostat on GLUT1 expression suggests that panobinostat may modulate the results of clinical diagnostic imaging tests that depend of functional GLUT1, such as fluorodeoxyglucose positron emission tomography.
Collapse
|
34
|
Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, Torti SV, Shulaev V. Bioinformatics tools for cancer metabolomics. Metabolomics 2011; 7:329-343. [PMID: 21949492 PMCID: PMC3155682 DOI: 10.1007/s11306-010-0270-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022]
Abstract
It is well known that significant metabolic change take place as cells are transformed from normal to malignant. This review focuses on the use of different bioinformatics tools in cancer metabolomics studies. The article begins by describing different metabolomics technologies and data generation techniques. Overview of the data pre-processing techniques is provided and multivariate data analysis techniques are discussed and illustrated with case studies, including principal component analysis, clustering techniques, self-organizing maps, partial least squares, and discriminant function analysis. Also included is a discussion of available software packages.
Collapse
Affiliation(s)
- Grigoriy Blekherman
- Virginia Bioinformatics Institute, Washington St. 0477, Blacksburg, VA 24061 USA
| | - Reinhard Laubenbacher
- Virginia Bioinformatics Institute, Washington St. 0477, Blacksburg, VA 24061 USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Diego F. Cortes
- Virginia Bioinformatics Institute, Washington St. 0477, Blacksburg, VA 24061 USA
| | - Pedro Mendes
- Virginia Bioinformatics Institute, Washington St. 0477, Blacksburg, VA 24061 USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
- School of Computer Science and Manchester Centre for Integrative Systems Biology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Frank M. Torti
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Steven Akman
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Suzy V. Torti
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Vladimir Shulaev
- Virginia Bioinformatics Institute, Washington St. 0477, Blacksburg, VA 24061 USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203 USA
| |
Collapse
|
35
|
Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. SIRT3 and cancer: tumor promoter or suppressor? Biochim Biophys Acta Rev Cancer 2011; 1816:80-8. [PMID: 21586315 DOI: 10.1016/j.bbcan.2011.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 12/18/2022]
Abstract
Sirtuins (SIRT1-7), the mammalian homologues of the Sir2 gene in yeast, have emerging roles in age-related diseases, such as cardiac hypertrophy, diabetes, obesity, and cancer. However, the role of several sirtuin family members, including SIRT1 and SIRT3, in cancer has been controversial. The aim of this review is to explore and discuss the seemingly dichotomous role of SIRT3 in cancer biology with particular emphasis on its potential role as a tumor promoter and tumor suppressor. This review will also discuss the potential role of SIRT3 as a novel therapeutic target to treat cancer.
Collapse
Affiliation(s)
- Turki Y Alhazzazi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|