1
|
Li R, Fu F, Feng L, Liu P. Next-generation sequencing and single-cell RT-PCR reveal a distinct variable gene usage of porcine antibody repertoire following PEDV vaccination. SCIENCE CHINA-LIFE SCIENCES 2019; 63:1240-1250. [PMID: 31321668 PMCID: PMC7088813 DOI: 10.1007/s11427-019-9576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 11/24/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the most common diarrhea-causing pathogen in newborn piglets. The clarifications of the overall antibody repertoire and antigen-specific antibody repertoire are essential to provide important insights into the B-cell response and reshape new vaccines. Here, we applied next-generation sequencing (NGS) technology to investigate immunoglobulin (Ig) variable (V) gene segment usage of swine B-cells from peripheral blood lymphocytes (PBL) and mesenteric lymph node (MLN) cells following PEDV vaccination. We identified the transcripts of all functional Ig V-genes in antibody repertoire. IgHV1S2, IgKV1-11, and IgLV3-4 were the most prevalent gene segments for heavy, kappa, and lambda chains, respectively, in PBL and MLN. Unlike previous studies, IgKV1, instead of IgKV2, and IgLV3, instead of IgLV8, were the prevalent Ig V-gene families for kappa and lambda light chains, respectively. We further examined the antibody repertoire of PEDV spike-specific B cells by single-cell RT-PCR. In contrast to the overall antibody repertoire, Ig V-gene segments of PEDV spike-specific B cells preferentially adopted IgHV1-4 and IgHV1-14 for heavy chain, IgKV1-11 for kappa chain, and IgLV3-3 for lambda chain. These results represent a comprehensive analysis to characterize the Ig V-gene segment usage in the overall and PEDV spike-specific antibody repertoire in PBL and MLN.
Collapse
Affiliation(s)
- Ren Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - PingHuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
2
|
Vogel M, Bachmann MF. Immunogenicity and Immunodominance in Antibody Responses. Curr Top Microbiol Immunol 2019; 428:89-102. [PMID: 30919087 DOI: 10.1007/82_2019_160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A large number of vaccines exist that control many of the most important infectious diseases. Despite these successes, there remain many pathogens without effective prophylactic vaccines. Notwithstanding strong difference in the biology of these infectious agents, there exist common problems in vaccine design. Many infectious agents have highly variable surface antigens and/or unusually high antibody levels are required for protection. Such high variability may be addressed by using conserved epitopes and these are, however, usually difficult to display with the right conformation in an immunogenic fashion. Exceptionally high antibody titers may be achieved using life vectors or virus-like display of the epitopes. Hence, an important goal in modern vaccinology is to induce high antibody responses against fragile antigens.
Collapse
Affiliation(s)
- Monique Vogel
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Sahlihaus 2, CH-3010, Bern, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Sahlihaus 2, CH-3010, Bern, Switzerland. .,The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage. PLoS Pathog 2018; 14:e1006825. [PMID: 29370298 PMCID: PMC5806907 DOI: 10.1371/journal.ppat.1006825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/09/2018] [Accepted: 12/16/2017] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination. HIV-1 infected individuals rarely develop broadly neutralizing antibodies (bnAbs) that inhibit diverse HIV-1 subtypes. As activity against the majority of HIV-1 isolates is necessary for effective immunization against HIV-1, current vaccine development seeks to generate regimens that evoke bnAb responses. Delineating why bnAbs develop in certain cases of HIV-1 infection is thus of pivotal importance. In all infected individuals, HIV-1 inevitably escapes neutralizing antibody pressure and even the most potent bnAbs cannot clear the infection from the patient where they emerged. Yet, exactly this continuous interplay between virus escape and antibody maturation is believed to be crucial in the evolution of bnAbs, with virus escape variants containing modified HIV-1 envelope (Env) proteins, the target of neutralizing antibodies that in some cases can direct the immune response towards breadth. Identifying features of naturally occurring Env proteins that are involved in evoking bnAb responses is thus of high interest. Here, we analyzed Env features of virus isolates from donor CAP256 who developed the potent V2 apex bnAb VRC26, one of the current lead bnAbs for HIV-1 therapy and vaccine development. We show that the viral escape variants that appeared soon after the onset of the VRC26 response had highly altered Env protein properties that, in addition to reducing sensitivity to VRC26, affected their capacity to infect and altered entry dynamics. This highlights constrained viral escape pathways, but also features of VRC26 that may have prevented rapid escape. We postulate that this may have resulted in a prolonged circulation of partially VRC26 sensitive viruses, hence allowing the bnAb response to mature.
Collapse
|
4
|
Havenar-Daughton C, Carnathan DG, Torrents de la Peña A, Pauthner M, Briney B, Reiss SM, Wood JS, Kaushik K, van Gils MJ, Rosales SL, van der Woude P, Locci M, Le KM, de Taeye SW, Sok D, Mohammed AUR, Huang J, Gumber S, Garcia A, Kasturi SP, Pulendran B, Moore JP, Ahmed R, Seumois G, Burton DR, Sanders RW, Silvestri G, Crotty S. Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Rep 2017; 17:2195-2209. [PMID: 27880897 DOI: 10.1016/j.celrep.2016.10.085] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/16/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization (SOSIP.v5.2) whereas others did not. This was not because HIV Env trimers were immunologically silent because all monkeys made similar ELISA-binding antibody responses; the key difference was nAb versus non-nAb responses. We explored the immunological barriers to HIV nAb responses by combining a suite of techniques, including longitudinal lymph node fine needle aspirates. Unexpectedly, nAb development best correlated with booster immunization GC B cell magnitude and Tfh characteristics of the Env-specific CD4 T cells. Notably, these factors distinguished between successful and unsuccessful antibody responses because GC B cell frequencies and stoichiometry to GC Tfh cells correlated with nAb development, but did not correlate with total Env Ab binding titers.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Diane G Carnathan
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Matthias Pauthner
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan Briney
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Jennifer S Wood
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Patricia van der Woude
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Michela Locci
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Khoa M Le
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Devin Sok
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Jessica Huang
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - AnaPatricia Garcia
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Sudhir P Kasturi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bali Pulendran
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Rafi Ahmed
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Guido Silvestri
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Cerutti N, Loredo-Varela JL, Caillat C, Weissenhorn W. Antigp41 membrane proximal external region antibodies and the art of using the membrane for neutralization. Curr Opin HIV AIDS 2017; 12:250-256. [PMID: 28422789 DOI: 10.1097/coh.0000000000000364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW We summarize the latest research on the progress to understand the neutralizing epitopes present within the membrane proximal external region (MPER) of the HIV-1 fusion protein subunit gp41. RECENT FINDINGS The HIV-1 fusion protein subunit gp41 contains a highly conserved sequence that is essential for membrane fusion and targeted by broadly neutralizing antibodies such as 2F5, 4E10, Z13e1, and 10E8. These antibodies recognize a linear gp41 epitope with high affinity, but require additional hydrophobic sequences present in their heavy chain CDR3 for neutralization. Recent structural studies on mAbs 4E10 and 10E8 provide molecular details for specific interactions with lipids and implicate part of the transmembrane region as the relevant 10E8 epitope. Although many different approaches have been applied to engineer gp41 immunogens that can induce broadly neutralizing antibodies directed toward MPER, only modest success has yet been reported. SUMMARY The new structural details on the complex gp41-lipidic epitope will spur new approaches to design gp41-MPER immunogens that might induce broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Nichole Cerutti
- aUniversity Grenoble Alpes bCEA cCNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | | | | |
Collapse
|
6
|
Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. J Virol 2017; 91:JVI.00264-17. [PMID: 28381572 DOI: 10.1128/jvi.00264-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
Soluble, recombinant native-like envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed for structural studies and as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design is designated SOSIP.664, but many HIV-1 env genes do not yield fully native-like trimers efficiently. One such env gene is CZA97.012 from a neutralization-resistant (tier 2) clade C virus. As appropriately purified, native-like CZA97.012 SOSIP.664 trimers induce autologous neutralizing antibodies (NAbs) efficiently in immunized rabbits, we sought to improve the efficiency with which they can be produced and to better understand the limitations to the original design. By using structure- and antigenicity-guided mutagenesis strategies focused on the V2 and V3 regions and the gp120-gp41 interface, we developed the CZA97 SOSIP.v4.2-M6.IT construct. Fully native-like, stable trimers that display multiple bNAb epitopes could be expressed from this construct in a stable CHO cell line and purified at an acceptable yield using either a PGT145 or a 2G12 bNAb affinity column. We also show that similar mutagenesis strategies can be used to improve the yields and properties of SOSIP.664 trimers of the DU422, 426c, and 92UG037 genotypes.IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for future vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein (Env) structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. The vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. Because HIV-1 is extremely variable, a practical vaccine may need to incorporate Env trimers derived from multiple different virus sequences. Accordingly, we need to understand how to make recombinant trimers from many different env genes. Here, we show how to produce trimers from a clade C virus, CZA97.012, by using an array of protein engineering techniques to improve a prototypic construct. We also show that the methods may have wider utility for other env genes, thereby further guiding immunogen design.
Collapse
|
7
|
Steel RW, Kappe SH, Sack BK. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials. Future Microbiol 2016; 11:1563-1579. [PMID: 27855488 DOI: 10.2217/fmb-2016-0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.
Collapse
Affiliation(s)
- Ryan Wj Steel
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Stefan Hi Kappe
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Brandon K Sack
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Live attenuated Salmonella displaying HIV-1 10E8 epitope on fimbriae: systemic and mucosal immune responses in BALB/c mice by mucosal administration. Sci Rep 2016; 6:29556. [PMID: 27411313 PMCID: PMC4944174 DOI: 10.1038/srep29556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023] Open
Abstract
The HIV-1 membrane proximal external region (MPER) that is targeted by several broadly neutralizing antibodies (BNAbs) has been considered a potential immunogen for vaccine development. However, to date the immunogenicity of these BNAb epitopes has not been made sufficiently adequate. In the present work, we used live attenuated Salmonella as a platform to present the HIV-1 MPER 10E8 epitope in the fimbriae. The insertion of the 10E8 epitope into the fimbriae had no significant influence on the expression and the absorption capacity of bacterial fimbriae, nor on the virulence and invasiveness of the attenuated Salmonella. After oral administration of the vaccine construct to mice followed by 10E8 epitope peptide boost, specific antibody responses in serum and mucosa as well as memory lymphocytes in spleen and plasma cells in bone marrow were induced. We also found that the live attenuated Salmonella vector directed the immunity toward Th1 bias, induced Th1 and Th2 cytokine responses and stimulated significant B cell differentiation into GC B, memory B and plasma cells. Therefore, we propose that the live attenuated Salmonella constitutively expressing HIV-1 BNAb epitopes on the fimbriae will be an effective approach to improving immune microenvironment and enhancing the immunogenicity of HIV-1 epitope vaccines.
Collapse
|
9
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
10
|
Safrit JT, Fast PE, Gieber L, Kuipers H, Dean HJ, Koff WC. Status of vaccine research and development of vaccines for HIV-1. Vaccine 2016; 34:2921-2925. [PMID: 26993335 DOI: 10.1016/j.vaccine.2016.02.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored.
Collapse
Affiliation(s)
| | | | - Lisa Gieber
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Hester Kuipers
- International AIDS Vaccine Initiative, Amsterdam, Netherlands
| | - Hansi J Dean
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY, USA
| |
Collapse
|
11
|
Sadanand S, Suscovich TJ, Alter G. Broadly Neutralizing Antibodies Against HIV: New Insights to Inform Vaccine Design. Annu Rev Med 2015; 67:185-200. [PMID: 26565674 DOI: 10.1146/annurev-med-091014-090749] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 poses immense immunological challenges to the humoral immune response because of its ability to shield itself and replicate and evolve rapidly. Although most currently licensed vaccines provide protection via the induction of antibodies (Abs) that can directly block infection ( 1 ), 30 years of HIV-1 vaccine research has failed to successfully elicit such Abs against globally relevant HIV strains. However, mounting evidence suggests that these broadly neutralizing antibodies (bNAbs) do emerge naturally in a significant fraction of infected subjects, albeit after years of infection, indicating that these responses can be selected naturally by the immune response but take long periods of time to evolve. We review the basic structural characteristics of broadly neutralizing antibodies and how they recognize the virus, and we discuss new vaccination strategies that aim to mimic natural evolution to guide B cells to produce protective Abs against HIV-1.
Collapse
Affiliation(s)
- Saheli Sadanand
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139-3583; , ,
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139-3583; , ,
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139-3583; , ,
| |
Collapse
|
12
|
Murira A, Lapierre P, Lamarre A. Evolution of the Humoral Response during HCV Infection: Theories on the Origin of Broadly Neutralizing Antibodies and Implications for Vaccine Design. Adv Immunol 2015; 129:55-107. [PMID: 26791858 DOI: 10.1016/bs.ai.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Similar to human immunodeficiency virus (HIV)-1, vaccine-induced elicitation of broadly neutralizing (bNt) antibodies (Abs) is gaining traction as a key goal toward the eradication of the hepatitis C virus (HCV) pandemic. Previously, the significance of the Ab response against HCV was underappreciated given the prevailing evidence advancing the role of the cellular immune response in clearance and overall control of the infection. However, recent findings have driven growing interest in the humoral arm of the immune response and in particular the role of bNt responses due to their ability to confer protective immunity upon passive transfer in animal models. Nevertheless, the origin and development of bNt Abs is poorly understood and their occurrence is rare as well as delayed with emergence only observed in the chronic phase of infection. In this review, we characterize the interplay between the host immune response and HCV as it progresses from the acute to chronic phase of infection. In addition, we place these events in the context of current hypotheses on the origin of bNt Abs against the HIV-1, whose humoral immune response is better characterized. Based on the increasing significance of the humoral immune response against HCV, characterization of these events may be critical in understanding the development of the bNt responses and, thus, provide strategies toward effective vaccine design.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| | - Pascal Lapierre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| |
Collapse
|
13
|
Abstract
An effective human immunodeficiency virus type 1 (HIV-1) vaccine is expected to have the greatest impact on HIV-1 spread and remains a global scientific priority. Only one candidate vaccine has significantly reduced HIV-1 acquisition, yet at a limited efficacy of 31%, and none have delayed disease progression in vaccinated individuals. Thus, the challenge remains to develop HIV-1 immunogens that will elicit protective immunity. A combination of two independent approaches - namely the elicitation of broadly neutralising antibodies (bNAb) to prevent or reduce acquisition of infection and stimulation of effective cytotoxic T lymphocyte (CTL) responses to slow disease progression in breakthrough infections (recent evidence suggests that CTLs could also block HIV-1 from establishing persistent infection) - is the current ideal. The purpose of this review is to summarise strategies and progress in the design and testing of HIV-1 immunogens to elicit bNAb and protective CTL immune responses. Recent advances in mimicking the functional native envelope trimer structure and in designing structurally-stabilised bNAb epitope forms to drive development of germline precursors to mature bNAb are highlighted. Systematic or computational approaches to T cell immunogen design aimed at covering viral diversity, increasing the breadth of immune responses and/or reducing viable viral escape are discussed. We also discuss a recent novel vaccine vector approach shown to induce extremely broad and persistent T cell responses that could clear highly pathogenic simian immunodeficiency virus (SIV) early after infection in the monkey model. While in vitro and animal model data are promising, Phase II and III human clinical trials are ultimately needed to determine the efficacy of immunogen design approaches.
Collapse
Affiliation(s)
- Jaclyn K Mann
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
| | - Thumbi Ndung’u
- />HIV Pathogenesis Programme, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001 South Africa
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, 4001 South Africa
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139 USA
- />Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
| |
Collapse
|