1
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Impact of the Polymorphism rs9264942 near the HLA-C Gene on HIV-1 DNA Reservoirs in Asymptomatic Chronically Infected Patients Initiating Antiviral Therapy. J Immunol Res 2017; 2017:8689313. [PMID: 29445759 PMCID: PMC5763112 DOI: 10.1155/2017/8689313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/17/2017] [Indexed: 11/17/2022] Open
Abstract
Several genome-wide association studies have identified a polymorphism located 35 kb upstream of the coding region of HLA-C gene (rs9264942; termed -35 C/T) as a host factor significantly associated with the control of HIV-1 viremia in untreated patients. The potential association of this host genetic polymorphism with the viral reservoirs has never been investigated, nor the association with the viral control in response to the treatment. In this study, we assess the influence of the polymorphism -35 C/T on the outcome of virus burden in 183 antiretroviral-naïve HIV-1-infected individuals who initiated antiviral treatment (study STIR-2102), analyzing HIV-1 RNA viremia and HIV-1 DNA reservoirs. The rs9264942 genotyping was investigated retrospectively, and plasma levels of HIV-1 RNA and peripheral blood mononuclear cell- (PBMC-) associated HIV-1 DNA were compared between carriers and noncarriers of the protective allele -35 C before antiretroviral therapy (ART), one month after ART and at the end of the study (36 months). HIV-1 RNA and HIV-1 DNA levels were both variables significantly different between carriers and noncarriers of the allele -35 C before ART. HIV-1 DNA levels remained also significantly different one month posttherapy. However, this protective effect of the -35 C allele was not maintained after long-term ART.
Collapse
|
3
|
Medeiros RMD, Menti CF, Benelli JL, Matte MCC, Melo MGD, Almeida SEDM, Fiegenbaum M. Association of NR1I2 gene polymorphisms and time of progression to AIDS. Mem Inst Oswaldo Cruz 2017; 112:269-274. [PMID: 28327790 PMCID: PMC5354613 DOI: 10.1590/0074-02760160382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The time of progression towards AIDS can vary greatly among seropositive patients, and may be associated with host genetic variation. The NR1I2 (PXR) gene, a ligand-activated transcription factor, regulates the transcription immune pathway genes and can therefore be targets of viral replication mechanisms influencing time of progression to AIDS. OBJECTIVE To verify the association of single nucleotide polymorphisms (SNPs) rs3814057, rs6785049, rs7643645, and rs2461817 in the NR1I2 (PXR) gene with progression to AIDS in HIV-1 infected patients. METHODS Blood samples were obtained from 96 HIV-1 positive individuals following informed consent. DNA was isolated and genotyped through real time polymerase chain reaction (PCR) for the presence of SNPs in the NR1I2. Questionnaires on socio-demographic features and behaviors were answered and time of progression to AIDS was estimated based on medical chart analysis. FINDINGS Patients with the GG genotype for rs7643645 were shown to be related with a more rapid disease progression when compared to GA and AA genotypes. This result was maintained by the Multivariate Cox Regression considering sex, ethnicity, and presence of HLA-B*57, HLA-B*27, and CCR5del32 polymorphisms. MAIN CONCLUSIONS Recent studies reported the expression of the nuclear receptors in T-Lymphocytes, suggesting their possible role in the immune response. In addition, nuclear receptors have been shown to inhibit the HIV replication, although no such mechanism has been thoroughly elucidated to date. This is the first time an association between NR1I2 polymorphism and time of progression to AIDS is reported and supports an apparent relationship between the gene in the immune response and identifies another genetic factor influencing AIDS progression.
Collapse
Affiliation(s)
- Rúbia Marília de Medeiros
- Fundação Estadual de Produção e Pesquisa, Centro de Desenvolvimento Científico e Tecnológicos, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| | - Carolina Fialho Menti
- Universidade Federal de Ciências da Saúde de Porto Alegre, Faculdade de Biomedicina, Porto Alegre, RS, Brasil
| | - Jéssica Louise Benelli
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Patologia, Porto Alegre, RS, Brasil
| | - Maria Cristina Cotta Matte
- Fundação Estadual de Produção e Pesquisa, Centro de Desenvolvimento Científico e Tecnológicos, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| | | | - Sabrina Esteves de Matos Almeida
- Fundação Estadual de Produção e Pesquisa, Centro de Desenvolvimento Científico e Tecnológicos, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil.,Universidade Feevale, Novo Hamburgo, Brasil
| | - Marilu Fiegenbaum
- Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Patologia, Porto Alegre, RS, Brasil
| |
Collapse
|
4
|
Estimating the Respective Contributions of Human and Viral Genetic Variation to HIV Control. PLoS Comput Biol 2017; 13:e1005339. [PMID: 28182649 PMCID: PMC5300119 DOI: 10.1371/journal.pcbi.1005339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023] Open
Abstract
We evaluated the fraction of variation in HIV-1 set point viral load attributable to viral or human genetic factors by using joint host/pathogen genetic data from 541 HIV infected individuals. We show that viral genetic diversity explains 29% of the variation in viral load while host factors explain 8.4%. Using a joint model including both host and viral effects, we estimate a total of 30% heritability, indicating that most of the host effects are reflected in viral sequence variation. Viral loads of Human Immunodeficiency Virus infections are correlated between the donor and the recipient of the transmission pair. Similarly, human genetic factors may modulate viral load. In this study we estimate the extents to which viral load is heritable either via the viral genotype (from donor to recipient) or via the host’s Human Leukocyte Antigen (HLA) genotype. We find that a major fraction of inter individual variability is explained by the similarity of the viral genotypes, and that human genetic variation in the HLA region provide little additional explanatory power.
Collapse
|
5
|
Presti R, Pantaleo G. The Immunopathogenesis of HIV-1 Infection. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Venner CM, Nankya I, Kyeyune F, Demers K, Kwok C, Chen PL, Rwambuya S, Munjoma M, Chipato T, Byamugisha J, Van Der Pol B, Mugyenyi P, Salata RA, Morrison CS, Arts EJ. Infecting HIV-1 Subtype Predicts Disease Progression in Women of Sub-Saharan Africa. EBioMedicine 2016; 13:305-314. [PMID: 27751765 PMCID: PMC5264310 DOI: 10.1016/j.ebiom.2016.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Long-term natural history cohorts of HIV-1 in the absence of treatment provide the best measure of virulence by different viral subtypes. METHODS Newly HIV infected Ugandan and Zimbabwean women (N=303) were recruited and monitored for clinical, social, behavioral, immunological and viral parameters for 3 to 9.5years. RESULTS Ugandan and Zimbabwean women infected with HIV-1 subtype C had 2.5-fold slower rates of CD4 T-cell declines and higher frequencies of long-term non-progression than those infected with subtype A or D (GEE model, P<0.001), a difference not associated with any other clinical parameters. Relative replicative fitness and entry efficiency of HIV-1 variants directly correlated with virulence in the patients, subtype D>A>C (P<0.001, ANOVA). DISCUSSION HIV-1 subtype C was less virulent than either A or D in humans; the latter being the most virulent. Longer periods of asymptomatic HIV-1 subtype C could explain the continued expansion and dominance of subtype C in the global epidemic.
Collapse
Affiliation(s)
- Colin M Venner
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Immaculate Nankya
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Korey Demers
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cynthia Kwok
- Family Health International 360, Durham, NC, USA
| | | | - Sandra Rwambuya
- Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marshall Munjoma
- Department of Obstetrics and Gynaecology, University of Zimbabwe, Harare, Zimbabwe
| | - Tsungai Chipato
- Department of Obstetrics and Gynaecology, University of Zimbabwe, Harare, Zimbabwe
| | | | - Barbara Van Der Pol
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, USA
| | | | - Robert A Salata
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Joint Clinical Research Centre, Kampala, Uganda; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Mehlotra RK, Zimmerman PA, Weinberg A. Defensin gene variation and HIV/AIDS: a comprehensive perspective needed. J Leukoc Biol 2016; 99:687-92. [PMID: 26957215 DOI: 10.1189/jlb.6ru1215-560r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 01/24/2023] Open
Abstract
Both α- and β-defensins have anti-human immunodeficiency virus activity. These defensins achieve human immunodeficiency virus inhibition through a variety of mechanisms, including direct binding with virions, binding to and modulation of host cell-surface receptors with disruption of intracellular signaling, and functioning as chemokines or cytokines to augment and alter adaptive immune responses. Polymorphisms in the defensin genes have been associated with susceptibility to human immunodeficiency virus infection and disease progression. However, the roles that these defensins and their genetic polymorphisms have in influencing human immunodeficiency virus/acquired immunodeficiency syndrome outcomes are not straightforward and, at times, appear contradictory. Differences in populations, study designs, and techniques for genotyping defensin gene polymorphisms may have contributed to this lack of clarity. In addition, a comprehensive approach, where both subfamilies of defensins and their all-inclusive genetic polymorphism profiles are analyzed, is lacking. Such an approach may reveal whether the human immunodeficiency virus inhibitory activities of α- and β-defensins are based on parallel or divergent mechanisms and may provide further insights into how the genetic predisposition for susceptibility or resistance to human immunodeficiency virus/acquired immunodeficiency syndrome is orchestrated between these molecules.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Sironi M, Biasin M, Pontremoli C, Cagliani R, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, Aguilar-Jimenez W, Rugeles MT, Cedeno S, Sanchez J, Brander C, Clerici M. Variants in the CYP7B1 gene region do not affect natural resistance to HIV-1 infection. Retrovirology 2015; 12:80. [PMID: 26399852 PMCID: PMC4581478 DOI: 10.1186/s12977-015-0206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
Background The genetic bases of natural resistance to HIV-1 infection remain largely unknown. Recently, two genome-wide association studies suggested a role for variants within or in the vicinity of the CYP7B1 gene in modulating HIV susceptibility. CYP7B1 is an appealing candidate for this due to its contribution to antiviral immune responses. We analyzed the frequency of two previously described CYP7B1 variants (rs6996198 and rs10808739) in three independent cohorts of HIV-1 infected subjects and HIV-1 exposed seronegative individuals (HESN). Findings rs6996198 and rs10808739 were genotyped in three case/control cohorts of sexually-exposed HESN and HIV-1-infected individuals from Italy, Peru and Colombia. Comparison of the allele and genotype frequencies of the two SNPs under different models showed that the only significant difference was seen for rs6996198 in the Peruvian sample (nominal p = 0.048, dominant model). For this variant, a random-effect meta-analysis yielded non-significant results (dominant model, p = 0.78) and revealed substantial heterogeneity among cohorts. No significant effect of the rs10808739 allelic status on HIV-1 infection susceptibility (additive model, p = 0.30) emerged from the meta-analysis. Conclusions Although our study had limited power to detect association due to the small sample size, comparisons among the three cohorts revealed very similar allelic and genotypic frequencies in HESN and HIV-1 positive subjects. Overall, these data indicate that the two GWAS-defined variants in the CYP7B1 region do not strongly influence HIV-1 infection susceptibility.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
| | | | | | | | | | - Maria Teresa Rugeles
- Immunovirology Group, School of Medicine, University of Antioquia UdeA, Medellín, Colombia.
| | - Samandhy Cedeno
- AIDS Research Institute-IrsiCaixa-HIVACAT, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. .,University of Vic and Central Catalonia, Vic, Spain.
| | - Jorge Sanchez
- Asociación Civil Impacta Salud y Educación, Lima, Peru.
| | - Christian Brander
- AIDS Research Institute-IrsiCaixa-HIVACAT, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. .,University of Vic and Central Catalonia, Vic, Spain.
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy. .,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy.
| |
Collapse
|