1
|
Munusamy Ponnan S, Pattabiram S, Thiruvengadam K, Goyal R, Singla N, Mukherjee J, Chatrath S, Bergin P, T. Kopycinski J, Gilmour J, Kumar S, Muthu M, Subramaniam S, Swaminathan S, Prasad Tripathy S, Luke HE. Induction and maintenance of bi-functional (IFN-γ + IL-2+ and IL-2+ TNF-α+) T cell responses by DNA prime MVA boosted subtype C prophylactic vaccine tested in a Phase I trial in India. PLoS One 2019; 14:e0213911. [PMID: 30921340 PMCID: PMC6438518 DOI: 10.1371/journal.pone.0213911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Effective vaccine design relies on accurate knowledge of protection against a pathogen, so as to be able to induce relevant and effective protective responses against it. An ideal Human Immunodeficiency virus (HIV) vaccine should induce humoral as well as cellular immune responses to prevent initial infection of host cells or limit early events of viral dissemination. A Phase I HIV-1 prophylactic vaccine trial sponsored by the International AIDS Vaccine Initiative (IAVI) was conducted in India in 2009.The trial tested a HIV-1 subtype C vaccine in a prime-boost regimen, comprising of a DNA prime (ADVAX) and Modified Vaccine Ankara (MVA) (TBC-M4) boost. The trial reported that the vaccine regimen was safe, well tolerated, and resulted in enhancement of HIV-specific immune responses. However, preliminary immunological studies were limited to vaccine-induced IFN-γ responses against the Env and Gag peptides. The present study is a retrospective study to characterize in detail the nature of the vaccine-induced cell mediated immune responses among volunteers, using Peripheral Blood Mononuclear Cells (PBMC) that were archived during the trial. ELISpot was used to measure IFN-γ responses and polyfunctional T cells were analyzed by intracellular multicolor flow cytometry. It was observed that DNA priming and MVA boosting induced Env and Gag specific bi-functional and multi-functional CD4+ and CD8+ T cells expressing IFN-γ, TNF-α and IL-2. The heterologous prime-boost regimen appeared to be slightly superior to the homologous prime-boost regimen in inducing favorable cell mediated immune responses. These results suggest that an in-depth analysis of vaccine-induced cellular immune response can aid in the identification of correlates of an effective immunogenic response, and inform future design of HIV vaccines.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sathyamurthy Pattabiram
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Kannan Thiruvengadam
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Rajat Goyal
- International AIDS Vaccine Initiative, New Delhi, India
| | - Nikhil Singla
- International AIDS Vaccine Initiative, New Delhi, India
| | | | | | - Philip Bergin
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Sriram Kumar
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Malathy Muthu
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sudha Subramaniam
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Soumya Swaminathan
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Srikanth Prasad Tripathy
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Hanna Elizabeth Luke
- Department of HIV, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
- * E-mail:
| |
Collapse
|
2
|
Williamson AL, Rybicki EP. Justification for the inclusion of Gag in HIV vaccine candidates. Expert Rev Vaccines 2015; 15:585-98. [PMID: 26645951 DOI: 10.1586/14760584.2016.1129904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is widely accepted that effective human immunodeficiency virus (HIV) vaccines need to elicit a range of responses, including neutralising antibodies and T-cells. In natural HIV infections, immune responses to Gag are associated with lower viral load in infected individuals, and these responses can be measured against infected cells before the replication of HIV. Priming immune responses to Gag with DNA or recombinant Bacillus Calmette-Guérin (BCG) vaccines, and boosting with Gag virus-like particles as subunit vaccines or Gag produced in vivo by other vaccine vectors, elicits high-magnitude, broad polyfunctional responses, with memory T-cell responses appropriate for virus control. This review provides justification for the inclusion of HIV Gag in vaccine regimens, either as a transgene expressing protein that may assemble to form budded particles, or as purified virus-like particles. Possible benefits would include early control via CD8(+) T-cells at the site of infection, control of spread from the entry portal, and control of viraemia if infection is established.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,b National Health Laboratory Service, Groote Schuur Hospital, Cape Town and Department of Pathology , University of Cape Town , Cape Town , South Africa
| | - Edward P Rybicki
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,c Biopharming Research Unit, Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
3
|
Transcriptional profiling of peripheral CD8+T cell responses to SIVΔnef and SIVmac251 challenge reveals a link between protective immunity and induction of systemic immunoregulatory mechanisms. Virology 2014; 468-470:581-591. [PMID: 25282469 DOI: 10.1016/j.virol.2014.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/19/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023]
Abstract
Immunization of macaques with attenuated simian immunodeficiency virus (SIV) with deletions in nef (SIVΔnef) is shown to elicit protective immunity to infection by pathogenic SIV, yet the mechanisms that orchestrate protection and prevent pathogenesis remains unknown. We utilized whole-genome transcriptional profiling to reveal molecular signatures of protective immunity in circulating CD8+ T cells of rhesus macaques vaccinated with SIVmac239Δnef and challenged with pathogenic SIVmac251. Our findings suggest that protective immunity to pathogenic SIV infection induced by SIVmac239∆nef is associated with balanced induction of T cell activation and immunoregulatory mechanisms and dampened activation of interferon-induced signaling pathways and cytolytic enzyme production as compared with pathogenic SIVmac251 infection of unvaccinated controls. We provide evidence that protective immunity to SIVmac251 correlates with induction of biomarkers of T cell activation, differentiation, signaling, and adhesion that were down regulated in unvaccinated controls. The study highlights potential immunomodulatory networks associated with protective immunity against the virus.
Collapse
|
4
|
|
5
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
6
|
Poignard P, Moldt B, Maloveste K, Campos N, Olson WC, Rakasz E, Watkins DI, Burton DR. Protection against high-dose highly pathogenic mucosal SIV challenge at very low serum neutralizing titers of the antibody-like molecule CD4-IgG2. PLoS One 2012; 7:e42209. [PMID: 22848744 PMCID: PMC3407103 DOI: 10.1371/journal.pone.0042209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/04/2012] [Indexed: 11/23/2022] Open
Abstract
Passive transfer studies using monoclonal or polyclonal antibodies in the macaque model have been valuable for determining conditions for antibody protection against immunodeficiency virus challenge. Most studies have employed hybrid simian/human immunodeficiency virus (SHIV) challenge in conjunction with neutralizing human monoclonal antibodies. Passive protection against SIV, particularly the pathogenic prototype virus SIVmac239, has been little studied because of the paucity of neutralizing antibodies to this virus. Here, we show that the antibody-like molecule CD4-IgG2 potently neutralizes SIVmac239 in vitro. When administered by an osmotic pump to maintain concentrations given the short half-life of CD4-IgG2 in macaques, the molecule provided sterilizing immunity/protection against high-dose mucosal viral challenge to a high proportion of animals (5/7 at a 200 mg dose CD4-IgG2 and 3/6 at a 20 mg dose) at serum concentrations below 1.5 µg/ml. The neutralizing titers of such sera were predicted to be very low and indeed sera at a 1∶4 dilution produced no neutralization in a pseudovirus assay. Macaque anti-human CD4 titers did develop weakly at later time points in some animals but were not associated with the level of protection against viral challenge. The results show that, although SIVmac239 is considered a highly pathogenic virus for which vaccine-induced T cell responses in particular have provided limited benefit against high dose challenge, the antibody-like CD4-IgG2 molecule at surprisingly low serum concentration affords sterilizing immunity/protection to a majority of animals.
Collapse
Affiliation(s)
- Pascal Poignard
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
For protection from HIV-1 infection, more might not be better: a systematic analysis of HIV Gag epitopes of two alleles associated with different outcomes of HIV-1 infection. J Virol 2011; 86:1166-80. [PMID: 22072744 DOI: 10.1128/jvi.05721-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of women in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remains uninfected despite repeated high-risk exposure (HIV-exposed, seronegative [HESN]) through active sex work. This HESN phenotype is associated with several alleles of human leukocyte antigens (HLAs) and specific CD8(+) and CD4(+) T cell responses to HIV-1. The associations of HLA alleles with differential HIV-1 infection are most likely due to their different abilities to present antigen and the different immune responses they induce. The characteristics of epitopes of HLA alleles associated with different outcomes of HIV-1 infection might therefore point to a vital clue for developing an effective vaccine. In this study, we systematically analyzed HIV-1 clade A and D Gag CD8(+) T cell epitopes of two HLA class I alleles associated with different outcomes of HIV-1 infection. Binding affinity and off-rates of the identified epitopes were determined. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays with patient peripheral blood mononuclear cells (PBMCs) validated the epitopes. Epitope-specific CD8(+) T cells were further phenotyped for memory markers with tetramer staining. Our study showed that the protective allele A*01:01 recognizes only three Gag epitopes. By contrast, B*07:02, the allele associated with susceptibility, binds 30 epitope variants. These two alleles differ most importantly in the spectrum of Gag epitopes they can present and not in affinity, off-rates, the location of the epitopes, or epitope-specific Tem/Tcm frequencies. The binding of more epitopes and strong IFN-gamma ELISpot responses are associated with susceptibility to HIV-1 infection, while more focused antigen recognition of multiple subtypes is protective. Rational vaccine design should take these observations into account.
Collapse
|
8
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
9
|
Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines. Proc Natl Acad Sci U S A 2011; 108:5724-9. [PMID: 21422297 DOI: 10.1073/pnas.1013084108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Collapse
|
10
|
Li B, Berry N, Ham C, Ferguson D, Smith D, Hall J, Page M, Quartey-Papafio R, Elsley W, Robinson M, Almond N, Stebbings R. Vaccination with live attenuated simian immunodeficiency virus causes dynamic changes in intestinal CD4+CCR5+ T cells. Retrovirology 2011; 8:8. [PMID: 21291552 PMCID: PMC3038908 DOI: 10.1186/1742-4690-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
Background Vaccination with live attenuated SIV can protect against detectable infection with wild-type virus. We have investigated whether target cell depletion contributes to the protection observed. Following vaccination with live attenuated SIV the frequency of intestinal CD4+CCR5+ T cells, an early target of wild-type SIV infection and destruction, was determined at days 3, 7, 10, 21 and 125 post inoculation. Results In naive controls, modest frequencies of intestinal CD4+CCR5+ T cells were predominantly found within the LPL TTrM-1 and IEL TTrM-2 subsets. At day 3, LPL and IEL CD4+CCR5+ TEM cells were dramatically increased whilst less differentiated subsets were greatly reduced, consistent with activation-induced maturation. CCR5 expression remained high at day 7, although there was a shift in subset balance from CD4+CCR5+ TEM to less differentiated TTrM-2 cells. This increase in intestinal CD4+CCR5+ T cells preceded the peak of SIV RNA plasma loads measured at day 10. Greater than 65.9% depletion of intestinal CD4+CCR5+ T cells followed at day 10, but overall CD4+ T cell homeostasis was maintained by increased CD4+CCR5- T cells. At days 21 and 125, high numbers of intestinal CD4+CCR5- naive TN cells were detected concurrent with greatly increased CD4+CCR5+ LPL TTrM-2 and IEL TEM cells at day 125, yet SIV RNA plasma loads remained low. Conclusions This increase in intestinal CD4+CCR5+ T cells, following vaccination with live attenuated SIV, does not correlate with target cell depletion as a mechanism of protection. Instead, increased intestinal CD4+CCR5+ T cells may correlate with or contribute to the protection conferred by vaccination with live attenuated SIV.
Collapse
Affiliation(s)
- Bo Li
- Biotherapeutics Group, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Douglas AD, de Cassan SC, Dicks MDJ, Gilbert SC, Hill AVS, Draper SJ. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1. Vaccine 2011; 28:7167-78. [PMID: 20937436 PMCID: PMC3404461 DOI: 10.1016/j.vaccine.2010.08.068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022]
Abstract
Subunit vaccination modalities tend to induce particular immune effector responses. Viral vectors are well known for their ability to induce strong T cell responses, while protein-adjuvant vaccines have been used primarily for induction of antibody responses. Here, we demonstrate in mice using a Plasmodium falciparum merozoite surface protein 1 (PfMSP1) antigen that novel regimes combining adenovirus and poxvirus vectored vaccines with protein antigen in Montanide ISA720 adjuvant can achieve simultaneous antibody and T cell responses which equal, or in some cases surpass, the best immune responses achieved by either the viral vectors or the protein vaccine alone. Such broad responses can be achieved either using three-stage vaccination protocols, or with an equally effective two-stage protocol in which viral vectors are admixed with protein and adjuvant, and were apparent despite the use of a protein antigen that represented only a portion of the viral vector antigen. We describe further possible advantages of viral vectors in achieving consistent antibody priming, enhanced antibody avidity, and cytophilic isotype skew. These data strengthen the evidence that tailored combinations of vaccine platforms can achieve desired combinations of immune responses, and further encourage the co-administration of antibody-inducing recombinant protein vaccines with T cell- and antibody-inducing recombinant viral vectors as one strategy that may achieve protective blood-stage malaria immunity in humans.
Collapse
|
12
|
Barnett SW, Burke B, Sun Y, Kan E, Legg H, Lian Y, Bost K, Zhou F, Goodsell A, Zur Megede J, Polo J, Donnelly J, Ulmer J, Otten GR, Miller CJ, Vajdy M, Srivastava IK. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant. J Virol 2010; 84:5975-85. [PMID: 20392857 PMCID: PMC2876657 DOI: 10.1128/jvi.02533-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/18/2010] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.
Collapse
Affiliation(s)
- Susan W Barnett
- Novartis Vaccines and Diagnostics, 350 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Developing an HIV-1 vaccine that can elicit antibodies to prevent infection has been a formidable challenge. Although no single immunogen has generated antibodies that can neutralize diverse isolates, progress has been made in understanding (a) the structure of the HIV-1 envelope glycoprotein, which is targeted by neutralizing antibodies, (b) how HIV-1 evades antibodies made by an infected host, and (c) how rare monoclonal antibodies can exhibit broadly neutralizing activity. Advances in structural and molecular biology coupled with new approaches to isolate neutralizing antibodies from HIV-1-infected individuals are enhancing our understanding of what humoral immune responses will be required for a vaccine. This review summarizes progress in understanding the host antibody response to HIV-1 and current strategies for applying this information to develop an effective vaccine.
Collapse
Affiliation(s)
- James A Hoxie
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
14
|
Mechanism of protection of live attenuated simian immunodeficiency virus: coevolution of viral and immune responses. AIDS 2010; 24:637-48. [PMID: 20186034 DOI: 10.1097/qad.0b013e328337795a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Characterization of T-cell responses in macaques immunized with a single dose of HIV DNA vaccine. J Virol 2009; 84:1243-53. [PMID: 19923181 DOI: 10.1128/jvi.01846-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The optimization of immune responses (IR) induced by HIV DNA vaccines in humans is one of the great challenges in the development of an effective vaccine against AIDS. Ideally, this vaccine should be delivered in a single dose to immunize humans. We recently demonstrated that the immunization of mice with a single dose of a DNA vaccine derived from pathogenic SHIV(KU2) (Delta4SHIV(KU2)) induced long-lasting, potent, and polyfunctional HIV-specific CD8(+) T-cell responses (G. Arrode, R. Hegde, A. Mani, Y. Jin, Y. Chebloune, and O. Narayan, J. Immunol. 178:2318-2327, 2007). In the present work, we expanded the characterization of the IR induced by this DNA immunization protocol to rhesus macaques. Animals immunized with a single high dose of Delta4SHIV(KU2) DNA vaccine were monitored longitudinally for vaccine-induced IR using multiparametric flow cytometry-based assays. Interestingly, all five immunized macaques developed broad and polyfunctional HIV-specific T-cell IR that persisted for months, with an unusual reemergence in the blood following an initial decline but in the absence of antibody responses. The majority of vaccine-specific CD4(+) and CD8(+) T cells lacked gamma interferon production but showed high antigen-specific proliferation capacities. Proliferative CD8(+) T cells expressed the lytic molecule granzyme B. No integrated viral vector could be detected in mononuclear cells from immunized animals, and this high dose of DNA did not induce any detectable autoimmune responses against DNA. Taken together, our comprehensive analysis demonstrated for the first time the capacity of a single high dose of HIV DNA vaccine alone to induce long-lasting and polyfunctional T-cell responses in the nonhuman primate model, bringing new insights for the design of future HIV vaccines.
Collapse
|
16
|
Roy S, Lavine J, Chiaromonte F, Terwee J, VandeWoude S, Bjornstad O, Poss M. Multivariate statistical analyses demonstrate unique host immune responses to single and dual lentiviral infection. PLoS One 2009; 4:e7359. [PMID: 19806226 PMCID: PMC2752991 DOI: 10.1371/journal.pone.0007359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/11/2009] [Indexed: 12/02/2022] Open
Abstract
Background Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters. Methodology and Principal Findings Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals), and the “immune profiles” that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNγ, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells. Conclusions Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual infected cats, which are protected from immune decline.
Collapse
Affiliation(s)
- Sunando Roy
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jennie Lavine
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Julie Terwee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Ottar Bjornstad
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|